
Monte-Carlo Tree Search and Rapid Action Value
Estimation in Computer Go

Sylvain Gelly1

Université Paris Sud, LRI, CNRS, INRIA, France

David Silver

University College London, UK

Abstract

A new paradigm for search, based on Monte-Carlo simulation, has revolutionised the
performance of computer Go programs. In this article we describe two extensions to
the Monte-Carlo tree search algorithm, which significantly improve the effectiveness of
the basic algorithm. When we applied these two extensions to the Go program MoGo,
it became the first program to achieve dan (master) level at 9 × 9 Go. In this article
we survey the Monte-Carlo revolution in computer Go, outline the key ideas that led
to the success of MoGo and subsequent Go programs, and provide for the first time a
comprehensive description, in theory and in practice, of this extended framework for
Monte-Carlo tree search.

1. Introduction

Monte-Carlo tree search [1] is a new paradigm for search, which has revolutionised
computer Go [2, 3], and is rapidly replacing traditional search algorithms as the method
of choice in challenging domains such as General Game Playing [4], Amazons [5],
Lines of Action [6], multi-player card games [7, 8], and real-time strategy games [9].

The key idea is to simulate many thousands of random games from the current po-
sition, using self-play. New positions are added into a search tree, and each node of the
tree contains a value that predicts who will win from that position. These predictions
are updated by Monte-Carlo simulation: the value of a node is simply the average out-
come of all simulated games that visit the position. The search tree is used to guide
simulations along promising paths, by selecting the child node with the highest poten-
tial value [10]. This results in a highly selective search that very quickly identifies good
move sequences.

The evaluation function of Monte-Carlo tree search depends only on the observed
outcomes of simulations, rather than the handcrafted evaluation functions used in tradi-
tional search algorithms. The evaluation function continues to improve from additional

1Now at Google, Zurich

Preprint submitted to Elsevier March 22, 2011

simulations; given infinite memory and computation, it will converge on the optimal
search tree [10]. Furthermore, Monte-Carlo tree search develops in a highly selective,
best-first manner, expanding promising regions of the search space much more deeply.

In this article we describe two major enhancements to Monte-Carlo tree search. The
first extension, the Rapid Action Value Estimation (RAVE) algorithm, shares the value
of actions across each subtree of the search tree. RAVE forms a very fast and rough
estimate of the action value; whereas normal Monte-Carlo is slower but more accurate.
The MC–RAVE algorithm combines these two value estimates in a principled fashion,
so as to minimise the mean squared error.

The second extension, heuristic Monte-Carlo tree search, uses a heuristic function
to initialise the values of new positions in the search tree. We demonstrate that an
effective heuristic function can be learnt by temporal-difference learning and self-play;
however, in general any heuristic can be provided to the algorithm.

We applied these two extensions to the Go program MoGo, achieving a significant
improvement to its performance in 9 × 9 Go. The resulting program became the first
program to achieve dan (master) level, and the first program to defeat a human pro-
fessional player. This framework for Monte-Carlo tree search is now used in a wide
variety of master-level Go programs, including the first programs to achieve dan level
at 19× 19 Go.

This article provides the first comprehensive description of this extended frame-
work for Monte-Carlo tree search. It adds new theory, results, pseudocode, and dis-
cussion to the original presentation of heuristic MC–RAVE [11, 3, 12]. In addition,
we include a survey of the strongest Go programs based on prior approaches, and the
strongest current programs based on Monte-Carlo methods.

2. Simulation-Based Search

2.1. Two-Player Games

We consider the class of two-player, perfect-information, zero-sum games such as
chess, checkers, backgammon and Go. Without loss of generality, we call the player
to move first Black and the player to move second White. Black and White alternate
turns, at each turn t selecting an action at ∈ A(st), where st ∈ S is the current state,
S is a finite state space, and A(s) is a finite set of legal actions in state s. The game
finishes upon reaching a terminal state with outcome z. Black’s goal is to maximise z;
White’s goal is to minimise z.

We define a two-player policy π(s, a) = Pr(a|s) to be a stochastic action selec-
tion strategy that determines the probability of selecting actions in any given state. It
consists of both a Black policy πB(s, a) that is used for Black moves, and a White
policy πW (s, a) that is used for White moves, π = 〈πB , πW 〉. We define the value
function Qπ(s, a) to be the expected outcome after playing action a in state s, and then
following policy π for both players until termination,2

2In two-player games a state is usually called a position and an action is usually called a move. The
goodness of positions or moves is estimated by an evaluation function. We use these terms during informal
discussions, but use state, action and value function in their precise sense.

2

Qπ(s, a) = Eπ[z|st = s, at = a] ∀s ∈ S, a ∈ A(s) (1)

The minimax value function Q∗(s, a) is the value function that maximises Black’s
action value and minimises White’s action value, from every state and for every action,

Q∗(s, a) = max
πB

min
πW

Qπ(s, a) ∀s ∈ S, a ∈ A(s) (2)

A minimax policy deterministically plays Black moves so as to maximise Q∗(s, a),
and plays White moves to minimise Q∗(s, a). This is commonly called perfect play.

2.2. Simulation
The basic idea of simulation-based search [13] is to evaluate states online from

simulated games. Each simulated game, which we call a simulation, starts from a root
state s0, and sequentially samples states and actions, without backtracking, until the
game terminates. At each step t of simulation, a simulation policy π(s, a) is used to
select an action, at ∼ π(st, ·), and the rules of the game are used to generate the next
state st+1. The outcome z of each simulated game is used to update the values of states
or actions encountered during that simulation.

2.3. Monte-Carlo Simulation
Monte-Carlo simulation is a simple simulation-based search algorithm for evaluat-

ing candidate actions from a root state s0. The search proceeds by simulating complete
games from s0 until termination, using a fixed simulation policy, for example select-
ing actions uniformly amongst all legal moves. The value of each action a from s0, is
estimated by the mean outcome of all simulations starting with candidate action a.

Monte-Carlo simulation provides a simple method for estimating the root value
Qπ(s0, a). N(s) complete games are simulated by self-play with policy π from state
s. The Monte-Carlo value (MC value) Q(s, a) is the mean outcome of all simulations
in which action a was selected in state s,

Q(s, a) =
1

N(s, a)

N(s)∑

i=1

Ii(s, a)zi, (3)

where zi is the outcome of the ith simulation; Ii(s, a) is an indicator function returning
1 if action a was selected in state s during the ith simulation, and 0 otherwise; and
N(s, a) =

∑N(s)
i=1 Ii(s, a) counts the total number of simulations in which action a

was selected in state s.
In its most basic form, Monte-Carlo simulation is only used to evaluate actions, but

not to improve the simulation policy. However, the basic algorithm can be extended by
progressively favouring the most successful actions, or by progressively pruning away
the least successful actions [14, 15].

In some problems, such as backgammon [16], Scrabble [17], Amazons [5] and
Lines of Action [6], it is possible to construct an accurate evaluation function. In these

3

cases it can be beneficial to stop simulation before the end of the game, and bootstrap
from the estimated value at the time of stopping. This approach, known as truncated
Monte-Carlo simulation, both increases the simulation speed, and also reduces the
variance of Monte-Carlo evaluation. In more challenging problems, such as Go [15], it
is hard to construct an accurate evaluation function. In this case truncating simulations
usually increases the evaluation bias more than it reduces the evaluation variance, and
so it is better to simulate until termination.

2.4. Monte-Carlo Tree Search

Monte-Carlo tree search (MCTS) uses Monte-Carlo simulation to evaluate the
nodes of a search tree [1]. The values in the search tree are then used to select the
best action during subsequent simulations. Monte-Carlo tree search is sequentially
best-first: it selects the best child at each step of simulation. This allows the search to
continually refocus its attention, each simulation, on the highest value regions of the
state space. As the search tree grows larger, the values of the nodes approximate the
minimax value, and the simulation policy approximates the minimax policy.

The search tree T contains one node, n(s), corresponding to each state s that has
been seen during simulations. Each node contains a total count for the state, N(s), and
an action value Q(s, a) and count N(s, a) for each action a ∈ A.

Simulations start from the root state s0, and are divided into two stages. When
state st is represented in the search tree, st ∈ T , a tree policy is used to select actions.
Otherwise, a default policy is used to roll out simulations to completion. The simplest
version of the algorithm, which we call greedy MCTS, selects the greedy action with
the highest value during the first stage, argmax

a
Q(st, a); and selects actions uniformly

at random during the second stage.
Every state and action in the search tree is evaluated by its mean outcome during

simulations. After each simulation s0, a0, s1, a1, ..., sT with outcome z, each node
in the search tree, {n(st)|st ∈ T }, updates its count, and updates its action value
Q(st, at) to the new MC value (Equation 3). This update can also be implemented
incrementally, without reconsidering previous simulations, by incrementing the count
and updating the value towards the outcome z.3

N(st)← N(st) + 1 (4)
N(st, at)← N(st, at) + 1 (5)

Q(st, at)← Q(st, at) +
z −Q(st, at)

N(st, at)
, (6)

In addition, each visited node is added to the search tree. In practice, to reduce
memory requirements, new nodes are not added for every simulation. Typically, just
one new node is added to the search tree in each simulation. The first state encountered,
that is not already represented in the tree, is added into the search tree. If memory

3This incremental formulation may accumulate error, and in practice it usually requires double precision.

4

New node in the tree

Node stored in the tree

State visited but not stored

Terminal outcome

Current simulation

Previous simulation

Simulation 1 Simulation 2

Simulation 3 Simulation 4

Simulation 5

Figure 1: Five simulations of a simple Monte-Carlo tree search. Each simulation has an outcome of 1 for a
black win or 0 for a white win (square). At each simulation a new node (star) is added into the search tree.
The value of each node in the search tree (circles and star) is then updated to count the number of black wins,
and the total number of visits (wins/visits).

5

limitations are still an issue, it is also possible to wait several simulations before adding
a new node, or to prune old nodes as the search progresses. Figure 1 illustrates several
steps of the MCTS algorithm.

