
Lecture 13:
Mapping Landmarks

CS 344R:  Robotics
Benjamin Kuipers



Landmark Map

• Locations and uncertainties of n landmarks,
with respect to a specific frame of reference.
– World frame:  fixed origin point
– Robot frame:  origin at the robot

• Problem: how to combine new information
with old to update the map.



A Spatial Relationship is a Vector
• A spatial relationship holds between two

poses:  the position and orientation of one, in
the frame of reference of the other.
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Uncertain Spatial Relationships

• An uncertain spatial relationship is described
by a probability distribution of vectors, with a
mean and a covariance matrix.! 

ˆ x = E[x]
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A Map with n Landmarks
• Concatenate n vectors into one big state vector

• And one big 3n×3n covariance matrix.
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Example

• The robot senses object #1.
• The robot moves.
• The robot senses a different object #2.
• Now the robot senses object #1 again.

• After each step, what does the robot know
(in its landmark map) about each object,
including itself?



Robot Senses Object #1 and Moves



Robot Senses Object #2



Robot Senses Object #1 Again



Updated Estimates After Constraint



Compounding
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Compounding
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Rotation Matrix
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Compounding
• Let xAB be the pose of object B in the frame

of reference of A.             (Sometimes written BA.)

• Given xAB and xBC, calculate xAC.

• Compute C(xAC) from C(xAB), C(xBC), and
C(xAB,xBC).! 
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Computing Covariance

• Apply this to nonlinear functions by using
Taylor Series.

! 

y = Mx + b

C(y) = C(Mx + b)

= E[(Mx + b" (Mˆ x + b)) (Mx + b" (Mˆ x + b))T ]

= E[M(x " ˆ x ) (M(x " ˆ x ))T ]

= E[M (x " ˆ x )(x " ˆ x )T MT ]

= ME[(x " ˆ x )(x " ˆ x )T ]MT

= MC(x)MT

• Consider the linear mapping y = Mx+b



Inverse Relationship
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The Inverse Relationship
• Let xAB be the pose of object B in the frame

of reference of A.
• Given xAB, calculate xBA.

• Compute C(xBA) from C(xAB)
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Composite Relationships
• Compounding combines relationships head-

to-tail:  xAC = xAB ⊕ xBC

• Tail-to-tail combinations come from
observing two things from the same point:
xBC = (xAB) ⊕ xAC

• Head-to-head combinations come from two
observations of the same thing:
xAC =   xAB ⊕ (xCB)

• They provide new relationships between
their endpoints.



Merging Information
• An uncertain observation of a pose is

combined with previous knowledge using
the extended Kalman filter.
– Previous knowledge:
– New observation:  zk,   R

• Update:  x = x(new) ⊗ x(old)

• Can integrate dynamics as well.
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EKF Update Equations
• Predictor step:

• Kalman gain:

• Corrector step:
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Reversing and Compounding
• OBJ1R = (ROBOTW) ⊕ OBJ1W

•             = WORLDR ⊕ OBJ1W



Sensing Object #2

• OBJ2W = ROBOTW ⊕ OBJ2R



Observing Object #1 Again

• OBJ1W = ROBOTW ⊕ OBJ1R



Combining Observations (1)
• OJB1W = OJB1W(new) ⊗ OBJ1W(old)
• OJB1R = OJB1R(new) ⊗ OBJ1R(old)



Combining Observations (2)
• ROBOTW(new) = OJB1W ⊕ (OBJ1R)
• ROBOTW = ROBOTW(new) ⊗ ROBOTW(old)



Useful for Feature-Based Maps

• We’ll see this again when we study
FastSLAM.


