CS395T Agent-Based Electronic Commerce Fall 2003

Peter Stone

Department or Computer Sciences
The University of Texas at Austin

Week 5a, 9/23/03

Please try to ask more specific questions

- Please try to ask more specific questions
 - Instead of "I'm unclear on x," I prefer "I interpret x to mean y. Is that correct?"

- Please try to ask more specific questions
 - Instead of "I'm unclear on x," I prefer "I interpret x to mean y. Is that correct?"
- Some project details

- Please try to ask more specific questions
 - Instead of "I'm unclear on x," I prefer "I interpret x to mean y. Is that correct?"
- Some project details
 - Possibly group oriented

- Please try to ask more specific questions
 - Instead of "I'm unclear on x," I prefer "I interpret x to mean y. Is that correct?"
- Some project details
 - Possibly group oriented
 - Winning vs. good research

- Please try to ask more specific questions
 - Instead of "I'm unclear on x," I prefer "I interpret x to mean y. Is that correct?"
- Some project details
 - Possibly group oriented
 - Winning vs. good research
 (what grade would livingagents get?)

- Please try to ask more specific questions
 - Instead of "I'm unclear on x," I prefer "I interpret x to mean y. Is that correct?"
- Some project details
 - Possibly group oriented
 - Winning vs. good research
 (what grade would livingagents get?)
 - How many games will there be?

- Please try to ask more specific questions
 - Instead of "I'm unclear on x," I prefer "I interpret x to mean y. Is that correct?"
- Some project details
 - Possibly group oriented
 - Winning vs. good research
 (what grade would livingagents get?)
 - How many games will there be?
- Any questions?

28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

 Unlimited supply; prices random walk; immediate clear; no resale

28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

 Unlimited supply; prices random walk; immediate clear; no resale

Hotels: Tampa Towers/Shanties 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Auctions can close early

28 Simultaneous Auction

Flights: Inflight days 1-4, Outflight days 2-5 (8)

 Unlimited supply; prices random walk; immediate clear; no resale

Hotels: Tampa Towers/Shanties 1-4 (8)

- 16 rooms per auction; 16th-price ascending auction; quote is ask price; no resale
- Auctions can close early

Entertainment: MU/AP/AW days 1-4 (12)

 Continuous double auction; initial endowments; quote is bid-ask spread; resale allowed

note: "utility" and "value" transposed

note: "utility" and "value" transposed

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

note: "utility" and "value" transposed

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus

+ entertainment bonus

note: "utility" and "value" transposed

Preferences: randomly generated per client

- Ideal arrival, departure days
- Good Hotel Value
- Entertainment Values

Utility: 1000 (if valid) – travel penalty + hotel bonus

+ entertainment bonus

Score: Sum of client utilities – expenditures

Needed to compare small numbers of games

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)
- Mapping from client profiles to score

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)
- Mapping from client profiles to score
- Three measures found to be significant:
 - 1. total client preferred travel days
 - 2. total entertainment values
 - 3. ratio of "easy" days (1 and 4) to hard (2 and 3) in preferred trip intervals

- Needed to compare small numbers of games
- Done by an impartial party (U. Michigan)
- Mapping from client profiles to score
- Three measures found to be significant:
 - 1. total client preferred travel days
 - 2. total entertainment values
 - 3. ratio of "easy" days (1 and 4) to hard (2 and 3) in preferred trip intervals
- Regression analysis to compute factors for individual games

Given holdings, prices, determine G^* : Optimal complete itinerary assignments

Greedy solution?