It is also possible to compute other statistics by Monte-Carlo tree search, for exam-
ple the max outcome, which may evaluate positions more rapidly but is also sensitive
to outliers [15], or an intermediate statistic between mean and max outcome [1]. How-
ever, the mean outcome has proven to be the most robust and effective statistic in Go
and other domains.

2.5. UCT
Greedy action selection can often be an inefficient way to construct a search tree,

as it will typically avoid searching actions after one or more poor outcomes, even if
there is significant uncertainty about the value of those actions. To explore the search
tree more efficiently, the principle of optimism in the face of uncertainty can be applied,
which favours the actions with the greatest potential value. To implement this principle,
each action value receives a bonus that corresponds to the amount of uncertainty in the
current value of that state and action.

The UCT algorithm applies this principle to Monte-Carlo tree search, by treating
each state of the search tree as a multi-armed bandit, in which each action corresponds
to an arm of the bandit [10].4 The tree policy selects actions by using the UCB1 al-
gorithm, which maximises an upper confidence bound on the value of actions [18].
Specifically, the action value is augmented by an exploration bonus that is highest for
rarely visited state-action pairs, and the tree policy selects the action a∗ maximising
the augmented value,

Q⊕(s, a) = Q(s, a) + c

√
logN(s)

N(s, a)
(7)

a∗ = argmax
a

Q⊕(s, a) (8)

where c is a scalar exploration constant and log is the natural logarithm. Pseudocode
for the UCT algorithm is given in Algorithm 1.

UCT is proven to converge on the minimax action value function [10]. As the
number of simulations N grows to infinity, the root values converge in probability to
the minimax action values, ∀a ∈ A, plim

n→∞
Q(s0, a) = Q∗(s0, a). Furthermore, the

bias of the root values, E[Q(s0, a)−Q∗(s0, a)], isO(log(n)/n), and the probability of
selecting a suboptimal action, Pr(argmax

a∈A
Q(s0, a) 6= argmax

a∈A
Q∗(s0, a)), converges

to zero at a polynomial rate.
The performance of UCT can often be significantly improved by incorporating do-

main knowledge into the default policy [19, 20]. The UCT algorithm, using a carefully

4In fact, the search tree is not a true multi-armed bandit, as there is no real cost to exploration during
planning. In addition the simulation policy continues to change as the search tree is updated, which means
that the payoff is non-stationary.

6

Algorithm 1 Two Player UCT

procedure UCTSEARCH(s0)
while time available do

SIMULATE(board, s0)
end while
board.SetPosition(s0)
return SELECTMOVE(board, s0, 0)

end procedure

procedure SIMULATE(board, s0)
board.SetPosition(s0)
[s0, ..., sT] = SIMTREE(board)
z = SIMDEFAULT(board)
BACKUP([s0, ..., sT], z)

end procedure

procedure SIMTREE(board)
c = exploration constant
t = 0
while not board.GameOver() do

st = board.GetPosition()
if st /∈ tree then

NEWNODE(st)
return [s0, ..., st]

end if
a = SELECTMOVE(board, st, c)
board.P lay(a)
t = t+ 1

end while
return [s0, ..., st−1]

end procedure

procedure SIMDEFAULT(board)
while not board.GameOver() do

a = DEFAULTPOLICY(board)
board.P lay(a)

end while
return board.BlackWins()

end procedure

procedure SELECTMOVE(board, s, c)
legal = board.Legal()
if board.BlackToP lay() then

a∗ = argmax
a∈legal

(
Q(s, a) + c

√
logN(s)
N(s,a)

)
else

a∗ = argmin
a∈legal

(
Q(s, a)− c

√
logN(s)
N(s,a)

)
end if
return a∗

end procedure

procedure BACKUP([s0, ..., sT], z)
for t = 0 to T do

N(st) = N(st) + 1
N(st, at) ++

Q(st, at) += z−Q(st,at)
N(st,at)

end for
end procedure

procedure NEWNODE(s)
tree.Insert(s)
N(s) = 0
for all a ∈ A do

N(s, a) = 0
Q(s, a) = 0

end for
end procedure

7

r u les

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

B

A

B

A

D C

A

B lack to play

e yes

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

E

E

E

E

F

F

Black to play

G

G

G

G

H

H

G

H

G

H

H

G

H

H

territory

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

B*

B

B*

b

b

b

w

W*

W

B*

B*

B*

B*

b

w

w

w

W

b

B*

B*

b

b

w

w

W

W

b

b

b

B

b

w

W

W

W

B

B

b

B

b

b

w

W

W

B

B

B

B

B

b

w

W

W

B

B

B

B

b

w

w

W

W

B

B

B

B

b

w

W

W

W

B

B

B

B

b

w

W

W

W

Black to playFigure 2: a) The White stones are in atari and can be captured by playing at the points markedA. It is illegal
for Black to play at B, as the stone would have no liberties. Black may, however, play at C to capture the
stone atD. It is illegal for White to recapture immediately by playing atD, as this would repeat the position
- it is a ko. b) The points marked E are eyes for Black. The black groups on the left can never be captured
by White, they are alive. The points marked F are false eyes: the black stones on the right will eventually be
captured by White and are dead. c) Groups of loosely connected white stones (G) and black stones (H). d)
A final position. Dead stones (B∗,W∗) are removed from the board. All surrounded intersections (B,W)
and all remaining stones (b, w) are counted for each player. If komi is 6.5 then Black wins by 8.5 points in
this example.

chosen default policy, has outperformed previous approaches to search in a variety of
challenging games, including Go [19], General Game Playing [4], Amazons [5], Lines
of Action [6], multi-player card games [7, 8], and real-time strategy games [9]. Much
additional research in Monte-Carlo tree search has been developed in the context of
computer Go, and is discussed in more detail in the next section.

3. Computer Go

For many years, computer chess was considered to be “the drosophila of AI”,5 and
a “grand challenge task” [21]. It provided a sandbox for new ideas, a straightforward
performance comparison between algorithms, and measurable progress against human
capabilities. With the dominance of alpha-beta search programs over human players
now conclusive in chess [22], many researchers have sought out a new challenge. Com-
puter Go has emerged as the “new drosophila of AI” [21], a “task par excellence” [23],
and “a grand challenge task for our generation” [24].

Go has more than 10170 states and up to 361 legal moves. Its enormous search space
is orders of magnitude too big for the alpha-beta search algorithms that have proven so
successful in chess and checkers. Although the rules are simple, the emergent com-
plexity of the game is profound. The long-term effect of a move may only be revealed
after 50 or 100 additional moves. Professional Go players accumulate Go knowledge
over a lifetime; mankind has accumulated Go knowledge over several millennia. For
the last 30 years, attempts to encode this knowledge in machine usable form have led
to a positional understanding that is at best comparable to weak amateur-level humans.

8

30 kyu 1 kyu 1 dan 7 dan 1 dan 9 dan

Beginner Master Professional

Figure 3: Performance ranks in Go, in increasing order of strength from left to right.

3.1. The Rules of Go

The game of Go is usually played on a 19 × 19 grid, with 13 × 13 and 9 × 9 as
popular alternatives. Black and White play alternately, placing a single stone on an
intersection of the grid. Stones cannot be moved once played, but may be captured.
Sets of adjacent, connected stones of one colour are known as blocks. The empty
intersections adjacent to a block are called its liberties. If a block is reduced to zero
liberties by the opponent, it is captured and removed from the board (Figure 2a, A).
Stones with just one remaining liberty are said to be in atari. Playing a stone with
zero liberties is illegal (Figure 2a, B), unless it also reduces an opponent block to zero
liberties. In this case the opponent block is captured, and the player’s stone remains
on the board (Figure 2a, C). Finally, repeating a previous board state is illegal.6 A
situation in which a repeat could otherwise occur is known as ko (Figure 2a, D).

A connected set of empty intersections that is wholly enclosed by stones of one
colour is known as an eye. One natural consequence of the rules is that a block with two
eyes can never be captured by the opponent (Figure 2b, E). Blocks which cannot be
captured are described as alive; blocks which will certainly be captured are described
as dead (Figure 2b, F). A loosely connected set of stones is described as a group
(Figure 2c, G,H). Determining the life and death status of a group is a fundamental
aspect of Go strategy.

The game ends when both players pass. Dead blocks are removed from the board
(Figure 2d, B∗,W∗). In Chinese rules, all alive stones, and all intersections that are
enclosed by a player, are counted as a point of territory for that player (Figure 2d,
B,W).7 Black always plays first in Go; White receives compensation, known as komi,
for playing second. The winner is the player with the greatest territory, after adding
komi for White.

3.2. Go Ratings

Human Go players are rated on a three-class scale, divided into kyu (beginner), dan
(master), and professional dan ranks (see Figure 3). Kyu ranks are in descending order
of strength, whereas dan and professional dan ranks are in ascending order. At amateur
level, the difference in rank corresponds to the number of handicap stones required by
the weaker player to ensure an even game.8

5Drosophila is the fruit fly, the most extensively studied organism in genetics research.
6The exact definition of repeating differs subtly between different rule sets.
7The Japanese scoring system is somewhat different, but usually has the same outcome.
8The difference between 1 kyu and 1 dan is normally considered to be 1 stone.

9

The majority of computer Go programs compete on the Computer Go Server (CGOS).
This server runs an ongoing rapid-play tournament of 5 minute games for 9× 9 and 20
minute games for 19× 19 boards. The Elo rating of each program on the server is con-
tinually updated. The Elo scale on CGOS assumes a logistic distribution with winning
probability Pr(A beats B) = 1

1+10
µB−µA

400

, where µA and µB are the Elo ratings for

player A and player B respectively. On this scale, a difference of 200 Elo corresponds
to a 75% winning rate for the stronger player, and a difference of 500 Elo corresponds
to a 95% winning rate. Following convention, the open source Go program GnuGo
(level 10) anchors this scale with a rating of 1800 Elo.

