Practical Vision-Based Monte Carlo Localization on a Legged Robot

Mohan Sridharan Gregory Kuhlmann Peter Stone

Learning Agents Research Group
Department of Computer Scienes
The University of Texas at Austin

IEEE International Conference on Robotics and Automation, 2005
The Problem

Mobile Robot Localization

Maintain *estimate* of global *position* and *orientation* over time

- Given *map* of fixed landmark locations
- Not SLAM
The Problem

Mobile Robot Localization

Maintain estimate of global position and orientation over time

- Given map of fixed landmark locations
- Not SLAM
Challenging Platform

Typical Platform

- Wheeled robot
- Range-finding sensors

Sony Aibo ERS-7

- Color CMOS Camera in nose
 - Narrow field-of-view (56°)
 - 30 YCrCb frames per second
- Quadruped
- 576MHz processor
 - All on-board processing
Our Platform

- Legged robot
- Vision-based sensors

Sony Aibo ERS-7

- Color **CMOS Camera** in nose
 - Narrow field-of-view (56°)
 - 30 YCrCb frames per second
- **Quadruped**
- 576MHz processor
 - All on-board processing
Goal

Desiderata
- Navigate to **specific point** quickly
- Remain localized while **colliding**
- Recover quickly from **kidnappings**

Approach
- Begin with **baseline MCL algorithm**
- Add set of practical **enhancements**

Large improvement over baseline
Goal

Desiderata
- Navigate to specific point quickly
- Remain localized while colliding
- Recover quickly from kidnappings

Approach
- Begin with baseline MCL algorithm
- Add set of practical enhancements

Large improvement over baseline
Goal

Desiderata
- Navigate to specific point quickly
- Remain localized while colliding
- Recover quickly from kidnappings

Approach
- Begin with baseline MCL algorithm
- Add set of practical enhancements

Large improvement over baseline
Method: Particle Filtering

- Estimate \(p(h_T | o_T, a_{T-1}, o_{T-1}, a_{T-2}, \ldots, a_0) \): Distribution of poses given observations and actions
- Represented by finite set of samples: particles
 - Each is a hypothesis: \(\langle \langle x, y, \theta \rangle, p \rangle \)
- Average to get single estimate of pose and confidence
Method: Particle Filtering

- Estimate $p(h_T|o_T, a_{T-1}, o_{T-1}, a_{T-2}, \ldots, a_0)$:
 Distribution of poses given observations and actions
- Represented by finite set of samples: particles
 - Each is a hypothesis: $\langle \langle x, y, \theta \rangle, p \rangle$
- Average to get single estimate of pose and confidence
Method: Particle Filtering

- Estimate $p(h_T | o_T, a_{T-1}, o_{T-1}, a_{T-2}, \ldots, a_0)$:
 - Distribution of poses given observations and actions
- Represented by finite set of samples: particles
 - Each is a hypothesis: $\langle \langle x, y, \theta \rangle, p \rangle$
- Average to get **single estimate** of pose and confidence
Outline

1. Practical Enhancements
 - Distance-Based Updates
 - Landmark Histories
 - Extended Motion Model

2. Empirical Results
 - Physical Robot Experiments
 - Simulation Experiments
Outline

1 Practical Enhancements
 • Distance-Based Updates
 • Landmark Histories
 • Extended Motion Model

2 Empirical Results
 • Physical Robot Experiments
 • Simulation Experiments
Baseline: Observation Update

- **Need sensor model:** $p(o|h)$
 - Predicts observations given pose hypothesis using map
- **Update each particle when robot sees something**
 - Compute similarity for each observed landmark in frame
 - Use angles only [Rofer and Jungel, 2003]
 - Measured and expected angle difference
 - Compute product of similarities
 - Adjust probability closer to new value
Baseline: Observation Update

Need sensor model: $p(o|h)$
- Predicts observations given pose hypothesis using map

Update each particle when robot sees something
- Compute similarity for each observed landmark in frame
 - Use angles only [Rofer and Jungel, 2003]
 - Measured and expected angle difference
- Compute product of similarities
- Adjust probability closer to new value
Baseline: Observation Update

- Need sensor model: $p(o|h)$
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles only [Rofer and Jungel, 2003]
 - Measured and expected angle difference
 - Compute product of similarities
 - Adjust probability closer to new value
Baseline: Observation Update

