CS394R
Reinforcement Learning: Theory and Practice

Peter Stone

Department of Computer Science
The University of Texas at Austin
Good Morning Colleagues

- Are there any questions?
Logistics

- I respond preferentially to responses that are on time
Logistics

- I respond preferentially to responses that are on time
- Use piazza more
- Do your programming assignments
Logistics

- I respond preferentially to responses that are on time
- Use piazza more
- Do your programming assignments
- Next week’s readings: bandits (led by Sam)
Logistics

- I respond preferentially to responses that are on time
- Use piazza more
- Do your programming assignments
- Next week’s readings: bandits (led by Sam)
 - I’ll be out of town all week, but on email
Logistics

- I respond preferentially to responses that are on time
- Use piazza more
- Do your programming assignments
- Next week’s readings: bandits (led by Sam)
 - I’ll be out of town all week, but on email
- Email your project proposals before class
Logistics

- I respond preferentially to responses that are on time
- Use piazza more
- Do your programming assignments
- Next week’s readings: bandits (led by Sam)
 - I’ll be out of town all week, but on email
- Email your project proposals before class
 - Think about how to model the domain
Overview

- RMax: model-based learning in polynomial time
Overview

- RMax: model-based learning in polynomial time
 - High-level idea (pdf)
Overview

- RMax: model-based learning in polynomial time
 - High-level idea (pdf)
 - Q-learning vs. RMax (videos)
Overview

- RMax: model-based learning in polynomial time
 - High-level idea (pdf)
 - Q-learning vs. RMax (videos)

- Met-RMax: Exploiting a structured state space
Overview

• RMax: model-based learning in polynomial time
 – High-level idea (pdf)
 – Q-learning vs. RMax (videos)

• Met-RMax: Exploiting a structured state space
 – Factored state space (pdf)
 – Bayes Nets, DBNs, CPTs (ppt)
Overview

- **RMax**: model-based learning in polynomial time
 - High-level idea (pdf)
 - Q-learning vs. RMax (videos)

- **Met-RMax**: Exploiting a structured state space
 - Factored state space (pdf)
 - Bayes Nets, DBNs, CPTs (ppt)
 - Structure learning
Overview

- **RMax**: model-based learning in polynomial time
 - High-level idea (pdf)
 - Q-learning vs. RMax (videos)

- **Met-RMax**: Exploiting a structured state space
 - Factored state space (pdf)
 - Bayes Nets, DBNs, CPTs (ppt)
 - Structure learning

- Rmax (and SLF-Rmax) not built to be practical
Overview

- **RMax**: model-based learning in polynomial time
 - High-level idea (pdf)
 - Q-learning vs. RMax (videos)

- **Met-RMax**: Exploiting a structured state space
 - Factored state space (pdf)
 - Bayes Nets, DBNs, CPTs (ppt)
 - Structure learning

- **Rmax** (and SLF-Rmax) not built to be practical
 - Built to be provably convergent
Overview

- **RMax**: model-based learning in polynomial time
 - High-level idea (pdf)
 - Q-learning vs. RMax (videos)

- **Met-RMax**: Exploiting a structured state space
 - Factored state space (pdf)
 - Bayes Nets, DBNs, CPTs (ppt)
 - Structure learning

- **Rmax** (and SLF-Rmax) not built to be practical
 - Built to be provably convergent

- **Fitted R-Max**: Extend to continuous state space (pdf)
Discussion

- What’s more interesting? Theoretically grounded algorithms? Or algorithms that work in practice?