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The goal: Enable an Aibo to walk as fast as possible

• No simulator available
• Learn entirely on robots
• Minimal human intervention

• Which learning algorithm to use?

OverviewOverview

Challenges:
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Motivation

• RoboCup soccer: 25+ 
Aibo teams internationally

• Motivates faster walks

Motivation

Hand-tuned gaits (2003) Learned gaits

German Team
UT Austin 

Villa
UNSW

Hornby et al. 
(1999)

Kim & Uther 
(2003)

230 mm/s 245 254 170 270

Quinlan et al. 
(2003)

296

QuickTime� and a
YUV420 codec decompressor

are needed to see this picture.

• Walks that “come with” Aibo are slow
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The Robot: Sony Aibo (ERS-210A and ERS-7)

Switch sensors

Speaker and microphone

3 acceleration sensors (x, y, and z)

Electrostatic sensors

The Robot: Sony Aibo (ERS-210A and ERS-7)

Infrared range sensors
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The Robot: Sony Aibo (ERS-210A and ERS-7)

Color camera
• Resolution: 208 x 160
• 30 frames per second

• On-board processor
• 576 MHz
• 64 MB RAM

• OS: Aperios + Open-R
• Programming Language: C++

Wireless ethernet
(802.11b)

The Robot: Sony Aibo (ERS-210A and ERS-7)
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The Robot: Sony Aibo (ERS-210A and ERS-7)The Robot: Sony Aibo (ERS-210A and ERS-7)

20 degrees of freedom

• head: 3 neck, 2 ears, 1 mouth

• 4 legs: 3 joints each

• tail: 2 DOF
Joint 1

Joint 2

Joint 3
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A Parameterized Walk

• Developed from scratch as part of UT Austin Villa 2003

• Trot gait with half-elliptical locus for each leg

A Parameterized Walk
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A Parameterized WalkA Parameterized Walk

Locus Parameters:

1. Ellipse length

z

x

y

2. Ellipse height

3. Position on the x axis

4. Position on the y axis

12 continuous parameters
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Experimental Setup

• Training Scenario

No human 
intervention 

except battery 
changes

Experimental Setup

• Robots time themselves while traversing a fixed distance

• Multiple traversals (3) per policy to account for noise

• Multiple robots evaluate policies simultaneously

• Off-board computer collects results, assigns policies

QuickTime� and a
YUV420 codec decompressor

are needed to see this picture.
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Learning AlgorithmsLearning Algorithms

• Genetic Algorithm

• Downhill Simplex Method

• Hill Climbing Algorithm

• Policy Gradient Algorithm

How to find a good policy?
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Genetic AlgorithmGenetic Algorithm

• Maintain a population of t policies

• Genetic operators of mutation and crossover explore policy space

• Offspring of good policies replace bad policies
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Downhill Simplex MethodDownhill Simplex Method

• Maintain a simplex of N+1 policies

• Different transformations move the simplex through policy space

• When the simplex becomes too small, expand it
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Hill Climbing Algorithm

• Policy π= {θ1, …, θ12}, V(π) = walk speed when using π

Hill Climbing Algorithm

V(π) 

π

• From π, move towards the best neighboring policy

?

?

?

V(π) 

ππ1

π3

π4

π2

V(π) 

ππ1

π3

π4

π2

• Evaluate t (15) policies in the neighborhood of π
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Policy Gradient RL

• Policy π= {θ1, …, θ12}, V(π) = walk speed when using π

Policy Gradient RL

V(π) 

π

• From π, move in the direction of the gradient of V(π)
• Can’t compute gradient directly: estimate empirically

?

?

?

V(π) 

ππ1

π3

π4

π2

V(π) 

ππ1

π3

π4

π2

• Evaluate neighboring policies to estimate gradient
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Policy Gradient RLPolicy Gradient RL

π1

π3

π4

+ ε1

-ε1

+ 0

π2

Ai =
0

If Avg+0, i > Avg+ε, i and
Avg+0, i > Avg-ε, i

otherwiseAvg+ε, i - Avg-ε, i

• Normalize A, multiply by a scalar 
step size η

• Determine 3 average values for each dimension

• Compute an adjustment vector A:

π

V(π) 

• π= π+ ηA
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Results

QuickTime� and a
YUV420 codec decompressor

are needed to see this picture.

QuickTime� and a
YUV420 codec decompressor

are needed to see this picture.

Before:

After:

Results
ERS-210 ERS-7

QuickTime� and a
 decompressor

are needed to see this picture.

QuickTime� and a
 decompressor

are needed to see this picture.
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ResultsResults

• 24 iterations = 1080 field traversals ≈ 3 hours
• Additional iterations didn’t help
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ResultsResults

Why do the simpler algorithms do better?
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AnalysisAnalysis

Why do the simpler algorithms do better?

• Rate of exploration
• Analyze how much of the policy space was explored

π1

π2
π3

π4
V

• How does V change over time?
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AnalysisAnalysis - rate of exploration

Simpler methods do more exploration
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AnalysisAnalysis

Why do the simpler algorithms do better?

• Robustness to noise
• Examine a problem with different amounts of noise

1) Replace objective function with set of 10 mathematical functions
2) Add a variable amount of noise
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AnalysisAnalysis - performance with varying noise

Amoeba does better with less noise
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Learned Parameters

Front ellipse:
(height)
(x offset)
(y offset)

Rear ellipse:
(height)
(x offset)
(y offset)

Ellipse length
Ellipse skew multiplier
Front height
Rear height
Time to move 

through locus
Time on ground

4.2
2.8
4.9

5.6
0.0
-2.8
4.893
0.035
7.7
11.2

0.704
0.5

0.35
0.35
0.35

0.35
0.35
0.35
0.35
0.175
0.35
0.35

0.016
0.05

4.081
0.574
5.152

6.02
0.217
-2.982
5.285
0.049
7.483
10.843

0.679
0.430

Parameter
Initial
Value

Best
Valueε

Learned Parameters
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Practical Questions

• Can it apply directly to omnidirectional gaits?

Practical Questions

• Does individualizing per robot help?

• Can we optimize for stability too?

• How well will it work on other platforms?

• Can it work out of the lab?
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Related WorkRelated Work

• Learning gaits for the Aibo: Hornby et al (2000), 
Kim & Uther (2003), Quinlan et al (2003) 

• Helicopter flight: Ng et al (2004), Bagnell & Schneider (2001)

• EA for a biped robot: Zhang and Vadakkepat (2003)
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Summary

• Used machine learning to generate fast Aibo walk

• Compared four ML algorithms

• All learning done on real robots

• No human intervention (except battery changes)

http://www.cs.utexas.edu/users/AustinVilla/legged/learned-walk/

Summary
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ResultsResults
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Experiments

• Started from stable, but fairly slow gait
• Used small ε’s, η = 2.0

Experiments

• Used 3 robots simultaneously
• Can be distributed if share knowledge of t, ε’s, η
• Each robot picks own random policies to evaluate

• Each iteration takes 45 traversals, about 7 minutes