3.3. Handcrafted Heuristics

In many other classic games, handcrafted heuristic functions have proven highly ef-
fective. Basic heuristics such as material count and mobility, which provide reasonable
estimates of goodness in checkers, chess and Othello [25], are next to worthless in Go.
Stronger heuristics have proven surprisingly hard to design, despite several decades of
endeavour [26].

Until recently, most Go programs incorporated very large quantities of expert knowl-
edge, in a pattern database containing many thousands of manually inputted patterns,
and typically including expert knowledge such as fuseki (opening patterns), joseki (cor-
ner patterns), and tesuji (tactical patterns). Traditional Go programs use these databases
to generate plausible moves that match one or more patterns. The pattern database ac-
counts for a large part of the development effort in a traditional Go program, sometimes
requiring many man-years of effort from expert Go players.

The Many Faces of Go9 uses local alpha-beta searches to determine the life or death
status of blocks and groups. A global alpha-beta search is used to evaluate full-board
positions, using a heuristic function of the local search results. Pattern databases are
used to generate moves in both the local and global searches. The program GnuGo10

uses pattern databases and specialised search routines to determine local subgoals such
as capture, connection, and eye formation. The local status of each subgoal is used to
estimate the overall benefit of each legal move.

3.4. Reinforcement Learning in Go

Reinforcement learning can be used to train a value function that predicts the even-
tual outcome of the game from a given state. The learning program can be rewarded
by the score at the end of the game, or by a reward of 1 if Black wins and 0 if White
wins. Surprisingly, the less informative binary signal has proven more successful [1],
as it encourages the agent to favour risky moves when behind, and calm moves when
ahead. Expert Go players will frequently play to minimise the uncertainty in a position
once they judge that they are ahead in score; this behaviour cannot be replicated by
simply maximising the expected score. Despite this shortcoming, the final score has
been widely used as a reward signal [27, 28, 29, 30].

9http://www.smart-games.com/manyfaces.html
10http://www.gnu.org/software/gnugo

10

Schraudolph et al. [27] exploit the symmetries of the Go board in a convolutional
neural network. The network predicts the final territory status of a particular target in-
tersection. It receives one input from each intersection (−1, 0 or +1 for White, Empty
and Black respectively) in a local region around the target, and outputs the predicted
territory for the target intersection. The global position is evaluated by summing the
territory predictions for all intersections on the board. Weights are shared between
rotationally and reflectionally symmetric patterns of input features, and between all
target intersections. They train their multilayer perceptron using TD(0), using a re-
ward signal corresponding to the final territory value of the intersection. The network
outperformed a commercial Go program, The Many Faces of Go, when set to a low
playing level in 9× 9 Go, after just 3,000 self-play training games.

Dahl’s Honte [29] and Enzenberger’s NeuroGo III [30] use a similar approach to
predicting the final territory. However, both programs learn intermediate features that
are used to input additional knowledge into the territory evaluation network. Honte has
one intermediate network to predict local moves and a second network to evaluate the
life and death status of groups. NeuroGo III uses intermediate networks to evaluate
connectivity and eyes. Both programs achieved single-digit kyu ranks; NeuroGo won
the silver medal at the 2003 9× 9 Computer Go Olympiad.

RLGO 1.0 [31] uses a simpler but more computationally efficient approach to re-
inforcement learning. It uses a million local shape features to enumerate all possible
1× 1, 2× 2 and 3× 3 configurations of Black, White and empty intersections, at every
possible location on the board. The value of a state is estimated by a linear combination
of the local shape features that are matched in that state. The weights of these features
are trained offline by temporal-difference learning from games of self-play, and sharing
weights between symmetric local shape features. The basic version of RLGO was rated
at 1350 Elo on the 9× 9 Computer Go Server.

RLGO 2.4 [32, 13] applies the same reinforcement learning approach online. It
applies temporal-difference learning to simulated games of self-play that start from the
current state: a form of simulation-based search. At every move, the value function is
re-trained in real-time, specialising on the tactics and strategies that are most relevant
to the current position. This approach boosted RLGO’s rating to 2100 Elo on CGOS,
outperforming traditional Go programs and resulting in the strongest 9×9 Go program
not based on Monte-Carlo tree search.

3.5. Monte Carlo Simulation in Go

In contrast to traditional search methods, Monte-Carlo simulation evaluates the
current position dynamically, rather than storing knowledge about all positions in a
static evaluation function. This makes it an appealing choice for Go, where, as we have
seen, the number of possible positions is particularly large, and position evaluation is
particularly challenging.

The first Monte-Carlo Go program, Gobble [33], simulated many games of self-
play from the current state s. It combined Monte-Carlo evaluation with two novel
ideas: the all-moves-as-first heuristic, and ordered simulation. The all-moves-as-first
heuristic assumes that the value of a move is not significantly affected by changes else-
where on the board. The value of playing action a immediately is estimated by the

11

average outcome of all simulations in which action a is played at any time. We for-
malise this idea more precisely in Section 4.1. Gobble also used ordered simulation
to sort all moves according to their estimated value. This ordering is randomly per-
turbed according to an annealing schedule that cools down with additional simulations.
Each simulation then plays out all moves in the prescribed order. Gobble itself played
weakly, with an estimated rating of around 25 kyu.

Bouzy and Helmstetter developed the first competitive Go programs based on Monte-
Carlo simulation [15]. Their basic framework simulates many games of self-play from
the current state s, for each candidate action a, using a uniform random simulation pol-
icy; the value of a is estimated by the average outcome of these simulations. The only
domain knowledge is to prohibit moves within eyes; this ensures that games termi-
nate within a reasonable timeframe. Bouzy and Helmstetter also investigated a number
of extensions to Monte-Carlo simulation, several of which are precursors to the more
sophisticated algorithms used now:

1. Progressive pruning is a technique in which statistically inferior moves are re-
moved from consideration [34].

2. The all-moves-as-first heuristic, described above.
3. The temperature heuristic uses a softmax simulation policy to bias the random

moves towards the strongest evaluations. The softmax policy selects actions
with a probability π(s, a) = eQ(s,a)/τ∑

b∈legal e
Q(s,b)/τ , where τ is a constant temperature

parameter controlling the overall level of randomness.11

4. The minimax enhancement constructs a full width search tree, and separately
evaluates each node of the search tree by Monte-Carlo simulation. Selective
search enhancements were also tried [35].

Bouzy also tracked statistics about the final territory status of each intersection after
each simulation [36]. This information is used to influence the simulations towards dis-
puted regions of the board, by avoiding playing on intersections which are consistently
one player’s territory. Bouzy also incorporated pattern knowledge into the simulation
player [20]. Using these enhancements his program Indigo won the bronze medal at
the 2004 and 2006 19× 19 Computer Go Olympiads.

It is surprising that a Monte-Carlo technique, originally developed for stochastic
games such as backgammon [16], Poker [14] and Scrabble [17] should succeed in Go.
Why should an evaluation that is based on random play provide any useful information
in the precise, deterministic game of Go? The answer, perhaps, is that Monte-Carlo
methods successfully manage the uncertainty in the evaluation. A random simulation
policy generates a broad distribution of simulated games, representing many possible
futures and the uncertainty in what may happen next. As the search proceeds and more
information is accrued, the simulation policy becomes more refined, and the distri-
bution of simulated games narrows. In contrast, deterministic play represents perfect
confidence in the future: there is only one possible continuation. If this confidence is

11Gradually reducing the temperature, as in simulated annealing, was not beneficial.

12

misplaced, then predictions based on deterministic play will be unreliable and mislead-
ing. Abramson [37] was the first to demonstrate that the expected value of a game’s
outcome under random play is a powerful heuristic for position evaluation in determin-
istic games.

3.6. Monte-Carlo Tree Search in Go
Monte-Carlo tree search was first introduced in the Go program Crazy Stone [1].

The Monte-Carlo value of each action is assumed to be normally distributed about the
minimax value, Q(s, a) ∼ N (Q∗(s, a), σ2(s, a)). During the first stage of simula-
tion, the tree policy selects each action according to the estimated probability that its
minimax value is better than the Monte-Carlo value of the best action a∗, π(s, a) ≈
Pr(Q∗(s, a) > Q(s, a∗)). During the second stage of simulation, the default policy
selects moves with a probability proportional to a handcrafted urgency heuristic. Us-
ing these techniques, Crazy Stone exceeded 1800 Elo on CGOS, achieving equivalent
performance to traditional Go programs such as GnuGo and The Many Faces of Go.
Crazy Stone won the gold medal at the 2006 9× 9 Computer Go Olympiad.

The Go program MoGo introduced the UCT algorithm to computer Go [19, 38].
Instead of the Gaussian approximation used in Crazy Stone, MoGo treats each state
in the search tree as a multi-armed bandit. There is one arm of the bandit for each
legal move, and the payoff from an arm is the outcome of a simulation starting with
that move. During the first stage of simulation, the tree policy selects actions using
the UCB1 algorithm. During the second stage of simulation, MoGo uses a default
policy based on specialised domain knowledge. Unlike the enormous pattern databases
used in traditional Go programs, MoGo’s patterns are extremely simple. Rather than
suggesting the best move in any situation, these patterns are intended to produce local
sequences of plausible moves. They can be summarised by applying four prioritised
rules after any opponent move a:

1. If a put some of our stones into atari, play a saving move at random.
2. Otherwise, if one of the 8 intersections surrounding a matches a simple pattern

for cutting or hane, randomly play one.
3. Otherwise, if any opponent stone can be captured, play a capturing move at ran-

dom.
4. Otherwise play a random move.

The default policy used by MoGo is handcrafted. In contrast, a second version
of Crazy Stone uses supervised learning to train the pattern weights for its default
policy [2]. The relative strength of patterns is estimated by assigning an Elo rating to
each pattern, much like a tournament between games players. In this approach, the
pattern selected by a human player is considered to have won against all alternative
patterns. Crazy Stone uses the minorisation-maximisation algorithm to estimate the
Elo rating of simple 3 × 3 patterns and features. The default policy selected actions
with a probability proportional to the matching pattern strengths. A more complicated
set of 17,000 patterns, harvested from expert games, was used to progressively widen
the search tree.

