Multi-Robot Learning for Continuous Area Sweeping

Peter Stone

Joint work with **Mazda Ahmadi** Learning Agents Research Group (LARG) Department of Computer Sciences The University of Texas at Austin

LAMAS, July 2005

Multiagent Learning in LARG

Multiagent Learning in LARG

• Transfer Learning in Keepaway

[Taylor, Wed., 10:30]

- Transfer Learning in Keepaway
- Multiagent Traffic Management

[Taylor, Wed., 10:30]

[Dresner, 10:45]

Transfer Learning in Keepaway

Multiagent Traffic Management

General Game Playing

Winner, 2005 RoboCup coach comp.

[Taylor, Wed., 10:30]

[Dresner, 10:45]

[Kuhlmann, Dresner]

[Kuhlmann, Knox]

Transfer Learning in Keepaway

[Taylor, Wed., 10:30]

Multiagent Traffic Management

[Dresner, 10:45]

General Game Playing

[Kuhlmann, Dresner]

Winner, 2005 RoboCup coach comp.

[Kuhlmann, Knox]

Learning for Continuous Area Sweeping

[Ahmadi, 2005]

Transfer Learning in Keepaway

[Taylor, Wed., 10:30]

Multiagent Traffic Management

[Dresner, 10:45]

General Game Playing

[Kuhlmann, Dresner]
[Kuhlmann, Knox]

Winner, 2005 RoboCup coach comp.

[Abmodi 2005]

• Learning for Continuous Area Sweeping

[Ahmadi, 2005]

Mostly single-robot

Initial multi-robot results

- Area sweeping
- Continuous area sweeping
 - Examples: cleaning robots, surveillance robots.
 - Non-uniform sweeping
 - Multi-robot sweeping

- Area sweeping
- Continuous area sweeping
 - Examples: cleaning robots, surveillance robots.
 - Non-uniform sweeping
 - Multi-robot sweeping

- Area sweeping
- Continuous area sweeping
 - Examples: cleaning robots, surveillance robots.
 - Non-uniform sweeping
 - Multi-robot sweeping

- Area sweeping
- Continuous area sweeping
 - Examples: cleaning robots, surveillance robots.
 - Non-uniform sweeping
 - Multi-robot sweeping

- Area sweeping
- Continuous area sweeping
 - Examples: cleaning robots, surveillance robots.
 - Non-uniform sweeping
 - Multi-robot sweeping

- Area sweeping
- Continuous area sweeping
 - Examples: cleaning robots, surveillance robots.
 - Non-uniform sweeping
 - Multi-robot sweeping

Introduction Problem Specification

Algorithm Results Multi-robot Learning

Project Description

Outline

Introduction and Motivation

Single Robot Problem Specification

- Introduction and Motivation
- Single Robot Problem Specification
- Exploration Algorithm
 - Learning Expected Rewards
 - Planning
 - Correctness

- Introduction and Motivation
- Single Robot Problem Specification
- Exploration Algorithm
 - Learning Expected Rewards
 - Planning
 - Correctness
- Results
 - Simulation Results
 - Results on Real Robots

- Introduction and Motivation
- Single Robot Problem Specification
- Exploration Algorithm
 - Learning Expected Rewards
 - Planning
 - Correctness
- Results
 - Simulation Results
 - Results on Real Robots
- Multi-robot Extensions
 - Overview
 - Negotiation Algorithm
 - Results

- Introduction and Motivation
- Single Robot Problem Specification
- 3 Exploration Algorithm
 - Learning Expected Rewards
 - Planning
 - Correctness
- Results
 - Simulation Results
 - Results on Real Robots
- Multi-robot Extensions
 - Overview
 - Negotiation Algorithm
 - Results

Assumptions

The environment

Assumptions

The environment is divided into grid cells (G).

Assumptions

The orientations: east, west, north and south.

Assumptions

LV[G]: last time that robot has visited cell g.

Assumptions (cont.)

• Time is considered in sequence of discrete steps.

imp_e: importance of detecting event e.