- Need sensor model: $p(o|h)$
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles only [Rofer and Jungel, 2003]
 - Measured and expected angle difference
 - Compute product of similarities
 - Adjust probability closer to new value
Baseline: Observation Update

- Need sensor model: $p(o|h)$
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles only [Rofer and Jungel, 2003]
 - Measured and expected angle difference
 - Compute product of similarities
 - Adjust probability closer to new value
Baseline: Observation Update

- Need sensor model: $p(o|h)$
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles only [Rofer and Jungel, 2003]
 - Measured and expected angle difference
 - Compute product of similarities
 - Adjust probability closer to new value
Baseline: Observation Update

- Need sensor model: $p(o|h)$
 - Predicts observations given pose hypothesis using map

- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles only [Rofer and Jungel, 2003]
 - Measured and expected angle difference

- Compute product of similarities
 - Adjust probability closer to new value
Baseline: Observation Update

- Need sensor model: $p(o|h)$
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles only [Rofer and Jungel, 2003]
 - Measured and expected angle difference
- Compute product of similarities
- Adjust probability closer to new value

![Graph showing similarity versus angle difference](image)

<table>
<thead>
<tr>
<th>Angle Difference</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0.504</td>
<td>0.9</td>
</tr>
<tr>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Baseline: Observation Update

- Need sensor model: $p(o|h)$
 - Predicts observations given pose hypothesis using map
- Update each particle when robot sees something
 - Compute similarity for each observed landmark in frame
 - Use angles only [Rofer and Jungel, 2003]
 - Measured and expected angle difference
 - Compute product of similarities
 - Adjust probability closer to new value

\[
\text{Similarity} = \frac{\text{Angle Difference}}{0.504}
\]

\[
\begin{align*}
\text{Angle Difference} &= 0.504 \\
\text{Similarity} &= 0.8 \\
\text{Similarity} &= 0.7 \\
\text{Similarity} &= 0.9
\end{align*}
\]
Enhancement: Distance-Based Updates

- **Enhancement to observation update**
 - Use *distance* in addition to *angle*

- Update each particle
 - Difference between measured and expected distance
 - Use average of distance and angle similarities

- Distances must be very accurate
Enhancement: Distance-Based Updates

- Enhancement to observation update
 - Use distance in addition to angle
- Update each particle
 - Difference between measured and expected distance
 - Use average of distance and angle similarities

Distances must be very accurate
Enhancement: Distance-Based Updates

- Enhancement to observation update
 - Use distance in addition to angle
- Update each particle
 - Difference between measured and expected distance
 - Use average of distance and angle similarities

Distances must be very accurate
Enhancement: Distance-Based Updates

- Enhancement to observation update
 - Use distance in addition to angle
- Update each particle
 - Difference between measured and expected distance
 - Use average of distance and angle similarities

Distances must be very accurate
Enhancement: Distance-Based Updates

- Enhancement to observation update
 - Use distance in addition to angle
- Update each particle
 - Difference between measured and expected distance
 - Use average of distance and angle similarities
- Distances must be very accurate
Enhancement: Distance-Based Updates

- Enhancement to observation update
 - Use \textit{distance} in addition to \textit{angle}
- Update each particle
 - Difference between measured and expected distance
 - Use average of distance and angle similarities
- Distances must be very accurate
Estimating Landmark Distances

- Know actual height of beacon and focal length of camera
- Measure height of beacon in image
- Use similar triangles to find distance
- Error due to pixelized segmentation, distortion, etc.
Estimating Landmark Distances

- Know **actual height of beacon** and focal length of camera
- Measure height of beacon in image
- Use similar triangles to find distance
- **Error** due to pixelized segmentation, distortion, etc.
Estimating Landmark Distances

- Know actual height of beacon and focal length of camera
- Measure height of beacon in image
- Use similar triangles to find distance
- Error due to pixelized segmentation, distortion, etc.
Estimating Landmark Distances

- Know actual height of beacon and focal length of camera
- Measure **height of beacon in image**
- Use similar triangles to find distance
- Error due to pixelized segmentation, distortion, etc.
Estimating Landmark Distances

- Know actual height of beacon and focal length of camera
- Measure height of beacon in image
- Use similar triangles to find **distance**
- Error due to pixelized segmentation, distortion, etc.
Estimating Landmark Distances

- Know actual height of beacon and focal length of camera
- Measure height of beacon in image
- Use similar triangles to find distance
- Error due to pixelized segmentation, distortion, etc.
Function Approximation