Using the UCT algorithm, MoGo and Crazy Stone significantly outperformed all
previous 9× 9 Go programs, and beginning a new era in computer Go.

13

4. Rapid Action Value Estimation

Monte-Carlo tree search separately estimates the value of each state and each ac-
tion in the search tree. As a result, it cannot generalise between related positions or
related moves. To determine the best move, many simulations must be performed from
all states and for all actions. The RAVE algorithm uses the all-moves-as-first heuristic,
from each node of the search tree, to estimate the value of each action. RAVE provides
a simple way to share knowledge between related nodes in the search tree, resulting in
a rapid, but biased estimate of the action values. This biased estimate can often deter-
mine the best move after just a handful of simulations, and can be used to significantly
improve the performance of the search algorithm.

4.1. All-Moves-As-First

In incremental games such as computer Go, the value of a move is often unaffected
by moves played elsewhere on the board. The underlying idea of the all-moves-as-first
(AMAF) heuristic [33] (see Section 3.5) is to have one general value for each move,
regardless of when it is played. We define the AMAF value function Q̃π(s, a) to be the
expected outcome z from state s, when following joint policy π for both players, given
that action a was selected at some subsequent turn,

Q̃π(s, a) = Eπ[z|st = s,∃u ≥ t s.t. au = a] (9)

The AMAF value function provides a biased estimate of the true action value func-
tion. The level of bias, B̃(s, a), depends on the particular state s and action a,

Q̃π(s, a) = Qπ(s, a) + B̃(s, a) (10)

Monte-Carlo simulation can be used to approximate Q̃π(s, a). The all-moves-as-
first value Q̃(s, a) is the mean outcome of all simulations in which action a is selected
at any turn after s is encountered,

Q̃(s, a) =
1

Ñ(s, a)

N(s)∑

i=1

Ĩi(s, a)zi, (11)

where Ĩi(s, a) is an indicator function returning 1 if state s was encountered at any step
t of the ith simulation, and action a was selected at any step u >= t, or 0 otherwise;
and Ñ(s, a) =

∑N(s)
i=1 Ĩi(s, a) counts the total number of simulations used to estimate

the AMAF value. Note that Black moves and White moves are considered to be distinct
actions, even if they are played at the same intersection.

In order to select the best move with reasonable accuracy, Monte-Carlo simulation
requires many simulations from every candidate move. The AMAF heuristic provides
orders of magnitude more information: every move will typically have been tried on
several occasions, after just a handful of simulations. If the value of a move really is
unaffected, at least approximately, by moves played elsewhere, then this can result in a
much faster rough estimate of the value.

14

s

a

a

1

a

0 1 10

a

τ(s)

b

b

0

b

Q(s, a) = 0/2

Q(s, b) = 2/3

Q̃(s, a) = 3/5

Q̃(s, b) = 2/5

a

Figure 4: An example of using the RAVE algorithm to estimate the value of Black moves a and b from state
s. Six simulations have been executed from state s, with outcomes shown in the bottom squares. Playing
move a immediately led to two losses, and so Monte-Carlo estimation favours move b. However, playing
move a at any subsequent time led to three wins out of five, and so the RAVE algorithm favours move a.
Note that the simulation starting with move a from the root node does not belong to the subtree τ(s) and
does not contribute to the AMAF estimate Q̃(s, a).

4.2. RAVE

The RAVE algorithm combines Monte-Carlo tree search with the all-moves-as-first
heuristic. Instead of computing the MC value (Equation 3) of each node of the search-
tree, (s, a) ∈ T , the AMAF value (Equation 11) of each node is computed.

Every state in the search tree, s ∈ T , is the root of a subtree τ(s) ⊆ S. If a
simulation visits state st at step t, then all subsequent states visited in that simulation,
su such that u ≥ t, are in the subtree of st, su ∈ τ(st). This includes all states su /∈ T
visited by the default policy in the second stage of simulation.

The basic idea of RAVE is to generalise over subtrees. The assumption is that the
value of action a in state s will be similar from all states within subtree τ(s). Thus, the
value of a is estimated from all simulations starting from s, regardless of exactly when
a is played.

When the AMAF values are used to select an action at in state st, the action with
maximum AMAF value in subtree τ(st) is selected, at = argmax

b
Q̃(st, b). In princi-

ple it is also possible to incorporate the AMAF values, Q̃(sk, ·), from ancestor subtrees,
τ(sk) such that k < t. However, in our experiments, combining ancestor AMAF values
did not appear to confer any advantage.

RAVE is closely related to the history heuristic in alpha-beta search [39]. During

15

the depth-first traversal of the search tree, the history heuristic remembers the success12

of each move at various depths; the most successful moves are tried first in subsequent
positions. RAVE is similar, but because it is a best-first not depth-first search, it must
store values for each subtree. In addition, RAVE takes account of the success of moves
made outside of the search tree by the default policy.

4.3. MC–RAVE

The RAVE algorithm learns very quickly, but it is often wrong. The principal as-
sumption of RAVE, that a particular move has the same value across an entire subtree,
is frequently violated. There are many situations, for example during tactical battles,
in which nearby changes can completely change the value of a move: sometimes ren-
dering it redundant; sometimes making it even more vital. Even distant moves can
significantly affect the value of a move, for example playing a ladder-breaker in one
corner can radically alter the value of playing a ladder in the opposite corner.

The MC–RAVE algorithm overcomes this issue, by combining the rapid learning
of the RAVE algorithm with the accuracy and convergence guarantees of Monte-Carlo
tree search.

There is one node n(s) for each state s in the search tree. Each node contains a
total countN(s), and for each a ∈ A, an MC valueQ(s, a), AMAF value Q̃(s, a), MC
count N(s, a), and AMAF count Ñ(s, a).

To estimate the overall value of action a in state s, we use a weighted sum Q?(s, a)
of the MC value Q(s, a) and the AMAF value Q̃(s, a),

Q?(s, a) = (1− β(s, a))Q(s, a) + β(s, a)Q̃(s, a) (12)

where β(s, a) is a weighting parameter for state s and action a. It is a function of
the statistics for (s, a) stored in node n(s), and provides a schedule for combining the
MC and AMAF values. When only a few simulations have been seen, we weight the
AMAF value more highly, β(s, a) ≈ 1. When many simulations have been seen, we
weight the Monte-Carlo value more highly, β(s, a) ≈ 0.

As with Monte-Carlo tree search, each simulation is divided into two stages. Dur-
ing the first stage, for states within the search tree, st ∈ T , actions are selected greedily,
so as to maximise the combined MC and AMAF value, a = argmax

b
Q?(st, b). During

the second stage of simulation, for states beyond the search tree, st /∈ T , actions are
selected by a default policy.

After each simulation s0, a0, s1, a1, ..., sT with outcome z, both the MC and AMAF
values are updated. For every state st in the simulation that is represented in the search
tree, st ∈ T , the values and counts of the corresponding node n(st) are updated,

12A successful move in alpha-beta either causes a cut-off, or has the best minimax value.

16

N(st)← N(st) + 1 (13)
N(st, at)← N(st, at) + 1 (14)

Q(st, at)← Q(st, at) +
z −Q(st, at)

N(st, at)
(15)

In addition, the AMAF value is updated for every subtree. For every state st in
the simulation that is represented in the tree, st ∈ T , and for every subsequent action
of the simulation au with the same colour to play, i.e. u ≥ t and t = u mod 2, the
AMAF value of (st, au) is updated according to the simulation outcome z,

Ñ(st, au)← Ñ(st, au) + 1 (16)

Q̃(st, au)← Q̃(st, au) +
z − Q̃(st, au)

Ñ(st, au)
(17)

If multiple moves are played at the same intersection during a simulation, then this
update is only performed for the first move at the intersection. If an action au is legal
in state su, but illegal in state st, then no update is performed for this move.

4.4. UCT–RAVE

The UCT algorithm extends Monte-Carlo tree search to use the optimism-in-the-
face-of-uncertainty principle, by incorporating a bonus based on an upper confidence
bound of the current value. Similarly, the MC–RAVE algorithm can also incorporate
an exploration bonus,

Q⊕? (s, a) = Q?(s, a) + c

√
logN(s)

N(s, a)
, (18)

Actions are then selected during the first stage of simulation to maximise the aug-
mented value, a = argmax

b
Q⊕? (s, b). We call this algorithm UCT–RAVE.13

If the schedule decreases to zero in all nodes, ∀s ∈ T , a ∈ A, lim
N→∞

β(s, a) = 0,

then the asymptotic behaviour of UCT–RAVE is equivalent to UCT. The asymptotic
convergence properties of UCT (see Section 2) therefore also apply to UCT–RAVE.
We now describe two different schedules which have this property.

4.5. Hand-Selected Schedule

One hand-selected schedule for MC–RAVE uses an equivalence parameter k,

13The original UCT-RAVE algorithm also included the RAVE count in the exploration term [11]. How-
ever, it is hard to justify explicit RAVE exploration: many actions will be evaluated by AMAF, regardless of
which action is actually selected at turn t.

17

Combining Online and Offline Knowledge in UCT

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 1 10 100 1000 10000

k

UCT
MC-RAVE

W
in

n
in

g
ra

te
a
g
a
in

st
G

n
u
G

o
3
.7

.1
0

Figure 4. Winning rate of UCTRAV E(πMoGo) with 3000
simulations per move against GnuGo 3.7.10 (level 8), for
different settings of the equivalence parameter k. The bars
indicate the standard error. Each point of the plot is an
average over 2300 complete games.

Q⊕
RAV E(s, a) = QRAV E(s, a) + c

√
log m(s)

m(s, a)

β(s, a) =

√
k

3n(s) + k

Q⊕
UR(s, a) = β(s, a)Q⊕

RAV E(s, a)

+ (1 − β(s, a))Q⊕
UCT (s, a)

πUR(s) = argmax
a

Q⊕
UR(s, a)

where m(s) =
∑

a m(s, a). The equivalence parameter
k controls the number of episodes of experience when
both estimates are given equal weight.

