CS394R Reinforcement Learning: Theory and Practice

Peter Stone

Department of Computer Science The University of Texas at Austin

• You, as a class, act as a learning agent

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap
- Observations: colors, reward

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap
- Observations: colors, reward
- Goal: Find an optimal policy

- You, as a class, act as a learning agent
- Actions: Wave, Stand, Clap
- Observations: colors, reward
- Goal: Find an optimal policy
 - Way of selecting actions that gets you the most reward

How did you do it?

How did you do it?

- What is your policy?
- What does the world look like?

- $\mathcal{O} = \{ Blue, Red, Green, Black, \ldots \}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

- $\mathcal{O} = \{ Blue, Red, Green, Black, \ldots \}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$o_0, a_0, r_0, o_1, a_1, r_1, o_2, \dots$$

Knowns:

- $\mathcal{O} = \{ Blue, Red, Green, Black, \ldots \}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$o_0, a_0, r_0, o_1, a_1, r_1, o_2, \dots$$

Knowns:

- $\mathcal{O} = \{ Blue, Red, Green, Black, \ldots \}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$o_0, a_0, r_0, o_1, a_1, r_1, o_2, \dots$$

- S = 4x3 grid
- ullet $\mathcal{R}:\mathcal{S} imes\mathcal{A}\mapsto \mathbb{R}$
- $T = S \mapsto O$
- ullet $\mathcal{P}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

Knowns:

- $\mathcal{O} = \{ Blue, Red, Green, Black, \ldots \}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$o_0, a_0, r_0, o_1, a_1, r_1, o_2, \dots$$

- S = 4x3 grid
- ullet $\mathcal{R}:\mathcal{S} imes\mathcal{A}\mapsto \mathbb{R}$
- $T = S \mapsto O$
- ullet $\mathcal{P}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

$$s_0, o_0, a_0, r_0, s_1, o_1, a_1, r_1, s_2, o_2, \dots$$

Knowns:

- $\mathcal{O} = \{ Blue, Red, Green, Black, \ldots \}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$o_0, a_0, r_0, o_1, a_1, r_1, o_2, \dots$$

- S = 4x3 grid
- ullet $\mathcal{R}:\mathcal{S} imes\mathcal{A}\mapsto \mathbb{R}$
- $T = S \mapsto O$
- ullet $\mathcal{P}: \mathcal{S} imes \mathcal{A} \mapsto \mathcal{S}$

$$s_0, o_0, a_0, r_0, s_1, o_1, a_1, r_1, s_2, o_2, \dots$$

$$o_i = \mathcal{T}(s_i)$$

Knowns:

- $\mathcal{O} = \{ Blue, Red, Green, Black, \ldots \}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$o_0, a_0, r_0, o_1, a_1, r_1, o_2, \dots$$

- S = 4x3 grid
- ullet $\mathcal{R}:\mathcal{S} imes\mathcal{A}\mapsto \mathbb{R}$
- $T = S \mapsto O$
- $\bullet \ \mathcal{P} : \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

$$s_0, o_0, a_0, r_0, s_1, o_1, a_1, r_1, s_2, o_2, \dots$$

$$o_i = \mathcal{T}(s_i)$$
 $r_i = \mathcal{R}(s_i, a_i)$

Knowns:

- $\mathcal{O} = \{ Blue, Red, Green, Black, \ldots \}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$o_0, a_0, r_0, o_1, a_1, r_1, o_2, \dots$$

- S = 4x3 grid
- $\bullet \ \mathcal{R} : \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- $T = S \mapsto O$
- \bullet $\mathcal{P}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

$$s_0, o_0, a_0, r_0, s_1, o_1, a_1, r_1, s_2, o_2, \dots$$

$$o_i = \mathcal{T}(s_i)$$

$$r_i = \mathcal{R}(s_i, a_i)$$

$$s_{i+1} = \mathcal{P}(s_i, a_i)$$

This Course

Reinforcement Learning theory (start)

This Course

- Reinforcement Learning theory (start)
- Reinforcement Learning in practice (end)

Al

 \bullet Al \longrightarrow ML

 \bullet Al \longrightarrow ML \longrightarrow RL

- $\bullet \ AI \longrightarrow ML \longrightarrow RL$
- Types of Machine Learning

- ullet Al \longrightarrow ML \longrightarrow RL
- Types of Machine Learning

Supervised learning: learn from labeled examples

- \bullet Al \longrightarrow ML \longrightarrow RL
- Types of Machine Learning

Supervised learning: learn from labeled examples Unsupervised learning: cluster unlabeled examples

- \bullet AI \longrightarrow ML \longrightarrow RL
- Types of Machine Learning

Supervised learning: learn from labeled examples Unsupervised learning: cluster unlabeled examples Reinforcement learning: learn from interaction

- \bullet AI \longrightarrow ML \longrightarrow RL
- Types of Machine Learning

Supervised learning: learn from labeled examples Unsupervised learning: cluster unlabeled examples Reinforcement learning: learn from interaction

