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BE a reinforcement learner

• You, as a class, act as a learning agent

• Actions: Wave, Stand, Clap

• Observations: colors, reward

• Goal: Find an optimal policy

− Way of selecting actions that gets you the most reward
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How did you do it?

• What is your policy?

• What does the world look like?
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The Big Picture

• AI −→ ML −→ RL

• Types of Machine Learning

Supervised learning: learn from labeled examples
Unsupervised learning: cluster unlabeled examples
Reinforcement learning: learn from interaction
− Defined by the problem
− Many approaches possible (including evolutionary)
− Book focusses on a particular class of approaches

Peter Stone
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This course

• Agent’s perspective: only policy under control

− State representation, reward function given
− Focus on policy algorithms, theoretical analyses
− Appeal: program by just specifying goals
− Practice: need to pick the represenation, reward
− videos

• Methodical approach

− Solid foundation rather than comprehensive coverage
− RL reading group

Peter Stone
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Logistics

• Nice responses!

− Length and content good
− Be clear and specific
− Look for programming assignment opportunities
− I have author’s responses to exercises

• Programming language

• Self-introductions

Peter Stone
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Some Questions

• Reward function vs. value function
− Tic-tac-toe example
− Phil making breakfast example

• Could the reward function be learned/altered?

• Tic-tac-toe example: what are the converged values?

• What happens in self play?

• How and when to explore?

• Role of step size

• Does speed of learning matter?
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Some Questions

• Distinction with evolutionary methods?

− Tic-tac-toe example
− Phil making breakfast example

• Is evolutionary learning ever better?

• Distinguishing features (from supervised learning)?

− trial-error search, delayed reward
− exploration vs. exploitation (chapt. 2)
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Assignments

• Join piazza!

• Read Chapters 2 and 3 (and 1 if you haven’t)

• Send a reading response by 1pm Tuesday

• Need a discussion leader volunteer and experiment
presenter

Peter Stone
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