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Good Afternoon Colleagues

• Are there any questions?

• Pending questions:

− Weaknesses of subgoal discovery as presented.
− Why can state abstraction prevent acheiving planned

values?
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Logistics

• Tom Dietterich visiting next Friday:
”Three Challenges for Machine Learning Reserch”
3pm, ACES 2.302
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MAXQ

• Defines how to learn given a task hierarchically

• Does not address how to construct the hierarchy

• Strives for recursive optimality— local optimality for each
subtask

• Enables reuse of subtasks

• Enables useful state abstraction

Peter Stone
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Some details

• a means both primitive actions and subtasks (options)

• Higher-level subtasks are essentially policies over options

− But subtasks are learned too
− And the values propagate correctly

• What does Cπ
i (s, a) mean?(Dietterich slides)

• How does equation (2) relate to flat Q?

• The parameterization is deceptive, but there IS reuse.

Peter Stone



Student-led discussion

• Jon on safe abstraction
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