Lecture 13: Mapping Landmarks

CS 344R: Robotics

Benjamin Kuipers

Landmark Map

- Locations and uncertainties of *n* landmarks, with respect to a specific frame of reference.
 - World frame: fixed origin point
 - Robot frame: origin at the robot

• **Problem**: how to combine new information with old to update the map.

A Spatial Relationship is a Vector

• A spatial relationship holds between two poses: the position and orientation of one, in the frame of reference of the other.

Uncertain Spatial Relationships

$$\hat{\mathbf{x}} = E[\mathbf{x}]$$

$$\mathbf{C}(\mathbf{x}) = E[(\mathbf{x} - \hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}})^T]$$

• An *uncertain* spatial relationship is described by a probability distribution of vectors, with a *mean* and a *covariance matrix*.

$$\hat{\mathbf{x}} = \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{\phi} \end{bmatrix} \qquad \mathbf{C}(\mathbf{x}) = \begin{bmatrix} \sigma_x^2 & \sigma_{xy} & \sigma_{x\phi} \\ \sigma_{xy} & \sigma_y^2 & \sigma_{y\phi} \\ \sigma_{x\phi} & \sigma_{y\phi} & \sigma_{\phi}^2 \end{bmatrix}$$

A Map with *n* Landmarks

• Concatenate *n* vectors into one big state vector

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_n \end{bmatrix} \qquad \hat{\mathbf{X}} = \begin{bmatrix} \hat{\mathbf{X}}_1 \\ \hat{\mathbf{X}}_2 \\ \vdots \\ \hat{\mathbf{X}}_n \end{bmatrix}$$

• And one big $3n \times 3n$ covariance matrix.

$$\mathbf{C}(\mathbf{x}) = \begin{bmatrix} \mathbf{C}(\mathbf{x}_1) & \mathbf{C}(\mathbf{x}_1, \mathbf{x}_2) & \cdots & \mathbf{C}(\mathbf{x}_1, \mathbf{x}_n) \\ \mathbf{C}(\mathbf{x}_2, \mathbf{x}_1) & \mathbf{C}(\mathbf{x}_2) & \cdots & \mathbf{C}(\mathbf{x}_2, \mathbf{x}_n) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}(\mathbf{x}_n, \mathbf{x}_1) & \mathbf{C}(\mathbf{x}_n, \mathbf{x}_2) & \cdots & \mathbf{C}(\mathbf{x}_n) \end{bmatrix}$$

Example

- The robot senses object #1.
- The robot moves.
- The robot senses a *different* object #2.
- Now the robot senses object #1 again.

• After each step, what does the robot know (in its landmark map) about each object, including itself?

Robot Senses Object #1 and Moves

Robot Senses Object #2

Robot Senses Object #1 Again

Updated Estimates After Constraint

Compounding

Compounding

Rotation Matrix

$$\begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_G \\ y_G \end{bmatrix} = \begin{bmatrix} x_B \\ y_B \end{bmatrix}$$

B

Compounding

- Let \mathbf{x}_{AB} be the pose of object B in the frame of reference of A. (Sometimes written B_A .)
- Given \mathbf{x}_{AB} and \mathbf{x}_{BC} , calculate \mathbf{x}_{AC} .

$$\mathbf{x}_{AC} = \mathbf{x}_{AB} \oplus \mathbf{x}_{BC} = \begin{bmatrix} x_{BC} \cos \phi_{AB} - y_{BC} \sin \phi_{AB} + x_{AB} \\ x_{BC} \sin \phi_{AB} + y_{BC} \cos \phi_{AB} + y_{AB} \\ \phi_{AB} + \phi_{BC} \end{bmatrix}$$

• Compute $C(\mathbf{x}_{AC})$ from $C(\mathbf{x}_{AB})$, $C(\mathbf{x}_{BC})$, and $C(\mathbf{x}_{AB}, \mathbf{x}_{BC})$.