Defined by the problem

- \bullet AI \longrightarrow ML \longrightarrow RL
- Types of Machine Learning

Supervised learning: learn from labeled examples Unsupervised learning: cluster unlabeled examples Reinforcement learning: learn from interaction

- Defined by the problem
- Many approaches possible (including evolutionary)

- \bullet AI \longrightarrow ML \longrightarrow RL
- Types of Machine Learning

Supervised learning: learn from labeled examples Unsupervised learning: cluster unlabeled examples Reinforcement learning: learn from interaction

- Defined by the problem
- Many approaches possible (including evolutionary)
- Book focusses on a particular class of approaches

- $S = \{Blue, Red, Green, Black, ...\}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$s_0, a_0, r_0, s_1, a_1, r_1, s_2, \dots$$

Knowns:

- $S = \{Blue, Red, Green, Black, ...\}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$s_0, a_0, r_0, s_1, a_1, r_1, s_2, \dots$$

Knowns:

- $S = \{Blue, Red, Green, Black, ...\}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$s_0, a_0, r_0, s_1, a_1, r_1, s_2, \dots$$

- ullet $\mathcal{R}:\mathcal{S} imes\mathcal{A}\mapsto \mathbb{R}$
- $\mathcal{P}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

Knowns:

- $S = \{Blue, Red, Green, Black, ...\}$
- Rewards in R
- $\mathcal{A} = \{Wave, Clap, Stand\}$

$$s_0, a_0, r_0, s_1, a_1, r_1, s_2, \dots$$

- ullet $\mathcal{R}:\mathcal{S} imes\mathcal{A}\mapsto \mathbb{R}$
- $\mathcal{P}: \mathcal{S} \times \mathcal{A} \mapsto \mathcal{S}$

$$r_i = \mathcal{R}(s_i, a_i)$$
 $s_{i+1} = \mathcal{P}(s_i, a_i)$

This course

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses

This course

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the represenation, reward

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the representation, reward
 - videos

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the representation, reward
 - videos
- Methodical approach
 - Solid foundation rather than comprehensive coverage

- Agent's perspective: only policy under control
 - State representation, reward function given
 - Focus on policy algorithms, theoretical analyses
 - Appeal: program by just specifying goals
 - Practice: need to pick the representation, reward
 - videos
- Methodical approach
 - Solid foundation rather than comprehensive coverage
 - RL reading group

Syllabus

• Available on-line

BREAK TIME!

BREAK TIME!

• Bon appetit!

Good Morning Colleagues

Good Morning Colleagues

Are there any questions?

• Nice responses!

- Nice responses!
 - Length and content good

- Nice responses!
 - Length and content good
 - Be clear and specific

- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities

- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities
 - I have author's responses to exercises

- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities
 - I have author's responses to exercises
- Programming language

- Nice responses!
 - Length and content good
 - Be clear and specific
 - Look for programming assignment opportunities
 - I have author's responses to exercises
- Programming language
- Self-introductions

• Reward function vs. value function

- Reward function vs. value function
 - Tic-tac-toe example

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Could the reward function be learned/altered?

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Could the reward function be learned/altered?
- Tic-tac-toe example: what are the converged values?

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Could the reward function be learned/altered?
- Tic-tac-toe example: what are the converged values?
- What happens in self play?

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Could the reward function be learned/altered?
- Tic-tac-toe example: what are the converged values?
- What happens in self play?
- How and when to explore?

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Could the reward function be learned/altered?
- Tic-tac-toe example: what are the converged values?
- What happens in self play?
- How and when to explore?
- Role of step size

- Reward function vs. value function
 - Tic-tac-toe example
 - Phil making breakfast example
- Could the reward function be learned/altered?
- Tic-tac-toe example: what are the converged values?
- What happens in self play?
- How and when to explore?
- Role of step size
- Does speed of learning matter?

- Distinction with evolutionary methods?
 - Tic-tac-toe example

- Distinction with evolutionary methods?
 - Tic-tac-toe example
 - Phil making breakfast example

- Distinction with evolutionary methods?
 - Tic-tac-toe example
 - Phil making breakfast example
- Is evolutionary learning ever better?

- Distinction with evolutionary methods?
 - Tic-tac-toe example
 - Phil making breakfast example
- Is evolutionary learning ever better?
- Distinguishing features (from supervised learning)?

- Distinction with evolutionary methods?
 - Tic-tac-toe example
 - Phil making breakfast example
- Is evolutionary learning ever better?
- Distinguishing features (from supervised learning)?
 - trial-error search, delayed reward
 - exploration vs. exploitation (chapt. 2)

• Join piazza!

- Join piazza!
- Read Chapters 2 and 3 (and 1 if you haven't)

- Join piazza!
- Read Chapters 2 and 3 (and 1 if you haven't)
- Send a reading response by 1pm Tuesday

- Join piazza!
- Read Chapters 2 and 3 (and 1 if you haven't)
- Send a reading response by 1pm Tuesday
- Need a discussion leader volunteer and experiment presenter