We tested the new algorithm UCTRAV E(πMoGo), us-
ing the default policy πMoGo, for different settings of
the equivalence parameter k. For each setting, we
played a 2300 game match against GnuGo 3.7.10 (level
8). The results are shown in Figure 4, and compared to
the UCT (πMoGo) algorithm with 3000 simulations per
move. The winning rate using UCTRAV E varies be-
tween 50% and 60%, compared to 24% without rapid
estimation. Maximum performance is achieved with
an equivalence parameter of 1000 or more. This in-
dicates that the rapid action value estimate is worth
about the same as several thousand episodes of UCT
simulation.

7. UCT with Prior Knowledge

The UCT algorithm estimates the value of each state
by Monte-Carlo simulation. However, in many cases
we have prior knowledge about the likely value of a

state. We introduce a simple method to utilise offline
knowledge, which increases the learning rate of UCT
without biasing its asymptotic value estimates.

We modify UCT to incorporate an existing value func-
tion Qprior(s, a). When a new state and action (s, a)
is added to the UCT representation T , we initialise its
value according to our prior knowledge,

n(s, a) ← nprior(s, a)

QUCT (s, a) ← Qprior(s, a)

The number nprior estimates the equivalent experience
contained in the prior value function. This indicates
the number of episodes that UCT would require to
achieve an estimate of similar accuracy. After initial-
isation, the value function is updated using the nor-
mal UCT update (see equations 1 and 2). We de-
note the new UCT algorithm using default policy π
by UCT (π, Qprior).

A similar modification can be made to the UCTRAV E

algorithm, by initialising the rapid estimates according
to prior knowledge,

m(s, a) ← mprior(s, a)

QRAV E(s, a) ← Qprior(s, a)

We compare several methods for generating prior
knowledge in 9 × 9 Go. First, we use an even-game
heuristic, Qeven(s, a) = 0.5, to indicate that most posi-
tions encountered on-policy are likely to be close. Sec-
ond, we use a grandfather heuristic, Qgrand(st, a) =
QUCT (st−2, a), to indicate that the value with player
P to play is usually similar to the value of the last state
with P to play. Third, we use a handcrafted heuristic
QMoGo(s, a). This heuristic was designed such that
greedy action selection would produce the best known
default policy πMoGo(s, a). Finally, we use the linear
combination of binary features, QRLGO(s, a), learned
offline by TD(λ) (see section 4).

For each source of prior knowledge, we assign an equiv-
alent experience mprior(s, a) = Meq, for various con-
stant values of Meq. We played 2300 games between
UCTRAV E(πMoGo, Qprior) and GnuGo 3.7.10 (level 8),
alternating colours between each game. The UCT al-
gorithms sampled 3000 episodes of experience at each
move (see Figure 5), rather than a fixed time per move.
In fact the algorithms have comparable execution time
(Table 4).

The value function learned offline, QRLGO, outper-
forms all the other heuristics and increases the winning
rate of the UCTRAV E algorithm from 60% to 69%.

Figure 5: Winning rate of MC–RAVE with 3,000 simulations per move against GnuGo 3.7.10 (level 10) in
9 × 9 Go, for different settings of the equivalence parameter k. The bars indicate the standard error. Each
point of the plot is an average over 2300 complete games.

β(s, a) =

√
k

3N(s) + k
(19)

where k specifies the number of simulations at which the Monte-Carlo value and the
AMAF value should be given equal weight, β(s, a) = 1

2 ,

1

2
=

√
k

3N(s) + k
(20)

1

4
=

k

3N(s) + k
(21)

k = N(s) (22)

We tested MC–RAVE in the Go program MoGo, using the hand-selected schedule
in Equation (19) and the default policy described in [19], for different settings of the
equivalence parameter k. For each setting, we played a 2300 game match against
GnuGo 3.7.10 (level 10). The results are shown in Figure 5, and compared to Monte-
Carlo tree search, using 3,000 simulations per move for both algorithms. The winning
rate using MC–RAVE varied between 50% and 60%, compared to 24% without RAVE.
Maximum performance is achieved with an equivalence parameter of 1,000 or more,
indicating that the rapid action value estimate is more reliable than standard Monte-
Carlo simulation until several thousand simulations have been executed from state s.

18

4.6. Minimum MSE Schedule

The schedule presented in Equation 19 is somewhat heuristic in nature. We now
develop a more principled schedule, which selects β(s, a) so as to minimise the mean
squared error in the combined estimate Q?(s, a).

4.6.1. Assumptions
To derive our schedule, we make a simplified statistical model of MC–RAVE. Our

first assumption is that the policy π is held constant. Under this assumption, the out-
come of each Monte-Carlo simulation, when playing action a from state s, is an inde-
pendent and identically distributed (i.i.d.) Bernoulli random variable. Furthermore, the
outcome of each AMAF simulation, when playing action a at any turn following state
s, is also an i.i.d. Bernoulli random variable,

Pr(z = 1|st = s, at = a) = Qπ(s, a) (23)
Pr(z = 0|st = s, at = a) = 1−Qπ(s, a) (24)

Pr(z = 1|st = s,∃u ≥ t s.t. au = a) = Q̃π(s, a) (25)

Pr(z = 0|st = s,∃u ≥ t s.t. au = a) = 1− Q̃π(s, a) (26)

It follows that the total number of wins, afterN(s, a) simulations in which action a
was played from state s, is binomially distributed. Similarly, the total number of wins,
after Ñ(s, a) simulations in which action a was played at any turn following state s, is
binomially distributed,

N(s, a)Q(s, a) ∼ Binomial(N(s, a), Qπ(s, a)) (27)

Ñ(s, a)Q̃(s, a) ∼ Binomial(Ñ(s, a), Q̃π(s, a)) (28)

Our second assumption is that these two distributions are independent, so that the
MC and AMAF values are uncorrelated. In fact, the same simulations used to compute
the MC value are also used to compute the AMAF value, which means that the values
are certainly correlated. Furthermore, as the tree develops over time, the simulation
policy changes. This means that outcomes are not i.i.d. and that the total number of
wins is not in fact binomially distributed. Nevertheless, we believe that these simplifi-
cations do not significantly affect the performance of the schedule in practice.

4.6.2. Derivation
To simplify our notation, we consider a single state s and action a. We denote the

number of Monte-Carlo simulations by n = N(s, a) and the number of simulations
used to compute the AMAF value by ñ = Ñ(s, a), and abbreviate the schedule by
β = β(s, a). We denote the estimated mean, bias (with respect to Qπ(s, a)) and
variance of the MC, AMAF and combined values respectively by µ, µ̃, µ?; b, b̃, b? and
σ2, σ̃2, σ2

?, and the mean squared error of the combined value by e2?,

19

µ = Q(s, a) (29)

µ̃ = Q̃(s, a) (30)
µ? = Q?(s, a) (31)
b = Qπ(s, a)−Qπ(s, a) = 0 (32)

b̃ = Q̃π(s, a)−Qπ(s, a) = B̃(s, a) (33)
b? = Qπ? (s, a)−Qπ(s, a) (34)

σ2 = E[(Q(s, a)−Qπ(s, a))2|N(s, a) = n] (35)

σ̃2 = E[(Q̃(s, a)− Q̃π(s, a))2|Ñ(s, a) = ñ] (36)

σ2
? = E[(Q?(s, a)−Qπ? (s, a))2|N(s, a) = n, Ñ(s, a) = ñ] (37)

e2? = E[(Q?(s, a)−Qπ(s, a))2|N(s, a) = n, Ñ(s, a) = ñ] (38)

We start by decomposing the mean squared error of the combined value into the
bias and variance of the MC and AMAF values respectively, making use of our second
assumption that these values are independently distributed,

e2? = σ2
? + b2? (39)

= (1− β)2σ2 + β2σ̃2 + (βb̃+ (1− β)b)2 (40)

= (1− β)2σ2 + β2σ̃2 + β2b̃2 (41)

Differentiating with respect to β and setting to zero,

0 = 2βσ̃2 − 2(1− β)σ2 + 2βb̃2 (42)

β =
σ2

σ2 + σ̃2 + b̃2
(43)

We now make use of our first assumption that the MC and AMAF values are bino-
mially distributed, and estimate their variance,

σ2 =
Qπ(s, a)(1−Qπ(s, a))

N(s, a)
≈ µ?(1− µ?)

n
(44)

σ̃2 =
Q̃π(s, a)(1− Q̃π(s, a))

Ñ(s, a)
≈ µ?(1− µ?)

ñ
(45)

β =
ñ

n+ ñ+ nñb̃2/µ?(1− µ?)
(46)

In roughly even positions, µ? ≈ 1
2 , we can further simplify the schedule,

β =
ñ

n+ ñ+ 4nñb̃2
(47)

20

This equation still includes one unknown constant: the RAVE bias b̃. This can ei-
ther be evaluated empirically (by testing the performance of the algorithm with various
constant values of b̃), or by machine learning (by learning to predict the error between
the AMAF value and the MC value, after many simulations). The former method is
simple and effective; but the latter method could allow different biases to be identified
for different types of position.

4.6.3. Results
We compared the performance of MC–RAVE using the minimum MSE schedule,

using the approximation in Equation 47, to the hand-selected schedule in Equation 19.
For the minimum MSE schedule, we first identified the best constant RAVE bias in
empirical tests. On a 9× 9 board, the performance of MoGo using the minimum MSE
schedule increased by 80 Elo (see Table 1). On a 19× 19 board, the improvement was
more than 100 Elo.

5. Heuristic Prior Knowledge

We now introduce our second extension to Monte-Carlo tree search, heuristic MCTS.
If a particular state s and action a is rarely encountered during simulation, then its
Monte-Carlo value estimate is highly uncertain and very unreliable. Furthermore, be-
cause the search tree branches exponentially, the vast majority of nodes in the tree are
only experienced rarely. The situation at the leaf nodes is worst of all: by definition
each leaf node has been visited only once (otherwise a child node would have been
added).