Computing Covariance

• Consider the linear mapping y = Mx+b

$$y = Mx + b$$

$$C(y) = C(Mx + b)$$

$$= E[(Mx + b - (M\hat{x} + b)) (Mx + b - (M\hat{x} + b))^{T}]$$

$$= E[M(x - \hat{x}) (M(x - \hat{x}))^{T}]$$

$$= E[M (x - \hat{x})(x - \hat{x})^{T}M^{T}]$$

$$= M E[(x - \hat{x})(x - \hat{x})^{T}]M^{T}$$

$$= M C(x) M^{T}$$

 Apply this to nonlinear functions by using Taylor Series.

Inverse Relationship

The Inverse Relationship

- Let \mathbf{x}_{AB} be the pose of object B in the frame of reference of A.
- Given \mathbf{x}_{AB} , calculate \mathbf{x}_{BA} .

$$\mathbf{x}_{BA} = (-)\mathbf{x}_{AB} = \begin{bmatrix} -x_{AB}\cos\phi_{AB} - y_{AB}\sin\phi_{AB} \\ x_{AB}\sin\phi_{AB} - y_{AB}\cos\phi_{AB} \\ -\phi_{AB} \end{bmatrix}$$

• Compute $C(\mathbf{x}_{BA})$ from $C(\mathbf{x}_{AB})$

Composite Relationships

- Compounding combines relationships headto-tail: $\mathbf{x}_{AC} = \mathbf{x}_{AB} \oplus \mathbf{x}_{BC}$
- Tail-to-tail combinations come from observing two things from the same point: $\mathbf{x}_{BC} = (\ominus \mathbf{x}_{AB}) \oplus \mathbf{x}_{AC}$
- Head-to-head combinations come from two observations of the same thing:

$$\mathbf{x}_{AC} = \mathbf{x}_{AB} \oplus (\ominus \mathbf{x}_{CB})$$

• They provide new relationships between their endpoints.

Merging Information

- An uncertain observation of a pose is combined with previous knowledge using the extended Kalman filter.
 - Previous knowledge: \mathbf{x}_{k}^{-} , \mathbf{P}_{k}^{-}
 - New observation: \mathbf{z}_k , \mathbf{R}
- Update: $\mathbf{x} = \mathbf{x}(\text{new}) \otimes \mathbf{x}(\text{old})$

• Can integrate dynamics as well.

EKF Update Equations

• Predictor step:
$$\hat{\mathbf{x}}_{k}^{-} = f(\hat{\mathbf{x}}_{k-1}, \mathbf{u}_{k})$$

$$\mathbf{P}_{k}^{-} = \mathbf{A}\mathbf{P}_{k-1}\mathbf{A}^{T} + \mathbf{Q}$$

- Kalman gain: $\mathbf{K}_k = \mathbf{P}_k^{\mathsf{T}} \mathbf{H}^T (\mathbf{H} \mathbf{P}_k^{\mathsf{T}} \mathbf{H}^T + \mathbf{R})^{-1}$
- Corrector step: $\hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + \mathbf{K}_k(\mathbf{z}_k h(\hat{\mathbf{x}}_k^-))$ $\mathbf{P}_k = (\mathbf{I} - \mathbf{K}_k \mathbf{H}) \mathbf{P}_k^-$

Reversing and Compounding

- $OBJ1_R = (\ominus ROBOT_W) \oplus OBJ1_W$
- $= WORLD_R \oplus OBJ1_W$

Sensing Object #2

• $OBJ2_W = ROBOT_W \oplus OBJ2_R$

Observing Object #1 Again

• $OBJ1_W = ROBOT_W \oplus OBJ1_R$

Combining Observations (1)

- $OJB1_W = OJB1_W(new) \otimes OBJ1_W(old)$
- $OJB1_R = OJB1_R(new) \otimes OBJ1_R(old)$

Combining Observations (2)

- $ROBOT_W(new) = OJB1_W \oplus (\ominus OBJ1_R)$
- $ROBOT_W = ROBOT_W(new) \otimes ROBOT_W(old)$

Useful for Feature-Based Maps

• We'll see this again when we study FastSLAM.