- Place robot at **known distances**
- Actual and Measured don’t match (Nonlinear relationship)
- Approximate function using cubic regression for each landmark
- Maximum error reduced to 5%

![Graph showing measured vs. actual distances with a linear regression line.]
Function Approximation

- Place robot at known distances
- Actual and Measured don’t match (Nonlinear relationship)
- Approximate function using cubic regression for each landmark
- Maximum error reduced to 5%
Function Approximation

- Place robot at known distances
- Actual and Measured don’t match (Nonlinear relationship)
- Approximate function using cubic regression for each landmark
- Maximum error reduced to 5%
Function Approximation

- Place robot at known distances
- Actual and Measured don’t match (Nonlinear relationship)
- **Approximate function** using cubic regression for each landmark
- Maximum error reduced to 5%

![Graph showing approximated function]

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin
Function Approximation

- Place robot at known distances
- Actual and Measured don’t match (Nonlinear relationship)
- **Approximate function** using cubic regression for each landmark
- Maximum error reduced to 5%

Result

Distances safe to use.
Outline

1. Practical Enhancements
 - Distance-Based Updates
 - Landmark Histories
 - Extended Motion Model

2. Empirical Results
 - Physical Robot Experiments
 - Simulation Experiments
Baseline: Reseeding

Based on **Sensor Resetting MCL** [Lensér et al., 2000]

- Helps **recovery when lost**
- Triangulate position using multiple landmarks
 - Three landmarks using just **angles**
 - Two landmarks using **distances** and **angles**
- Add new hypotheses before resampling step
Baseline: Reseeding

- Based on Sensor Resetting MCL [Lensel et al., 2000]
 - Helps recovery when lost
- **Triangulate** position using multiple landmarks
 - Three landmarks using just **angles**
 - Two landmarks using **distances** and **angles**
- Add new hypotheses before resampling step
Baseline: Reseeding

- Based on Sensor Resetting MCL [Lensere et al., 2000]
 - Helps recovery when lost
- Triangulate position using multiple landmarks
 - Three landmarks using just angles
 - Two landmarks using distances and angles
- Add new hypotheses before resampling step
Baseline: Reseeding

- Based on Sensor Resetting MCL [Lenser et al., 2000]
 - Helps recovery when lost
- Triangulate position using multiple landmarks
 - Three landmarks using just angles
 - Two landmarks using distances and angles
- Add new hypotheses before resampling step
Baseline: Reseeding

- Based on Sensor Resetting MCL [Lenser et al., 2000]
 - Helps recovery when lost
- Triangulate position using multiple landmarks
 - Three landmarks using just angles
 - Two landmarks using distances and angles
- Add new hypotheses before resampling step

Shortcoming

- Robot must see multiple landmarks in the same frame
- Infrequent with narrow field-of-view camera
Enhancement: Landmark Histories

- Want **more reseeding values**
 - Maintain **“history”** of recent observations
- Observation list for each landmark
 - Record: Dist, Ang, Conf, Timestamp, Odometer
- Motion update
- Confidence decay
- Remove old
- Weighted average
- Combine for reseed
Enhancement: Landmark Histories

- Want more reseeding values
 - Maintain “history” of recent observations
- Observation list for each landmark
 - Record: Dist, Ang, Conf, Timestamp, Odometer

- Motion update
- Confidence decay
- Remove old
- Weighted average
- Combine for reseed
Enhancement: Landmark Histories

- Want more reseeding values
 - Maintain “history” of recent observations
- Observation list for each landmark
 - **Record:** Dist, Ang, Conf, Timestamp, Odometer

- Motion update
- Confidence decay
- Remove old
- Weighted average
- Combine for reseed
Enhancement: Landmark Histories

- Want more reseeding values
 - Maintain “history” of recent observations
- Observation list for each landmark
 - Record: Dist, Ang, Conf, Timestamp, Odometer

- Motion update
 - Confidence decay
 - Remove old
 - Weighted average
 - Combine for reseed
Enhancement: Landmark Histories

- Want more reseeding values
 - Maintain “history” of recent observations
- Observation list for each landmark
 - Record: Dist, Ang, Conf, Timestamp, Odometer

- Motion update
- Confidence decay
 - Remove old
 - Weighted average
 - Combine for reseed
Enhancement: Landmark Histories