In order to reduce the uncertainty for rarely encountered positions, we incorporate
prior knowledge by using a heuristic evaluation function H(s, a) and a heuristic con-
fidence function C(s, a). When a node is first added to the search tree, it is initialised
according to the heuristic function, Q(s, a) = H(s, a) and N(s, a) = C(s, a). The
confidence in the heuristic function is measured in terms of equivalent experience: the
number of simulations that would be required in order to achieve a Monte-Carlo value
of similar accuracy to the heuristic value.14 After initialisation, the value and count are
updated as usual, using standard Monte-Carlo simulation.

5.1. Heuristic MC–RAVE

The heuristic Monte-Carlo tree search algorithm can be combined with the MC–
RAVE algorithm, described in pseudocode in Algorithm 2. When a new node n(s) is
added to the tree, and for all actions a ∈ A, we initialise both the MC and AMAF values
to the heuristic evaluation function, and initialise both counts to heuristic confidence
functions C and C̃ respectively,

14This is equivalent to a beta prior when binary outcomes are used.

21

Algorithm 2 Heuristic MC–RAVE
procedure MC–RAVE(s0)

while time available do
SIMULATE(board, s0)

end while
board.SetPosition(s0)
return SELECTMOVE(board, s0, 0)

end procedure

procedure SIMULATE(board, s0)
board.SetPosition(s0)
[s0, a0, ..., sT , aT] = SIMTREE(board)
[aT+1, ..., aD], z = SIMDEFAULT(board, T)
BACKUP([s0, ..., sT], [a0, ..., aD], z)

end procedure

procedure SIMDEFAULT(board, T)
t = T + 1
while not board.GameOver() do

at = DEFAULTPOLICY(board)
board.P lay(at)
t = t+ 1

end while
z = board.BlackWins()
return [aT+1, ..., at−1], z

end procedure

procedure SIMTREE(board)
t = 0
while not board.GameOver() do

st = board.GetPosition()
if st /∈ tree then

NEWNODE(st)
at = DEFAULTPOLICY(board)
return [s0, a0, ..., st, at]

end if
at = SELECTMOVE(board, st)
board.P lay(at)
t = t+ 1

end while
return [s0, a0, ..., st−1, at−1]

end procedure

procedure SELECTMOVE(board, s)
legal = board.Legal()
if board.BlackToP lay() then

return argmax
a∈legal

EVAL(s, a)

else
return argmin

a∈legal
EVAL(s, a)

end if
end procedure

procedure EVAL(s, a)
b = pretuned constant bias value

β = Ñ(s,a)

N(s,a)+Ñ(s,a)+4N(s,a)Ñ(s,a)b2

return (1− β)Q(s, a) + βQ̃(s, a)
end procedure

procedure
BACKUP([s0, ..., sT], [a0, ..., aD], z)

for t = 0 to T do
N(st, at) ++

Q(st, at) += z−Q(st,at)
N(st,at)

for u = t to D step 2 do
if au /∈ [at, at+2, ..., au−2] then

Ñ(st, au) ++

Q̃(st, au) += z−Q̃(st,at)

Ñ(st,at)

end if
end for

end for
end procedure

procedure NEWNODE(board, s)
tree.Insert(s)
for all a ∈ board.Legal() do

N(s, a), Q(s, a), Ñ(s, a), Q̃(s, a)
= HEURISTIC(board, a)

end for
end procedure

22

Q(s, a)← H(s, a) (48)
N(s, a)← C(s, a) (49)

Q̃(s, a)← H(s, a) (50)

Ñ(s, a)← C̃(s, a) (51)

N(s)←
∑

a∈A
N(s, a) (52)

We compare four heuristic evaluation functions in 9 × 9 Go, using the heuristic
MC–RAVE algorithm in the program MoGo.

1. The even-game heuristic, Qeven(s, a) = 0.5, makes the assumption that most
positions encountered between strong players are likely to be close.

2. The grandfather heuristic, Qgrand(st, a) = Q(st−2, a), sets the value of each
node in the tree to the value of its grandfather. This assumes that the value of a
Black move is usually similar to the value of that move, last time Black was to
play.

3. The handcrafted heuristic, Qmogo(s, a), is based on the pattern-based rules that
were successfully used in MoGo’s default policy. The heuristic was designed
such that moves matching a “good” pattern were assigned a value of 1, moves
matching a “bad” pattern were given value 0, and all other moves were assigned
a value of 0.5. The good and bad patterns were identical to those used in MoGo,
such that selecting moves greedily according to the heuristic, and breaking ties
randomly, would exactly produce the default policy πmogo.

4. The local shape heuristic, Qrlgo(s, a), is computed from the linear combination
of local shape features used in RLGO 1.0 (see Section 3.4). This heuristic is
learnt offline by temporal difference learning from games of self-play.

For each heuristic evaluation function, we assign a heuristic confidence C̃(s, a) =
M , for various constant values of equivalent experience M . We played 2300 games
between MoGo and GnuGo 3.7.10 (level 10). The MC–RAVE algorithm executed
3,000 simulations per move (see Figure 6).

The value function learnt from local shape features, Qrlgo, outperformed all the
other heuristics and increased the winning rate of MoGo from 60% to 69%. Maximum
performance was achieved using an equivalent experience of M = 50, which indicates
that Qrlgo is worth about as much as 50 simulations using all-moves-as-first. It seems
likely that these results could be further improved by varying the heuristic confidence
according to the particular position, based on the variance of the heuristic evaluation
function.

5.2. Exploration and Exploitation

The performance of Monte-Carlo tree search is greatly improved by carefully bal-
ancing exploration with exploitation. The UCT algorithm significantly outperforms
a greedy tree policy in computer Go [19]. Surprisingly, this result does not appear

23

Combining Online and Offline Knowledge in UCT

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 50 100 150 200

W
in

n
in

g
 r

a
te

 a
g
a
in

s
t
G

n
u
G

o
 3

.7
.1

0
 d

e
fa

u
lt
 l
e
v
e
l

Local Shape Features

Handcrafted Heuristic
Grandfather Heuristic
Even Game Heuristic

No Heuristic

M

Figure 5. Winning rate of UCTRAV E(πMoGo) with 3000 simulations per move against GnuGo 3.7.10 (level 8), using
different prior knowledge as initialisation. The bars indicate the standard error. Each point of the plot is an average over
2300 complete games.

ences. International Computer Chess Association
Journal, 21, 84–99.

Bruegmann, B. (1993). Monte-Carlo Go.

Buro, M. (1999). From simple features to sophisticated
evaluation functions. 1st International Conference
on Computers and Games (pp. 126–145).

Coulom, R. (2006). Efficient selectivity and backup op-
erators in monte-carlo tree search. 5th International
Conference on Computer and Games, 2006-05-29.
Turin, Italy.

Enzenberger, M. (2003). Evaluation in Go by a neural
network using soft segmentation. 10th Advances in
Computer Games Conference (pp. 97–108).

Gelly, S., Wang, Y., Munos, R., & Teytaud, O. (2006).
Modification of UCT with patterns in Monte-Carlo
Go (Technical Report 6062). INRIA.

Kocsis, L., & Szepesvari, C. (2006). Bandit based
Monte-Carlo planning. 15th European Conference
on Machine Learning (pp. 282–293).

Schaeffer, J., Hlynka, M., & Jussila, V. (2001). Tempo-
ral difference learning applied to a high-performance
game-playing program. 17th International Joint
Conference on Artificial Intelligence (pp. 529–534).

Schraudolph, N., Dayan, P., & Sejnowski, T. (1994).
Temporal difference learning of position evaluation
in the game of Go. Advances in Neural Information
Processing Systems 6 (pp. 817–824). San Francisco:
Morgan Kaufmann.

Silver, D., Sutton, R., & Müller, M. (2007). Reinforce-
ment learning of local shape in the game of Go. 20th
International Joint Conference on Artificial Intelli-
gence (pp. 1053–1058).

Sutton, R. (1988). Learning to predict by the method
of temporal differences. Machine Learning, 3, 9–44.

Sutton, R. (1990). Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. 7th International Confer-
ence on Machine Learning (pp. 216–224).

Sutton, R. (1996). Generalization in reinforcement
learning: Successful examples using sparse coarse
coding. Advances in Neural Information Processing
Systems 8 (pp. 1038–1044).

Sutton, R., & Barto, A. (1998). Reinforcement learn-
ing: An introduction. Cambridge, MA: MIT Press.

Wang, Y., & Gelly, S. (2007). Modifications of
uct and sequence-like simulations for monte-carlo
go. IEEE Symposium on Computational Intelligence
and Games, Honolulu, Hawaii (pp. 175–182).

Figure 6: Winning rate of MoGo, using the heuristic MC–RAVE algorithm, with 3,000 simulations per move
against GnuGo 3.7.10 (level 10) in 9× 9 Go. Four different forms of heuristic function were used (see text).
The bars indicate the standard error. Each point of the plot is an average over 2300 complete games.

to extend to the heuristic UCT–RAVE algorithm: the optimal exploration rate in our
experiments was zero, i.e. greedy MC–RAVE with no exploration in the tree policy.

We believe that the explanation lies in the nature of the RAVE algorithm. Even if
an action a is not selected immediately from position s, it will often be played at some
later point in the simulation. This greatly reduces the need for explicit exploration,
because the values for all actions are continually updated, regardless of the initial move
selection.

However, we were only able to run thorough tests with tens of thousands of simu-
lations per move. It is possible that exploration again becomes important when MC–
RAVE is scaled up to millions of simulations per move. At this point a substantial
number of nodes will be dominated by MC values rather than RAVE values, so that
exploration at these nodes should be beneficial.

5.3. Soft Pruning

Computer Go has a large branching factor and several pruning techniques, such
as selective search and progressive widening (see Section 3), have been developed
to reduce the size of the search space [40]. Heuristic MCTS and MC–RAVE can be
viewed as soft pruning techniques that focus on the highest valued regions of the search
space without permanently cutting off any branches of the search tree.

