Automatic Heuristic Construction in a Complete General Game Player

Gregory Kuhlmann Kurt Dresner Peter Stone

Learning Agents Research Group
Department of Computer Sciences
The University of Texas at Austin

AAAI 2006
Computer Game Playing

- One of AI’s biggest success stories
 - checkers, chess, scrabble, othello, connect-4
• One of AI’s biggest success stories
 • checkers, chess, scrabble, othello, connect-4

• **Search** is universal in game playing

• Bound search for large state spaces
 • Board evaluation function (**heuristic**)

• Game analysis
 • Traditionally performed by **human designers**
 • Specific to a **single game**
General Game Playing

- Single system plays **many games** in a class
- Analysis performed by **system itself**
- Player inputs game rules for unknown game
 - Game description allows simulation
 - Expand game tree

- If not exhaustively searchable, what to do?
 - Look for hints in game description
General Game Playing

- Single system plays many games in a class
- Analysis performed by system itself
- Player inputs game rules for unknown game
 - Game description allows simulation
 - Expand game tree

![Game Tree Diagram]

- If not exhaustively searchable, what to do?
 - Look for hints in game description
Game Players run as servers

Game Manager sends rules to players
- Game Description in **GDL**
- Start clock
 - Time to analyze description (1–40 minutes)
- Play clock:
 - Time to make moves (10–120 seconds)

![Diagram](attachment:diagram.png)

GM

- **Rules**
- **Move**
- **Move**
- **...**

GP

- **Start**
- **Play**
- **Play**
Class of Games

Deterministic, Perfect Information Games

![Chess](image1)

![Backgammon](image2)

![Checkers](image3)

![Card Game](image4)

YES

NO
Game Description Language

- First order logic (KIF)
- **State**: database of provable facts
- **Constructs**
 - **init**: initial state
 - **legal**: legal moves
 - **next**: state transitions
 - **terminal**: termination conditions
 - **goal**: value of terminal states
(role white) (role black)
(init (cell a 1 b)) (init (cell a 2 b))
(init (cell a 1 b)) (init (cell a 2 bk))
(init (cell a 1 wr)) (init (cell a 2 b))
(init (cell a 1 b)) (init (cell a 2 b))
(init (control white)) (init (step 1))
(<= (legal white (move wk ?u ?v ?x ?y))
 (true (control white))
 (true (cell ?u ?v wk))
 (kingmove ?u ?v ?x ?y)
 (true (cell ?x ?y b)))
(<= (next (step ?y))
 (true (step ?x))
 (succ ?x ?y))
(succ 1 2) (succ 2 3) (succ 3 4) (succ 4 5)
(<= (goal white 100)
 checkmate)
(<= terminal
 (true (step 10)))

- Simulate with **theorem prover** (Prolog)
- How can we do better than just legal play?
(role white) (role black)
(init (cell a 1 b)) (init (cell a 2 b))
(init (cell a 1 b)) (init (cell a 2 bk))
(init (cell a 1 wr)) (init (cell a 2 b))
(init (cell a 1 b)) (init (cell a 2 b))
(init (control white)) (init (step 1))
(<= (legal white (move wk ?u ?v ?x ?y))
 (true (control white))
 (true (cell ?u ?v wk))
 (kingmove ?u ?v ?x ?y)
 (true (cell ?x ?y b)))
(<= (next (step ?y))
 (true (step ?x))
 (succ ?x ?y))
(succ 1 2) (succ 2 3) (succ 3 4) (succ 4 5)
(<= (goal white 100)
 checkmate)
(<= terminal
 (true (step 10)))

- Simulate with **theorem prover** (Prolog)
- How can we do better than just legal play?
Identify structures from common game elements

Successor Relations

(\text{succ} 1 \ 2) \quad (\text{angel paper table})
(\text{succ} 2 \ 3) \quad (\text{angel table bottom})
(\text{succ} 3 \ 4) \quad (\text{angel bottom mellow})
(\text{succ} 4 \ 5) \quad (\text{angel mellow yard})

Tokens will be scrambled. Based on structure alone.

Bridge between logical and numerical representations
Identifying Structures (cont.)

Find rules matching templates

Step Counters

\[
\begin{align*}
& (\leq (\text{next} \ (\text{step} \ ?x)) \quad (\leq (\text{next} \ (\text{foo} \ ?u))) \\
& (\text{true} \ (\text{step} \ ?y)) \quad (\text{true} \ (\text{foo} \ ?v)) \\
& (\text{succ} \ ?y \ ?x)) \quad (\text{bar} \ ?v \ ?u))
\end{align*}
\]

Again no lexical clues used.

