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Overview

e Learning sefting

- Must learn mulfiple tasks in the same domain
— Actions nof uniformly relevant
- Designed for large action sets

e Solution: action transfer

- Usually beneficial (pastry chef, driver, bidding agent)
- Formalism + analysis of action transfer

- Enhancement: randomized task perturbation

- Empirical validation



MDP Formalism
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e S is A set of sfafes, A is a set of actions

o t:S x A— Pr(S)Iisa fransition function
e r: S5 x A— Risareward functfion

e policy is any mapping S — A; want policy with maximum
expected return in all states



Running Example: Grid World Domain

g - empty
e H walk )
RN B quicksan
mr i 9 oodl

e states = cells,
actions = {(d,p) : d € {1,|,—,«},p € [0.5,0.9]}

e MOVve succeeds w/ prob. proportional 1o p, random o/w
e reward: —1/2 in quicksand, 1/2 in goal, —p? o/w

e Optimal actions have p € [0.5,0.6]



Need for Related-Task Formalism
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e 1, t defined in terms of state space S

e .t INCOMparable across tasks

e Butf: want to exploit absfract transition/reward dynamics



Eliminating S: Outcomes

e Original definifion:

t:S xA— Pr(S5)
r:SxA—R

e Definition using oufcomes O:.

t:SxA— Pr(O)
r:SxA—R

e Example in grid world: O = {7, |, —, <, STAY }.



Eliminating S: Classes

e Previous definition:

t:SxA— Pr(O)
r:SxA—R

e Final definition, using outcomes O and classes C:

t:CxA— Pr(O)
r:CxA—R

e Example in grid world: C = { EMPTY, GOAL, QUICKSAND }.



Complete Formalism
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Dissimilarity Metric

e Similarities across tasks are implicit, unstated.

e Dissimilarity metric A(U,U) re-expresses these high-level
similarities in a precise, analyfically fractable geometric
quantity.

o A(U,U) expressed i.n.o. the new formalism and V*



Bound Based on Task Similarity

Transfer results in a value drop of at most
AU U) - V2y/(1 =)

At each state.



Reducing Task Dissimilarity

e Optimization possible if O, C, k, and n known

e Alternative: uniform sampling of value space
Complexity:

67’1,

Q ((vma’X ~ Umin) ) draws.

e More informed search: randomized fask perfurbafion
(RTP)
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RTP Action Transfer at Work
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RTP Transfer in Pseudocode (()-Learning)

new — 1  Addeach s € § to F with probability ¢
— 2 foreach s ¢ F

— 3 do random-value < rand(vmin, Vmax)

— 4 Q7" (s,a) < random-value forall a € A
S5 repeat s — current state, a «— 7 (s)
6 Take action a, observe reward r, state s’
/ Q(s,a) < r +ymaxyc4 Q(s',a)

— 8 if sc S \ F

then Q+(Sv CL) —r + Y MaXg/eA Q+(S/7 CL/)

? until converged
— 10 A* = Uges{argmax,c 4 Q(s,a)}
— 11 AT = Uges\rlargmax,e 4 Q7 (s,a)}
— 12 return A* U A"
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Relevance-weighted action selection

® RELEVANCE(a) = |{s € § : m*(s) = a}|/|S]|.

e Choice probability on explorafory moves proportional to
relevance

e NMajor performance gains
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Empirical Results: Grid World




Action Sets

o FUll:

e Optimal (value iteration):

Zowz=
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Action Sets, cont.
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Related Work

e [ransfer in MDP’s:

- hierarchical (Hauskrecht et al., 1998, Dietterich, 2000),
- first-order Boutilier et al., 2001),
- factored (Guestrin et al., 2003)

e Limitation: reliance on description of similarities

e RTP: no guidance, robust to noise, focuses on acfions
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Summary

Contributions:

e [heoretical abstraction for transfer learning

e Formal analysis + fransfer quality guarantees

e Empirical validation

Future work:

e Combine with non-transfer approaches fo action selection

e ENnable fully continuous learning
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Formalism for Related Tasks

Definition 1. A domain is a quintuple (A,C,O,t,r), where A
s a sef of actions, C is a set of stafe classes, O is a set of
action outcomes; t : C x A — Pr(O) is a fransition function,
andr :C x A — R is a reward function.

Definition 2. A fask within the domain (A,C, O, t,r) is a friple
(S,k,m)y, where § is a sef of stafes;  : § — C Is a stafe
classification function, andn : S x O — S IS Q next-stafe
function.
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Definitions for Suboptimality Analysis

Definition 3. The oufcome value vecfor of sfate s in the
fask (S, k,n) within the domain (A,C,O,t,r) is the vector
V*(s1) V*(s2) ... V*(sio0)]', where V* : S — R is the
optimal value function of the fask, and each s; = n(s,0;) Is A
successor stfate of s upon oufcome o; € O.

Definition4. Let U = (U.,,...,U..) and U = (U.,,..., U, )

Y C|C| , C|C|
be the OVV sefs of the primary and aquxiliary tasks,

respectively. The dissimilarity of the primary and auxiliary
tasks, denoted A(U,U), is:

~\ def

A(U,U) = max.cc maxycy, {]nflimﬁeﬁC lu — 1|2} .
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Detrimental Action Transfer
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Auxiliary Task:
Primary Task:

OVV Sets
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