24

Schedule Computation Wins vs. GnuGo CGOS rating
Hand-selected 3,000 sims per move 69% 1960
Hand-selected 10,000 sims per move 82% 2110
Hand-selected 10 minutes per game 92% 2320

Minimum MSE 10 minutes per game 97% 2480∗

Table 1: Winning rate of MoGo against GnuGo 3.7.10 (level 10) when the number of simulations per move
is increased. MoGo competed on CGOS, using heuristic MC–RAVE and the hand-selected schedule, in
February 2007. The versions using 10 minutes per game modify the simulations per move according to
the available time, from 300, 000 games in the opening to 20, 000 in the endgame. The asterisked version
competed on CGOS in April 2007 using the minimum MSE schedule and additional parameter tuning.

A heuristic function provides a principled way to use prior knowledge to reduce the
effective branching factor. Moves favoured by the heuristic function will be initialised
with a high value, and tried much more often than moves with a low heuristic value.
However, if the heuristic evaluation function is incorrect, then the initial value will drop
off at a rate determined by the heuristic confidence function, and other moves will then
be explored.

The MC–RAVE algorithm also significantly reduces the effective branching factor.
RAVE forms a fast, rough estimate of the value of each move. Moves with high RAVE
values will quickly become favoured over moves with low RAVE values, which are
soft pruned from the search tree. However, the RAVE values are only used initially, so
that MC–RAVE never cuts branches permanently from the search tree.

Heuristic MC–RAVE can often be wrong. The heuristic evaluation function can be
inaccurate, and/or the RAVE estimate can be misleading. In this case, heuristic MC–
RAVE will prioritise the wrong moves, and the best moves can be soft pruned and not
tried again for many simulations. There are no guarantees that these algorithms will
help performance. However, in practice they help more than they hurt, and on average
over many positions, they provide a very significant performance advantage.

5.4. Performance of heuristic MC–RAVE in MoGo
Our two extensions to MCTS, heuristic MCTS and MC–RAVE, increased the win-

ning rate of MoGo against GnuGo, from 24% for UCT, up to 69% using heuristic
MC–RAVE. However, these results were based on executing just 3,000 simulations per
move, using the hand-selected schedule in Equation 19. When the number of sim-
ulations was increased, the overall performance of MoGo improved correspondingly.
Table 1 shows how the performance of heuristic MC–RAVE scales with additional
computation.

The 2007 release version of MoGo used the heuristic MC–RAVE algorithm, the
minimum MSE schedule in Equation 47, and an improved, handcrafted heuristic func-
tion.15 The scalability of the release version is shown in Figure 7, based on the results
of a combined study over many thousands of computer hours [41]. This version of

15Local shape features were not used in the release version.

25

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E
lo

 r
at

in
g

Simulations per move

9x9 Scalability Study

MoGo
GnuGo 3.7.11

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E
lo

 r
at

in
g

Simulations per move

13x13 Scalability Study

MoGo
GnuGo 3.7.11

Figure 7: Scalability of MoGo (2007 release version), using data collected by members of the Computer Go
mailing list [41]. Elo ratings were computed from a large tournament, consisting of several thousand games
for each version of MoGo, using successive doublings of the number of simulations per move. Error bars
indicate 95% confidence intervals in the Elo rating.

26

MoGo became the first program to achieve dan level at 9 × 9 Go; the first program to
beat a professional human player at 9 × 9 Go; the highest rated program on the Com-
puter Go Server for both 9 × 9 and 19 × 19 Go; the gold medal winner at the 2007
19× 19 Computer Go Olympiad; and achieved a rating of 2 kyu at 19× 19 Go against
human players on the Kiseido Go Server.

6. Survey of Subsequent Work

The results in the previous section were achieved by MoGo in 2007. We briefly sur-
vey subsequent work on heuristic MC–RAVE in a variety of other strong Go programs.

The heuristic function of MoGo was substantially enhanced by initialisingH(s, a),
C(s, a), and C̃(s, a) to hand-tuned values based on handcrafted rules and patterns [42].
Supervised learning was also used to bias move selection towards patterns favoured in
expert games. In addition, the handcrafted default policy was modified to increase the
diversity of simulations, by playing in empty regions of the board; and to fix a known
issue with life-and-death, by playing in the key point of simple dead shapes known
as nakade. Using 100,000 simulations, the improved version of MoGo achieved a
winning rate of 55% on 9 × 9 boards, and 53% on 19 × 19 boards, against the 2007
release version of MoGo.

MoGo was also modified by massively parallelising the MC–RAVE algorithm to
run on a cluster [43]. In order to avoid huge communication overheads, memory was
only shared between the shallowest nodes in the search tree. The massively parallel
version of MoGo Titan was run on 800 processors of Huygens, the Dutch national
supercomputer. MoGo Titan defeated a 9 dan professional player, Jun-Xun Zhou, in
19× 19 Go with 7 stones handicap.

The program Zen has successfully combined MC–RAVE with more sophisticated
domain knowledge. Zen became the first program to sustain a dan rank, on full-size
19× 19 boards, against human players on the Kiseido Go Server (KGS). It is currently
ranked at 4 dan, placing it within the top 5% of the 30,000 ranked human players on
KGS.

Several of the strongest traditional Go programs now combine their existing tactical
and pattern knowledge with the heuristic MC–RAVE framework, including The Many
Faces of Go, currently ranked at 2 dan on KGS and Aya, currently ranked at 1 dan.

The open source program Fuego [44] extends the MC–RAVE algorithm to use ad-
ditional rapid value estimates, using a variant of the minimum MSE schedule (see
Equation 46). A parallelised version of Fuego defeated a 9 dan professional player in
an even 9× 9 game, and defeated a 6 dan amateur player with 4 stones handicap on a
full size board.16 The latest versions of MoGo, Crazy Stone and the The Many Faces
of Go have also achieved impressive victories against professional players on full size
boards.

Most recently, the program Erica combined heuristic MC–RAVE with a new tech-
nique, known as simulation balancing [45], to automatically tune the parameters of its

16See Human-Computer Go Challenges, http://www.computer-go.info/h-c/index.html.

27

Year Program Description Elo
2006 Indigo Pattern database, Monte-Carlo simulation 1400
2006 GnuGo Pattern database, alpha-beta search 1800
2006 Many Faces 1800
2006 NeuroGo Temporal-difference learning, neural network 1850
2007 RLGO Temporal-difference search 2100
2007 MoGo

Variants of heuristic MC–RAVE

2500
2007 Crazy Stone 2500
2009 Fuego 2700
2010 Many Faces 2700
2010 Zen 2700

Table 2: Approximate Elo ratings, on the Computer Go Server, of 9× 9 Go programs discussed in the text.

default policy [46]. Previous machine learning approaches have focused on optimis-
ing the strength of the default policy, under the assumption that a stronger policy will
perform better in a Monte-Carlo search [1]. Unfortunately, in practice this assumption
is often incorrect [11], and in general it can be difficult to find a default policy that
performs well in Monte-Carlo search. The key idea of simulation balancing is to min-
imise the error between the Monte-Carlo value Q(s, a), and an oracle value computed
by deep search. Erica used simulation balancing to train 2000 parameters of its default
policy for 9× 9 Go. Erica also won the gold medal in the 2010 19× 19 Computer Go
Olympiad, and is currently ranked at 3 dan on KGS.

We provide a summary of the current state of the art in computer Go, based on
ratings from the Computer Go Server (see Table 2) and the Kiseido Go Server (see
Figure 8). Several of the programs described in Section 3 are included for comparison.

7. Conclusions

For the last 30 years, computer Go programs have evaluated positions by using
handcrafted heuristics that are based on human expert knowledge of shapes, patterns
and rules. However, professional Go players often play moves according to intuitive
feelings that are hard to express or quantify. Precisely encoding their knowledge into
machine-understandable rules has proven to be a dead-end: a classic example of the
knowledge acquisition bottleneck. Furthermore, traditional search algorithms, which
are based on these handcrafted heuristics, cannot cope with the enormous state space
and branching factor in the game of Go, and are unable to make effective use of addi-
tional computation time. This approach has led to Go programs that are at best compa-
rable to weak amateur-level humans [26, 47].

In contrast, Monte-Carlo tree search requires no human knowledge in order to un-
derstand a position. Instead, positions are evaluated from the outcome of thousands of
simulated games of self-play from that position. These simulated games are progres-
sively refined to prioritise the selection of positions with promising evaluations. Over
the course of many simulations, attention is focused selectively on narrow regions of
the search space that are correlated with successful outcomes. Unlike traditional search

28

Jul 06 Jan 07 Jul 07 Jan 08 Jul 08 Jan 09 Jul 09 Jan 10 Jul 10 Jan 11

 MoGo

MoGo

MoGoCrazyStone

CrazyStone

Fuego

Zen

Zen

Zen

Zen

Erica

GnuGo*

GnuGo*

 ManyFaces*

ManyFaces

ManyFaces

ManyFaces

ManyFaces

ManyFaces

ManyFaces

Aya*

Aya*

Aya

Aya

Aya

Aya

Indigo

10 kyu

9 kyu

8 kyu

7 kyu

6 kyu

5 kyu

4 kyu

3 kyu

2 kyu

1 kyu

1 dan

2 dan

3 dan

4 dan

5 dan

Foo

1

Figure 8: Ranks of various Go programs discussed in the text on the Kiseido Go Server (KGS). Each
point represents the first date at which a program held the given rank for 20 consecutive games on
KGS. Note that each program plays with different time controls, which may cause variations in rank;
and that some programs play more regularly than others, which may cause variations in date. See
http://senseis.xmp.net/?KGSBotRatings. *Version of GnuGo, Aya, Many Faces of Go based on traditional
search with no Monte-Carlo.

algorithms, this approach scales well both with the size of the state space and branching
factor, and also scale well with additional computation time. In practice, the strongest
programs do make extensive use of expert human knowledge: both to improve the de-
fault policy and to define the prior knowledge. This knowledge accelerates the progress
of the search, but does not affect its asymptotic optimality.