- Want more reseeding values
 - Maintain “history” of recent observations
- Observation list for each landmark
 - Record: Dist, Ang, Conf, Timestamp, Odometer

- Motion update
- Confidence decay
- Remove old
 - Weighted average
 - Combine for reseed

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin
Enhancement: Landmark Histories

- Want more reseeding values
 - Maintain “history” of recent observations
- Observation list for each landmark
 - Record: Dist, Ang, Conf, Timestamp, Odometer

- Motion update
- Confidence decay
- Remove old
- Weighted average
- Combine for reseed
Enhancement: Landmark Histories

- Want more reseeding values
 - Maintain “history” of recent observations
- Observation list for each landmark
 - Record: Dist, Ang, Conf, Timestamp, Odometer

- Motion update
- Confidence decay
- Remove old
- Weighted average
- Combine for reseed
Baseline: Motion Update

- Need **motion model**: $p(h'| h, a)$
 - Predict new pose given previous hypothesis and action
- **Update** each particle **when robot moves**
 - Use **odometry** velocities to translate particles
Baseline: Motion Update

- Need **motion model**: $p(h' | h, a)$
 - Predict new pose given previous hypothesis and action
- **Update** each particle **when robot moves**
 - Use odometry velocities to **translate** particles
Problem

- **Tradeoff between speed and motion model accuracy**
 - Large steps over small distances inaccurate
 - Unable to navigate to specific point

Solution: Change Behavior

- Use accurate but slower walk near target
 - Step size reduced to 10% within 300mm of target
Problem

- Tradeoff between speed and motion model accuracy
 - Large steps over small distances inaccurate
 - Unable to navigate to specific point

Solution: Change Behavior

- Use accurate but slower walk near target
 - Step size reduced to 10% within 300 mm of target
Enhancement: Extended Motion Model

Problem

- Tradeoff between speed and motion model accuracy
- Large steps over small distances inaccurate
- Unable to navigate to specific point

Solution: Change Behavior

- Use accurate but slower walk near target
- Step size reduced to 10% within 300 mm of target
Enhancement: Extended Motion Model

Problem

- Tradeoff between speed and motion model accuracy
 - Large steps over small distances inaccurate
 - Unable to navigate to specific point

Solution: Change Behavior

- Use accurate but slower walk near target
 - Step size reduced to 10% within 300mm of target

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin

Practical Vision-Based MCL on a Legged Robot
Enhancement: Extended Motion Model

Problem
- Tradeoff between speed and motion model accuracy
 - Large steps over small distances inaccurate
 - Unable to navigate to specific point

Solution: Change Behavior
- Use accurate but slower walk near target
 - Step size reduced to 10% within 300 mm of target
Outline

1. Practical Enhancements
 - Distance-Based Updates
 - Landmark Histories
 - Extended Motion Model

2. Empirical Results
 - Physical Robot Experiments
 - Simulation Experiments
Test for Accuracy and Time

- **Environment**: RoboCup Legged League field
 - Size: roughly $3m \times 5m$
 - Landmarks: 4 beacons, 4 goal edges
- Visit sequence of 14 points and headings
- After stabilizing at a point, measure
 - Time taken
 - Position and orientation error
Test for Accuracy and Time

- **Environment**: RoboCup Legged League field
 - Size: roughly $3m \times 5m$
 - Landmarks: 4 beacons, 4 goal edges
- Visit sequence of **14 points and headings**
- After stabilizing at a point, measure
 - **Time** taken
 - Position and orientation **error**

![Diagram of RoboCup Legged League field with visit sequence of 14 points and headings.](image-url)
Test for Accuracy and Time

Six Localization Conditions

1. Baseline (None)
2. Landmark Histories (HST)
3. Distance-based probability updates (DST)
4. Function approximation of distances (FA)
5. Function approx. + distance-based updates (FA+DST)
6. All enhancements (All)

- Extended Motion Model present in all
- Average across 10 runs for each
Test for Accuracy and Time

Six Localization Conditions

1. Baseline (None)
2. Landmark Histories (HST)
3. Distance-based probability updates (DST)
4. Function approximation of distances (FA)
5. Function approx. + distance-based updates (FA+DST)
6. All enhancements (All)

