Lecture 6: Control Problems and Solutions CS 344R: Robotics

Benjamin Kuipers

But First, Assignment 1: Followers

- A follower is a control law where the robot moves forward while keeping some error term small.
 - Open-space follower
 - Wall follower
 - Coastal navigator
 - Color follower
- Due October 4.

Control Laws Have Conditions

- Each control law includes:
 - A *trigger*: Is this law applicable?
 - The law itself: $\mathbf{u} = H_i(\mathbf{y})$
 - A *termination condition*: Should the law stop?

Open-Space Follower

- Move in the direction of large amounts of open space.
- Wiggle as needed to avoid specular reflections.
- Turn away from obstacles.
- Turn or back out of blind alleys.
- Try to be elegant and robust.

Wall Follower

- Detect and follow right or left wall.
- Implement the PD control law taught in class.
- Respond to step-changes in environment or set-point.
- Tune to avoid large oscillations.
- Terminate on obstacle or wall vanishing.

Coastal Navigator

- Join wall-followers to follow a complex "coastline"
- When a wall-follower terminates, make the appropriate turn, detect a new wall, and continue.
- Inside and outside corners, 90 and 180 deg.
- Orbit a box, a simple room, or the desks!

Color Follower

- Move to keep a desired color centered in the camera image.
- Train a color region from a given image.
- Follow an orange ball on a string, or a brightly-colored T-shirt.
- How quickly can the robot respond?

Problems and Solutions

- Time delay
- Static friction
- Pulse-width modulation
- Integrator wind-up
- Chattering
- Saturation, dead-zones, backlash
- Parameter drift

Unmodeled Effects

• Every controller depends on its simplified model of the world.

– Every model omits almost everything.

• If unmodeled effects become significant, the controller's model is wrong,

– so its actions could be seriously wrong.

• Most controllers need special case checks.

- Sometimes it needs a more sophisticated model.

- At time *t*,
 - Sensor data tells us about the world at $t_1 < t$.
 - Motor commands take effect at time $t_2 > t$.
 - The lag is $dt = t_2 t_1$.
- To compensate for lag time,
 - Predict future sensor value at t_2 .
 - Specify motor command for time t_2 .

Predicting Future Sensor Values

- Later, *observers* will help us make better predictions.
- Now, use a simple prediction method:
 - If sensor s is changing at rate ds/dt,
 - At time *t*, we get $s(t_1)$, where $t_1 < t$,
 - Estimate $s(t_2) = s(t_1) + ds/dt * (t_2 t_1)$.
- Use $s(t_2)$ to determine motor signal u(t) that will take effect at t_2 .
 - "Smith predictor"

Static Friction ("Stiction")

- Friction forces oppose the direction of motion.
- We've seen damping friction: $F_d = -f(v)$
- Coulomb ("sliding") friction is a constant F_c depending on force against the surface.
 - When there is motion, $F_c = \eta$
 - When there is no motion, $F_c = \eta + \varepsilon$
- Extra force is needed to unstick an object and get motion started.

Why is Stiction Bad?

- Non-zero steady-state error.
 (runaway pendulum story)
- Stalled motors draw high current.
 - Running motor converts current to motion.
 - Stalled motor converts *more* current to heat.
- Whining from pulse-width modulation.
 - Mechanical parts bending at pulse frequency.

Pulse-Width Modulation

- A digital system works at 0 and 5 volts.
 - Analog systems want to output control signals over a continuous range.
 - How can we do it?
- Switch very fast between 0 and 5 volts.
 - Control the average voltage over time.
- Pulse-width ratio = t_{on}/t_{period} . (30-50 µsec)

Pulse-Code Modulated Signal

- Some devices are controlled by the length of a pulse-code signal.
 - Position servo-motors, for example.

Back EMF Motor Control

- Motor torque is proportional to current.
- Generator voltage is proportional to velocity.
- The same physical device can be either a motor or a generator.
- Switch back and forth quickly, as in PWM.

Back EMF Motor Control

Integrator Wind-Up

• Suppose we have a PI controller

$$u(t) = -k_P e(t) - k_I \int_0^t e \, dt + u_b$$

• Motion might be blocked, but the integral is winding up more and more control action.

$$u(t) = -k_P e(t) + u_b$$
$$\dot{u}_b(t) = -k_I e(t)$$

• Reset the integrator on significant events.

Chattering

- Changing modes rapidly and continually.
 - Bang-Bang controller with thresholds set too close to each other.
 - Integrator wind-up due to stiction near the setpoint, causing jerk, overshoot, and repeat.

Dead Zone

- A region where controller output does not affect the state of the system.
 - A system caught by static friction.
 - Cart-pole system when the pendulum is horizontal.
 - Cruise control when the car is stopped.
- Integral control and dead zones can combine to cause integrator wind-up problems.

Saturation

- Control actions cannot grow indefinitely.
 - There is a maximum possible output.
 - Physical systems are necessarily nonlinear.
- It might be nice to have bounded error by having infinite response.

– But it doesn't happen in the real world.

Backlash

- Real gears are not perfect connections.
 - There is space between the teeth.
- On reversing direction, there is a short time when the input gear is turning, but the output gear is not.

Parameter Drift

• Hidden parameters can change the behavior of the robot, for no obvious reason.

– Performance depends on battery voltage.

- Repeated discharge/charge cycles age the battery.
- A controller may compensate for small parameter drift until it passes a threshold.
 - Then a problem suddenly appears.
 - Controlled systems make problems harder to find

Unmodeled Effects

• Every controller depends on its simplified model of the world.

– Every model omits almost everything.

• If unmodeled effects become significant, the controller's model is wrong,

– so its actions could be seriously wrong.

• Most controllers need special case checks.

- Sometimes it needs a more sophisticated model.