Formal Definition

The problem is defined as: (S, A, T_{sa} , P_{eg} , CF):

Formal Definition

The problem is defined as: (**S**, A, T_{sa} , P_{eg} , CF):

• S: Set of states $G \times O \times LV$

Formal Definition

The problem is defined as: $(S, \mathbf{A}, T_{sa}, P_{eg}, CF)$:

• A: Set of possible actions

Formal Definition

The problem is defined as: $(S, \mathbf{A}, T_{sa}, P_{eg}, CF)$:

• A: Set of possible actions

Formal Definition

The problem is defined as: $(S, \mathbf{A}, T_{sa}, P_{eg}, CF)$:

• A: Set of possible actions

Formal Definition

The problem is defined as: $(S, A, T_{sa}, P_{eq}, CF)$:

• T_{sa}: State transition probabilities

Formal Definition

The problem is defined as: $(S, A, T_{sa}, P_{eg}, CF)$:

 P_{eg}: Probability of appearance of event e in cell g; Initially unknown; possibly non-stationary

Formal Definition

The problem is defined as: $(S, A, T_{sa}, P_{eg}, \mathbf{CF})$:

• **CF**: Cost function of the policy. Average time between appearance and detection, weighted by *imp_e*.

The Goal

The goal is to find a policy $\pi: S \to A$ which minimizes the cost function.

- Introduction and Motivation
- Single Robot Problem Specification
- Second State

 Exploration Algorithm

 Ex
 - Learning Expected Rewards
 - Planning
 - Correctness
- Results
 - Simulation Results
 - Results on Real Robots
- Multi-robot Extensions
 - Overview
 - Negotiation Algorithm
 - Results

Algorithm Overview

$$exp_reward_{gt} = (t - LV[g]) \times \sum_{all\ e} P_{eg} \times imp_e$$
 (1)

$$exp_reward_{gt} = (t - LV[g]) \times \sum_{\textit{all e}} P_{eg} \times \textit{imp}_{e}$$
 (1)

$$pot_reward_{gt} = \sum_{\textit{all e}} P_{eg} \times \textit{imp}_{e}$$
 (2)

$$exp_reward_{gt} = (t - LV[g]) \times \sum_{\textit{all } e} P_{eg} \times \textit{imp}_{e}$$
 (1)

$$pot_reward_{gt} = \sum_{all\ e} P_{eg} \times imp_e$$
 (2)

Approximate pot_reward

 Compute a new approximation of pot_reward (new_pot).

$$exp_reward_{gt} = (t - LV[g]) \times \sum_{\textit{all e}} P_{eg} \times \textit{imp}_{e}$$
 (1)

$$pot_reward_{gt} = \sum_{all\ e} P_{eg} \times imp_e$$
 (2)

Approximate pot_reward

- Compute a new approximation of pot_reward (new_pot).
- $pot_reward := \alpha \times new_pot + (1 \alpha) \times pot_reward$

$$exp_reward_{gt} = (t - LV[g]) \times \sum_{\textit{all e}} P_{eg} \times \textit{imp}_{e}$$
 (1)

$$pot_reward_{gt} = \sum_{all\ e} P_{eg} \times imp_e$$
 (2)

Approximate pot_reward

- Compute a new approximation of pot_reward (new_pot).
- $pot_reward := \alpha \times new_pot + (1 \alpha) \times pot_reward$
- No updates to zero, instead decay over time.

- One step greedy action selection
- Set of actions: going to different grids with one of the four orientations.
- What to maximize: Sum of collected expected rewards per time.

- One step greedy action selection
- Set of actions: going to different grids with one of the four orientations.
- What to maximize: Sum of collected expected rewards per time.

- One step greedy action selection
- Set of actions: going to different grids with one of the four orientations.
- What to maximize: Sum of collected expected rewards per time.

- One step greedy action selection
- Set of actions: going to different grids with one of the four orientations.
- What to maximize: Sum of collected expected rewards per time.

Correctness Proof

- With optimal planning, the cost function is minimized
 - Maximizing exp_reward at individual cells minimizes CF

Correctness Proof

- With optimal planning, the cost function is minimized
 - Maximizing exp_reward at individual cells minimizes CF
- Formal proof in [Ahmadi & S, 2005]

Outline

- Introduction and Motivation
- Single Robot Problem Specification
- Exploration Algorithm
 - Learning Expected Rewards
 - Planning
 - Correctness
- Results
 - Simulation Results
 - Results on Real Robots
- Multi-robot Extensions
 - Overview
 - Negotiation Algorithm
 - Results

Simulation Results

The path that the robot traverses in uniform distribution of the appearance of the ball. **Average detection time: 106** seconds.

Simulation Results (cont.)

The path the robot traverse when the ball always appears in region 2. **Average detection time: 47 seconds.**

Simulation Results (cont.)