- Extended Motion Model present in all
- Average across 10 runs for each
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Dist Err (cm)</th>
<th>Ang Err (deg)</th>
<th>Total Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>19.75±12.0</td>
<td>17.75±11.48</td>
<td>161.25±3.43</td>
</tr>
<tr>
<td>HST</td>
<td>17.92±9.88</td>
<td>10.68±5.97</td>
<td>161.26±5.96</td>
</tr>
<tr>
<td>DST</td>
<td>25.07±13.73</td>
<td>9.14±5.46</td>
<td>196.18±12.18</td>
</tr>
<tr>
<td>FA</td>
<td>15.19±8.59</td>
<td>10.21±6.11</td>
<td>171.85±15.19</td>
</tr>
<tr>
<td>DST+FA</td>
<td>13.72±8.07</td>
<td>9.5±5.27</td>
<td>151.28±48.06</td>
</tr>
<tr>
<td>All</td>
<td>9.65±7.69</td>
<td>3.43±4.49</td>
<td>162.54±4.38</td>
</tr>
</tbody>
</table>

- **With all enhancements**
 - 50% reduction in position error
 - 80% reduction in orientation error
 - No significant change in time
Results

<table>
<thead>
<tr>
<th>Enhanc.</th>
<th>Dist Err (cm)</th>
<th>Ang Err (deg)</th>
<th>Total Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>19.75±12.0</td>
<td>17.75±11.48</td>
<td>161.25±3.43</td>
</tr>
<tr>
<td>HST</td>
<td>17.92±9.88</td>
<td>10.68±5.97</td>
<td>161.26±5.96</td>
</tr>
<tr>
<td>DST</td>
<td>25.07±13.73</td>
<td>9.14±5.46</td>
<td>196.18±12.18</td>
</tr>
<tr>
<td>FA</td>
<td>15.19±8.59</td>
<td>10.21±6.11</td>
<td>171.85±15.19</td>
</tr>
<tr>
<td>DST+FA</td>
<td>13.72±8.07</td>
<td>9.5±5.27</td>
<td>151.28±48.06</td>
</tr>
<tr>
<td>All</td>
<td>9.65±7.69</td>
<td>3.43±4.49</td>
<td>162.54±4.38</td>
</tr>
</tbody>
</table>

- With all enhancements
 - 50% reduction in position error
 - 80% reduction in orientation error
 - No significant change in time

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin

Practical Vision-Based MCL on a Legged Robot
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Dist Err (cm)</th>
<th>Ang Err (deg)</th>
<th>Total Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>19.75±12.0</td>
<td>17.75±11.48</td>
<td>161.25±3.43</td>
</tr>
<tr>
<td>HST</td>
<td>17.92±9.88</td>
<td>10.68±5.97</td>
<td>161.26±5.96</td>
</tr>
<tr>
<td>DST</td>
<td>25.07±13.73</td>
<td>9.14±5.46</td>
<td>196.18±12.18</td>
</tr>
<tr>
<td>FA</td>
<td>15.19±8.59</td>
<td>10.21±6.11</td>
<td>171.85±15.19</td>
</tr>
<tr>
<td>DST+FA</td>
<td>13.72±8.07</td>
<td>9.5±5.27</td>
<td>151.28±48.06</td>
</tr>
<tr>
<td>All</td>
<td>9.65±7.69</td>
<td>3.43±4.49</td>
<td>162.54±4.38</td>
</tr>
</tbody>
</table>

- **With all enhancements**
 - 50% reduction in position error
 - 80% reduction in orientation error
 - No significant change in time

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin

Practical Vision-Based MCL on a Legged Robot
Results

<table>
<thead>
<tr>
<th>Enhancer</th>
<th>Dist Err (cm)</th>
<th>Ang Err (deg)</th>
<th>Total Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>19.75±12.0</td>
<td>17.75±11.48</td>
<td>161.25±3.43</td>
</tr>
<tr>
<td>HST</td>
<td>17.92±9.88</td>
<td>10.68±5.97</td>
<td>161.26±5.96</td>
</tr>
<tr>
<td>DST</td>
<td>25.07±13.73</td>
<td>9.14±5.46</td>
<td>196.18±12.18</td>
</tr>
<tr>
<td>FA</td>
<td>15.19±8.59</td>
<td>10.21±6.11</td>
<td>171.85±15.19</td>
</tr>
<tr>
<td>DST+FA</td>
<td>13.72±8.07</td>
<td>9.5±5.27</td>
<td>151.28±48.06</td>
</tr>
<tr>
<td>All</td>
<td>9.65±7.69</td>
<td>3.43±4.49</td>
<td>162.54±4.38</td>
</tr>
</tbody>
</table>