- Bounds tree depth
- Remove for longer internal games
- Remove from Transposition Table
Many games have a board of some type

State

(cell 1 1 bk) (cell 1 2 b)
(cell 1 3 wk) (cell 1 4 b)
(cell 2 1 b) (cell 2 2 b)
(cell 2 3 bk) (cell 2 4 b)
(cell 3 1 wr) (cell 3 2 b)
(cell 3 3 b) (cell 3 4 b)
(cell 4 1 b) (cell 4 2 b)
(cell 4 3 b) (cell 4 4 b)

Boards and Pieces

cell:0,1→2 ; [b, wk, wr, bk]
cell:0,2→1 ; [1, 2, 3, 4]
cell:1,2→0 ; [1, 2, 3, 4]

- Start with all ternary functions
- Divide slots into inputs and outputs
- Refine through internal simulation
Board Game Structures

Many games have a board of some type

State

(cell 1 1 bk) (cell 1 2 b)
(cell 1 3 wk) (cell 1 4 b)
(cell 2 1 b) (cell 2 2 b)
(cell 2 3 bk) (cell 2 4 b)
(cell 3 1 wr) (cell 3 2 b)
(cell 3 3 b) (cell 3 4 b)
(cell 4 1 b) (cell 4 2 b)
(cell 4 3 b) (cell 4 4 b)

Boards and Pieces

cell:0,1→2 ; [b, wk, wr, bk]

- Start with all ternary functions
- Divide slots into inputs and outputs
- Refine through internal simulation
Many games have a board of some type

State

Cell 1 1 bk	Cell 1 2 b
Cell 1 3 wk	Cell 1 4 b
Cell 2 1 b	Cell 2 2 b
Cell 2 3 bk	Cell 2 4 b
Cell 3 1 wr	Cell 3 2 b
Cell 3 3 b	Cell 3 4 b
Cell 4 1 b	Cell 4 2 b
Cell 4 3 b	Cell 4 4 b

Boards and Pieces

\[
\text{cell:0,1→2 ; [wk, wr, bk]}
\]

- **Start with all ternary functions**
- **Divide slots into inputs and outputs**
- **Refine through internal simulation**
Identified Structure vs. Generated Features

<table>
<thead>
<tr>
<th>Identified Structure</th>
<th>Generated Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered Board w/ Pieces</td>
<td>Each piece’s X coordinate</td>
</tr>
<tr>
<td></td>
<td>Each piece’s Y coordinate</td>
</tr>
<tr>
<td></td>
<td>Manhattan distance between each pair of pieces</td>
</tr>
<tr>
<td></td>
<td>Sum of pair-wise Manhattan distances</td>
</tr>
<tr>
<td>Board w/o Pieces</td>
<td>Number of markers of each type</td>
</tr>
<tr>
<td>Quantity</td>
<td>Amount</td>
</tr>
</tbody>
</table>

- Board inputs **ordered** by successor relation(s)?
- Board has at least one **piece**?
- Non-board features also identified
Maximize single feature:

\[H(s) = 1 + R^- + (R^+ - R^- - 2) \times V(s) \]

Or minimize single feature:

\[H(s) = 1 + R^- + (R^+ - R^- - 2) \times [1 - V(s)] \]

- Example: Maximize white rook’s y-coordinate
- Actual win always better than heuristic value
- Actual loss always worse
During Start Clock:
- Candidate heuristics constructed from GD
- “Best” heuristic is chosen
 - Old approach: parallel search
 - New approach: internal tournament

During Play Clock:
- Iterative-deepening Minimax search
 - Minimax search w/ $\alpha\beta$ pruning
 - Transposition table and history heuristic
 - Extensions for > 2 players, simultaneous games
Experiments

- **Goal:** Identify impact of game analysis
- Three different games
 - created by competition organizers
- Heuristic chosen manually
 - simulates good method to choose heuristic
 - no experimentation after initial selection
- **Opponent:** constant heuristic (exhaustive search)
Othello variant