Biased distribution: Probability of the ball appearance is 60% in region 2, 30% in region 1 and 5% in region 3 and 4. **Average detection time: 79 seconds.**

Simulation Results (cont.)

Changing Distribution

From the previous distribution to uniform distribution, it took about 9 loops to adapt the correct distribution.

Results from Real Robots

Movies!

Outline

- 1 Introduction and Motivation
- Single Robot Problem Specification
- Exploration Algorithm
 - Learning Expected Rewards
 - Planning
 - Correctness
- Results
 - Simulation Results
 - Results on Real Robots
- Multi-robot Extensions
 - Overview
 - Negotiation Algorithm
 - Results

- Multiple robots divide the sweeping area
- Goal: minimize global cost function (fully cooperative)

Overview Negotiation Algorithm Results

- Multiple robots divide the sweeping area
- Goal: minimize global cost function (fully cooperative)
 - Equalized (weighted) average detection time among robots

- Multiple robots divide the sweeping area
- Goal: minimize global cost function (fully cooperative)
 - Equalized (weighted) average detection time among robots
- Team members change dynamically
 - Robots regularly added and removed

Overview

Negotiation Algorithm Results

- Multiple robots divide the sweeping area
- Goal: minimize global cost function (fully cooperative)
 - Equalized (weighted) average detection time among robots
- Team members change dynamically
 - Robots regularly added and removed
- P_{eq}'s still change dynamically

Solution Framework

- Robots each use single-agent algorithm in limited region
- Continual negotiation at region boundaries

Solution Framework

- Robots each use single-agent algorithm in limited region
- Continual negotiation at region boundaries
- New robots take minimal area in immediate neighborhood
- Area of removed robot initially taken by neighbor

Negotiation Algorithm Sketch

Periodically communicate visit intervals for boundary cells

Negotiation Algorithm Sketch

- Periodically communicate visit intervals for boundary cells
- Consider "taking over" neighbor's worst cell
 - Compute hypothetical plans, report visit intervals

Negotiation Algorithm Sketch

- Periodically communicate visit intervals for boundary cells
- Consider "taking over" neighbor's worst cell
 - Compute **hypothetical plans**, report visit intervals
- Single best neighboring offer accepted
 - biggest coverage improvement

Negotiation Algorithm Sketch

- Periodically communicate visit intervals for boundary cells
- Consider "taking over" neighbor's worst cell
 - Compute hypothetical plans, report visit intervals
- Single best neighboring offer accepted
 - biggest coverage improvement
- Repeat next cycle

Simulation Configuration I

2 homogeneous robots, uniform P_{eg} 's

3 homogeneous robots

Uniform Peg's

3 heterogeneous robots

- Robot 3 moves at half speed
- Time between visits, before negotiation: 54s, after:50s.

3 homogeneous robots, non-uniform P_{eg} 's

- P_{ex} 10 times greater
- Average detection time, before negotiation: 48s, after: 32s.

3 homogeneous robots, non-uniform P_{eg} 's

- P_{eX} 1000 times greater
- Average detection time, before negotiation: 48s, after: 1s.

Simulation Configuration II

8 heterogeneous robots

Robot speeds differ from 10 (1 & 3) to 50 (8)

Results from Real Robots

Movie!

Related Work

- Kalra, Stentz, and Ferguson, Hoplites: A market framework for complex tight coordination in multi-agent teams, Robotics Institute, CMU
- Kurabayashi and Ota, Cooperative sweeping by multiple mobile robots, ICRA 1996
- Choset, Coverage for robotics; a survey of recent results, Annals of Math. and AI, 2001.
- Parker, Distributed algorithms for multi-robot observation of multiple moving targets, Autonomous Robots, 2002.
- Koenig, Szymanski, and Liu. Efficient and Inefficient Ant Coverage Methods. Annals of Math. and AI, 2001

Conclusion and Future Work

Conclusion

Continuous area sweeping interesting and challenging. Good initial progress

Conclusion and Future Work

Conclusion

Continuous area sweeping interesting and challenging. Good initial progress

Future Work

- Non-greedy planning
- Continuous representations
- Better representation and analysis of noise
- Reasoning about communicative connectivity

Acknowledgements

Joint work with Mazda Ahmadi

Acknowledgements

- Joint work with Mazda Ahmadi
- Built on UT Austin Villa robot soccer code
 - Kurt Dresner, Peggy Fidelman, Nate Kohl
 - Greg Kuhlmann, Mohan Sridharan, Dan Stronger
 - And others