- Additional findings
 - Bad distance updates hurt (25% increase in error)
 - Func. Approx. largest contributor
 - Combined better than in isolation
Results

<table>
<thead>
<tr>
<th>Enhanc.</th>
<th>Dist Err (cm)</th>
<th>Ang Err (deg)</th>
<th>Total Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>19.75±12.0</td>
<td>17.75±11.48</td>
<td>161.25±3.43</td>
</tr>
<tr>
<td>HST</td>
<td>17.92±9.88</td>
<td>10.68±5.97</td>
<td>161.26±5.96</td>
</tr>
<tr>
<td>DST</td>
<td>25.07±13.73</td>
<td>9.14±5.46</td>
<td>196.18±12.18</td>
</tr>
<tr>
<td>FA</td>
<td>15.19±8.59</td>
<td>10.21±6.11</td>
<td>171.85±15.19</td>
</tr>
<tr>
<td>DST+FA</td>
<td>13.72±8.07</td>
<td>9.5±5.27</td>
<td>151.28±48.06</td>
</tr>
<tr>
<td>All</td>
<td>9.65±7.69</td>
<td>3.43±4.49</td>
<td>162.54±4.38</td>
</tr>
</tbody>
</table>

- **Additional findings**
 - Bad distance updates hurt (25% increase in error)
 - **Func. Approx.** largest contributor
 - Combined better than in isolation
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Dist Err (cm)</th>
<th>Ang Err (deg)</th>
<th>Total Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>19.75±12.0</td>
<td>17.75±11.48</td>
<td>161.25±3.43</td>
</tr>
<tr>
<td>HST</td>
<td>17.92±9.88</td>
<td>10.68±5.97</td>
<td>161.26±5.96</td>
</tr>
<tr>
<td>DST</td>
<td>25.07±13.73</td>
<td>9.14±5.46</td>
<td>196.18±12.18</td>
</tr>
<tr>
<td>FA</td>
<td>15.19±8.59</td>
<td>10.21±6.11</td>
<td>171.85±15.19</td>
</tr>
<tr>
<td>DST+FA</td>
<td>13.72±8.07</td>
<td>9.5±5.27</td>
<td>151.28±48.06</td>
</tr>
<tr>
<td>All</td>
<td>9.65±7.69</td>
<td>3.43±4.49</td>
<td>162.54±4.38</td>
</tr>
</tbody>
</table>

- Additional findings
 - Bad distance updates hurt (25% increase in error)
 - Func. Approx. largest contributor
 - Combined better than in isolation
Test for Stability

- Test ability to **stay localized** once at target
- Robot **stationary** at each of 14 points

1. Attempt to localize for 10 seconds
2. Record deviation of pose estimate for 20 seconds
Test for Stability

- Test ability to stay localized once at target
- Robot stationary at each of 14 points

1. Attempt to localize for 10 seconds
2. Record deviation of pose estimate for 20 seconds
Test for Stability

- Test ability to stay localized once at target
- Robot stationary at each of 14 points

1. Attempt to localize for 10 seconds
2. Record deviation of pose estimate for 20 seconds
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Dist Dev (cm)</th>
<th>Ang Dev (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2.63</td>
<td>0.678</td>
</tr>
<tr>
<td>HST</td>
<td>1.97</td>
<td>0.345</td>
</tr>
<tr>
<td>DST</td>
<td>9.26</td>
<td>3.05</td>
</tr>
<tr>
<td>FA</td>
<td>1.46</td>
<td>0.338</td>
</tr>
<tr>
<td>DST+FA</td>
<td>4.07</td>
<td>1.30</td>
</tr>
<tr>
<td>All</td>
<td>1.32</td>
<td>0.332</td>
</tr>
</tbody>
</table>

- Significant improvement in stability
- Bad distance updates again perform worst
- Func. Approx. alone does as well as All
 - Distance information useful in reseed estimates
Results

<table>
<thead>
<tr>
<th>Enhanc.</th>
<th>Dist Dev (cm)</th>
<th>Ang Dev (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2.63</td>
<td>0.678</td>
</tr>
<tr>
<td>HST</td>
<td>1.97</td>
<td>0.345</td>
</tr>
<tr>
<td>DST</td>
<td>9.26</td>
<td>3.05</td>
</tr>
<tr>
<td>FA</td>
<td>1.46</td>
<td>0.338</td>
</tr>
<tr>
<td>DST+FA</td>
<td>4.07</td>
<td>1.30</td>
</tr>
<tr>
<td>All</td>
<td>1.32</td>
<td>0.332</td>
</tr>
</tbody>
</table>