- more corner squares
- **opposite goal:** finish with *fewer* markers
Nothello

Othello variant

- more corner squares
- **opposite goal**: finish with *fewer* markers
Nothello

Othello variant

- more corner squares
- opposite goal: finish with fewer markers
Nothello

Othello variant

- more corner squares
- **opposite goal:** finish with fewer markers
Nothello

Othello variant

- more corner squares
- **opposite goal:** finish with *fewer* markers
Heuristic: minimize number of own markers

<table>
<thead>
<tr>
<th>NumMarkers</th>
<th>H(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>74.25</td>
</tr>
<tr>
<td>8</td>
<td>79.20</td>
</tr>
<tr>
<td>8</td>
<td>79.20</td>
</tr>
<tr>
<td>9</td>
<td>76.73</td>
</tr>
</tbody>
</table>
Heuristic: minimize number of own markers

NumMarkers: 10 H(s): 74.25
NumMarkers: 8 H(s): 79.20
NumMarkers: 8 H(s): 79.20
NumMarkers: 9 H(s): 76.73
Heuristic: minimize number of own markers

NumMarkers: 10 H(s): 74.25
NumMarkers: 8 H(s): 79.20
NumMarkers: 8 H(s): 79.20
NumMarkers: 9 H(s): 76.73
Heuristic: minimize number of own markers

NumMarkers: 10 H(s): 74.25
NumMarkers: 8 H(s): 79.20
NumMarkers: 8 H(s): 79.20
NumMarkers: 9 H(s): 76.73
Hallway

Chess board with two pawns

- **Actions**: move pawn or place wall
- **Goal**: reach other side first
Hallway

Chess board with two pawns

- **Actions:** move pawn or place wall
- **Goal:** reach other side first
Hallway

Chess board with two pawns

- **Actions:** move pawn or place wall
- **Goal:** reach other side first
Hallway

Chess board with two pawns

- **Actions:** move pawn or place wall
- **Goal:** reach other side first
Chess board with two pawns

- **Actions**: move pawn or place wall
- **Goal**: reach other side first
Hallway

Chess board with two pawns

- **Actions**: move pawn or place wall
- **Goal**: reach other side first
Hallway

Chess board with two pawns

- **Actions:** move pawn or place wall
- **Goal:** reach other side first
Heuristic: maximize own pawn’s y-coordinate
Commodities trading game w/ three simultaneous players

Alice Barney Charlie

Commodities

Structures

Heuristic: maximize own money
Commodities trading game w/ three simultaneous players

Alice Barney Charlie

Commodities

Structures

Heuristic: maximize own money
Experimental results

<table>
<thead>
<tr>
<th>Game</th>
<th>Matches</th>
<th>Expected Wins</th>
<th>Empirical Wins</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothello</td>
<td>15</td>
<td>7.5</td>
<td>15</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>Hallway</td>
<td>15</td>
<td>3</td>
<td>15</td>
<td>10^{-11}</td>
</tr>
<tr>
<td>Farmers</td>
<td>25</td>
<td>8.3</td>
<td>11</td>
<td>0.234</td>
</tr>
</tbody>
</table>

Competition Results
- **2005**: competitive but technical difficulties
- **2006**: very competitive (3rd place)
 - after 72 matches, gap with first: \sim 3 games
Results

- Experimental results

<table>
<thead>
<tr>
<th>Game</th>
<th>Matches</th>
<th>Expected Wins</th>
<th>Empirical Wins</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothello</td>
<td>15</td>
<td>7.5</td>
<td>15</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>Hallway</td>
<td>15</td>
<td>3</td>
<td>15</td>
<td>10^{-11}</td>
</tr>
<tr>
<td>Farmers</td>
<td>25</td>
<td>8.3</td>
<td>11</td>
<td>0.234</td>
</tr>
</tbody>
</table>

- Competition Results
 - 2005: competitive but technical difficulties
 - 2006: very competitive (3rd place)
 - after 72 matches, gap with first: \sim 3 games
Conclusion and Future Work

- **General Game Playing**
 - Automate game analysis
- **Automatic Heuristic Construction**
 - Structures \rightarrow Features \rightarrow Heuristics
- Method incorporated into **complete agent**
- **Future Work**
 - Learn more complex evaluation functions
 - Understand game similarity
 - Transfer knowledge between games
Conclusion and Future Work

- **General Game Playing**
 - Automate game analysis

- **Automatic Heuristic Construction**
 - Structures → Features → Heuristics

- Method incorporated into complete agent

- **Future Work**
 - Learn more complex evaluation functions
 - Understand game similarity
 - Transfer knowledge between games