- Greedy solution?
- Mixed-integer LP with 3 constraints:

- Greedy solution?
- Mixed-integer LP with 3 constraints:
 - Purchase enough to meet demand
 - 2. Entertainment tickets must be used legally
 - 3. All variables integral

- Greedy solution?
- Mixed-integer LP with 3 constraints:
 - 1. Purchase enough to meet demand
 - 2. Entertainment tickets must be used legally
 - 3. All variables integral
- Enforce 1 and 2 (admissible);

- Greedy solution?
- Mixed-integer LP with 3 constraints:
 - 1. Purchase enough to meet demand
 - 2. Entertainment tickets must be used legally
 - 3. All variables integral
- Enforce 1 and 2 (admissible);
 "Branch and bound" over adjustments for 3

- Greedy solution?
- Mixed-integer LP with 3 constraints:
 - 1. Purchase enough to meet demand
 - 2. Entertainment tickets must be used legally
 - 3. All variables integral
- Enforce 1 and 2 (admissible);
 "Branch and bound" over adjustments for 3
- Globally optimal solution; usually < .01 sec

• Example on p. 215

- Example on p. 215
- What happens if you use mean price instead of sampling?

- Example on p. 215
- What happens if you use mean price instead of sampling?
- Mean price is \$68.75

- Example on p. 215
- What happens if you use mean price instead of sampling?
- Mean price is \$68.75
- Bid in this case would be \$31.25

• Why predict increase in price, not actual price?

- Why predict increase in price, not actual price?
- p.221: how do "redundant variations" help?

- Why predict increase in price, not actual price?
- p.221: how do "redundant variations" help?
- Example: trying to learn which days are good for swimming from a list of days

- Why predict increase in price, not actual price?
- p.221: how do "redundant variations" help?
- Example: trying to learn which days are good for swimming from a list of days
- Concept: > 80 degree, sunny ⇒ swim

- Why predict increase in price, not actual price?
- p.221: how do "redundant variations" help?
- Example: trying to learn which days are good for swimming from a list of days
- Concept: > 80 degree, sunny ⇒ swim
- List sunny days, list > 80 days, list swimming days

- Why predict increase in price, not actual price?
- p.221: how do "redundant variations" help?
- Example: trying to learn which days are good for swimming from a list of days
- Concept: > 80 degree, sunny ⇒ swim
- List sunny days, list > 80 days, list swimming days
- What redundant feature would help?

- Cost is how much prices are expected to rise
 - flight-lookahead parameter
- Benefit is how likely you are to change your mind as prices become clear.
 - Hotel A will be either \$10 (40%) or \$100 (60%)

- Cost is how much prices are expected to rise
 - flight-lookahead parameter
- Benefit is how likely you are to change your mind as prices become clear.
 - Hotel A will be either \$10 (40%) or \$100 (60%)
 - When \$10, flight X is \$250 better, else flight Y is \$250 better

- Cost is how much prices are expected to rise
 - flight-lookahead parameter
- Benefit is how likely you are to change your mind as prices become clear.
 - Hotel A will be either \$10 (40%) or \$100 (60%)
 - When \$10, flight X is \$250 better, else flight Y is \$250 better
 - If buy now, buy flight . . .

- Cost is how much prices are expected to rise
 - flight-lookahead parameter
- Benefit is how likely you are to change your mind as prices become clear.
 - Hotel A will be either \$10 (40%) or \$100 (60%)
 - When \$10, flight X is \$250 better, else flight Y is \$250 better
 - If buy now, buy flight . . . Y

- Cost is how much prices are expected to rise
 - flight-lookahead parameter
- Benefit is how likely you are to change your mind as prices become clear.
 - Hotel A will be either \$10 (40%) or \$100 (60%)
 - When \$10, flight X is \$250 better, else flight Y is \$250 better
 - If buy now, buy flight . . . Y
 - Benefit of postponing?

- Cost is how much prices are expected to rise
 - flight-lookahead parameter
- Benefit is how likely you are to change your mind as prices become clear.
 - Hotel A will be either \$10 (40%) or \$100 (60%)
 - When \$10, flight X is \$250 better, else flight Y is \$250 better
 - If buy now, buy flight . . . Y
 - Benefit of postponing?
 - -40% * \$250 = \$100