On the Computer Go Server, using 9 × 9, 13 × 13 and 19 × 19 board sizes, tradi-
tional search programs are rated at around 1800 Elo, whereas Monte-Carlo programs,
enhanced by RAVE and heuristic knowledge, are rated at over 2500 Elo using standard
hardware17 (see Table 2). On the Kiseido Go Server, on full-size boards against human
opposition, traditional search programs have reached 5 kyu, whereas the best Monte-
Carlo programs are rated at 4 dan (see Figure 8). The top programs are now competitive
with top human professionals at 9×9 Go, and are winning handicap games against top
human professionals at 19× 19 Go.

In the Go program Mogo, every doubling in computation power led to an increase

17A difference of 700 Elo corresponds to a 99% winning rate.

29

in playing strength of approximately 100 Elo points in 13 × 13 Go (see Figure 7)
and perhaps even more in 19 × 19 Go. The strongest programs still lag far behind
the strongest humans, but they are improving rapidly. Figure 8 shows that, after the
initial jump in performance achieved by the first Monte-Carlo programs, computer Go
programs have continued to improve by more than one rank every year.

This new framework for Monte-Carlo tree search also extends beyond Go. Variants
of heuristic MC–RAVE have outperformed previous search algorithms in other chal-
lenging games, such as Hex [48] and Havannah [49]. The challenging properties of
Go are also characteristic of many of the hardest search, planning and decision-making
problems. Immediate actions often have delayed, long-term consequences, leading to
surprising complexity and enormous search spaces that are intractable to traditional
search algorithms. Variants of heuristic MCTS and MC–RAVE are now outperform-
ing previous approaches in challenging search spaces such as feature selection [50],
POMDP planning [51], and natural language phrase generation [52]. Understanding
how to achieve high performance in Go is opening up new possibilities for high perfor-
mance AI in a wide variety of challenging problems.

References

[1] R. Coulom, Efficient selectivity and backup operators in Monte-Carlo tree search,
in: 5th International Conference on Computer and Games, pp. 72–83.

[2] R. Coulom, Computing Elo ratings of move patterns in the game of Go, Interna-
tional Computer Games Association Journal 30 (2007) 198–208.

[3] S. Gelly, D. Silver, Achieving master level play in 9 x 9 computer Go, in: 23rd
Conference on Artificial Intelligence, pp. 1537–1540.

[4] H. Finnsson, Y. Björnsson, Simulation-based approach to general game playing,
in: 23rd Conference on Artificial Intelligence, pp. 259–264.

[5] R. Lorentz, Amazons discover Monte-Carlo, in: 6th International Conference on
Computers and Games, pp. 13–24.

[6] M. Winands, Y. Y. Björnsson, Evaluation function based Monte-Carlo LOA, in:
12th Advances in Computer Games Conference, pp. 33–44.

[7] J. Schäfer, The UCT algorithm applied to games with imperfect information,
Diploma Thesis. Otto-von-Guericke-Universität Magdeburg, 2008.

[8] N. Sturtevant, An analysis of UCT in multi-player games, in: 6th International
Conference on Computers and Games, pp. 37–49.

[9] R. Balla, A. Fern, UCT for tactical assault planning in real-time strategy games,
in: 21st International Joint Conference on Artificial Intelligence, pp. 40–45.

[10] L. Kocsis, C. Szepesvari, Bandit based Monte-Carlo planning, in: 15th European
Conference on Machine Learning, pp. 282–293.

30

[11] S. Gelly, D. Silver, Combining online and offline learning in UCT, in: 17th
International Conference on Machine Learning, pp. 273–280.

[12] S. Gelly, A Contribution to Reinforcement Learning; Application to Computer
Go, Ph.D. thesis, University of South Paris, 2007.

[13] D. Silver, Reinforcement Learning and Simulation-Based Search in the Game of
Go, Ph.D. thesis, University of Alberta, 2009.

[14] D. Billings, L. P. Castillo, J. Schaeffer, D. Szafron, Using probabilistic knowl-
edge and simulation to play poker, in: 16th National Conference on Artificial
Intelligence, pp. 697–703.

[15] B. Bouzy, B. Helmstetter, Monte-Carlo Go developments, in: 10th Advances in
Computer Games Conference, pp. 159–174.

[16] G. Tesauro, G. Galperin, On-line policy improvement using Monte-Carlo search,
in: Advances in Neural Information Processing 9, pp. 1068–1074.

[17] B. Sheppard, World-championship-caliber Scrabble, Artificial Intelligence 134
(2002) 241–275.

[18] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multi-armed
bandit problem, Machine Learning 47 (2002) 235–256.

[19] S. Gelly, Y. Wang, R. Munos, O. Teytaud, Modification of UCT with Patterns in
Monte-Carlo Go, Technical Report 6062, INRIA, 2006.

[20] B. Bouzy, Associating domain-dependent knowledge and Monte Carlo ap-
proaches within a Go program, Information Sciences, Heuristic Search and Com-
puter Game Playing IV 175 (2005) 247–257.

[21] J. McCarthy, AI as sport, Science 276 (1997) 1518–1519.

[22] D. McClain, Once again, machine beats human champion at chess, New York
Times, December 5th (2006).

[23] A. Harmon, Queen, captured by mouse; more chess players use computers for
edge, New York Times, February 6th (2003).

[24] D. Mechner, All Systems Go, The Sciences 38 (1998).

[25] J. Schaeffer, The games computers (and people) play, Advances in Computers
50 (2000) 189–266.

[26] M. Müller, Computer Go, Artificial Intelligence 134 (2002) 145–179.

[27] N. Schraudolph, P. Dayan, T. Sejnowski, Temporal difference learning of position
evaluation in the game of Go, in: Advances in Neural Information Processing 6,
pp. 817–824.

31

[28] M. Enzenberger, The integration of a priori knowledge into a Go playing neural
network, http://www.cs.ualberta.ca/ emarkus/neurogo/neurogo1996.html, 1996.

[29] F. Dahl, Honte, a Go-playing program using neural nets, in: Machines that learn
to play games, Nova Science, 1999, pp. 205–223.

[30] M. Enzenberger, Evaluation in Go by a neural network using soft segmentation,
in: 10th Advances in Computer Games Conference, pp. 97–108.

[31] D. Silver, R. Sutton, M. Müller, Reinforcement learning of local shape in the
game of Go, in: 20th International Joint Conference on Artificial Intelligence,
pp. 1053–1058.

[32] D. Silver, R. Sutton, M. Müller, Sample-based learning and search with per-
manent and transient memories, in: 25th International Conference on Machine
Learning, pp. 968–975.

[33] B. Bruegmann, Monte-Carlo Go, http://www.cgl.ucsf.edu/go/Programs/Gobble.html,
1993.

[34] B. Bouzy, Move pruning techniques for Monte-Carlo Go, in: 11th Advances in
Computer Games Conference, pp. 104–119.

[35] B. Bouzy, Associating shallow and selective global tree search with Monte Carlo
for 9x9 Go, in: 4th International Conference on Computers and Games, pp. 67–
80.

[36] B. Bouzy, History and territory heuristics for Monte-Carlo Go, New Mathematics
and Natural Computation 2 (2006) 1–8.

[37] B. Abramson, Expected-outcome: A general model of static evaluation, IEEE
Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 182–193.

[38] Y. Wang, S. Gelly, Modifications of UCT and sequence-like simulations for
Monte-Carlo Go, in: IEEE Symposium on Computational Intelligence and
Games, Honolulu, Hawaii, pp. 175–182.

[39] J. Schaeffer, The history heuristic and alpha–beta search enhancements in prac-
tice, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-11
(1989) 1203–1212.

[40] G. Chaslot, M. Winands, J. Uiterwijk, H. van den Herik, B. Bouzy, Progressive
strategies for Monte-Carlo tree search, New Mathematics and Natural Computa-
tion 4 (2008) 343–357.

[41] D. Dailey, 9x9 scalability study, http://cgos.boardspace.net/study/index.html,
2008.

[42] G. Chaslot, L. Chatriot, C. Fiter, S. Gelly, J. Hoock, J. Perez, A. Rimmel, O. Tey-
taud, Combining expert, online, transient and online knowledge in Monte-Carlo
exploration, in: 8th European Workshop on Reinforcement Learning.

32

[43] S. Gelly, J. Hoock, A. Rimmel, O. Teytaud, Y. Kalemkarian, The parallelization
of Monte-Carlo planning, in: 6th International Conference in Control, Automa-
tion and Robotics, pp. 244–249.

[44] M. Müller, M. Enzenberger, Fuego – An Open-source Framework for Board
Games and Go Engine Based on Monte-Carlo Tree Search, Technical Report
TR09-08, University of Alberta, Dept. of Computing Science, 2009.

[45] D. Silver, G. Tesauro, Monte-Carlo simulation balancing, in: 26th International
Conference on Machine Learning, pp. 119–126.

[46] S. Huang, R. Coulom, S. Lin, Monte-Carlo simulation balancing in practice, in:
7th International Conference on Computers and Games, pp. 119–126.

[47] B. Bouzy, T. Cazenave, Computer Go: an AI-oriented survey, Artificial Intelli-
gence 132 (2001) 39–103.

[48] B. Arneson, R. Hayward, P. Henderson, MoHex wins Hex tournament, Interna-
tional Computer Games Association Journal 32 (2009) 114–116.

[49] F. Teytaud, O.Teytaud, Creating an Upper Confidence Tree program for Havan-
nah, in: 12th Advances in Computer Games Conference, pp. 65–74.

[50] R. Gaudel, M. Sebag, Feature selection as a one-player game, in: 27th Interna-
tional Conference on Machine Learning, pp. 359–366.

[51] D. Silver, J. Veness, Online Monte-Carlo planning in large POMDPs, in: Ad-
vances in Neural Information Processing Systems 24.

[52] J. Chevelu, T. Lavergne, Y. Lepage, T. Moudenc, Introduction of a new para-
phrase generation tool based on Monte-Carlo sampling, in: 47th Annual Meeting
of the Association for Computational Linguistics, pp. 249–252.

33