- Significant improvement in stability
- Bad distance updates again perform worst
- Func. Approx. alone does as well as All
- Distance information useful in reseed estimates
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Dist Dev (cm)</th>
<th>Ang Dev (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2.63</td>
<td>0.678</td>
</tr>
<tr>
<td>HST</td>
<td>1.97</td>
<td>0.345</td>
</tr>
<tr>
<td>DST</td>
<td>9.26</td>
<td>3.05</td>
</tr>
<tr>
<td>FA</td>
<td>1.46</td>
<td>0.338</td>
</tr>
<tr>
<td>DST+FA</td>
<td>4.07</td>
<td>1.30</td>
</tr>
<tr>
<td>All</td>
<td>1.32</td>
<td>0.332</td>
</tr>
</tbody>
</table>

- Significant improvement in stability
- Bad distance updates again perform worst
- **Func. Approx.** alone does as well as **All**
 - Distance information useful in reseed estimates
Test impact of extended MM in isolation
Evaluate ability to navigate to a point
 Used “keeper” home position
 Displace robot by hand a fixed distance
 Allow to return to home position
 Measure position and orientation error and time

Average of ten runs
Results

<table>
<thead>
<tr>
<th>Enhance.</th>
<th>Dist Err (cm)</th>
<th>Ang Err (deg)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>12.89</td>
<td>15.0</td>
<td>17.21</td>
</tr>
<tr>
<td>Extended MM</td>
<td>7.50</td>
<td>5.5</td>
<td>18.14</td>
</tr>
</tbody>
</table>

- 40% reduction in position error
- 60% reduction in orientation error
- Only a small increase in time
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Dist Err (cm)</th>
<th>Ang Err (deg)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>12.89</td>
<td>15.0</td>
<td>17.21</td>
</tr>
<tr>
<td>Extended MM</td>
<td>7.50</td>
<td>5.5</td>
<td>18.14</td>
</tr>
</tbody>
</table>

- 40% reduction in position error
- 60% reduction in orientation error
- Only a small increase in time
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Dist Err (cm)</th>
<th>Ang Err (deg)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>12.89</td>
<td>15.0</td>
<td>17.21</td>
</tr>
<tr>
<td>Extended MM</td>
<td>7.50</td>
<td>5.5</td>
<td>18.14</td>
</tr>
</tbody>
</table>

- 40% reduction in position error
- 60% reduction in orientation error
- Only a small increase in time
Outline

1 Practical Enhancements
 - Distance-Based Updates
 - Landmark Histories
 - Extended Motion Model

2 Empirical Results
 - Physical Robot Experiments
 - Simulation Experiments
Simulator

- Abstract noisy observations and movements
- Always know ground truth
- Perturbations repeatable
Test for Recovery

- Robot follows **figure 8** path
 - **Perturbed** once every 30 seconds
- Two types of interference
 - **Collisions** (stop for 5s)
 - **Kidnappings** (teleported 1.2m)
- **Measure** position and angle error on subset of conditions
 - Averaged over 2 hours (about 50 laps)
Robot follows **figure 8** path
- Perturbed once every 30 seconds

Two types of interference
- **Collisions** (stop for 5s)
- **Kidnappings** (teleported 1.2m)

Measure position and angle error on subset of conditions
- Averaged over 2 hours (about 50 laps)
Test for Recovery

- Robot follows **figure 8 path**
 - Perturbed once every 30 seconds
- Two types of interference
 - **Collisions** (stop for 5s)
 - **Kidnappings** (teleported 1.2m)
- **Measure** position and angle error on subset of conditions
 - Averaged over 2 hours (about 50 laps)
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Distance Error (cm)</th>
<th>Undisturbed</th>
<th>Colliding</th>
<th>Kidnapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>8.03</td>
<td>27.7</td>
<td>74.3</td>
<td></td>
</tr>
<tr>
<td>HST</td>
<td>17.6</td>
<td>25.3</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>DST+FA</td>
<td>7.83</td>
<td>16.2</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>8.67</td>
<td>14.4</td>
<td>13.5</td>
<td></td>
</tr>
</tbody>
</table>

- As expected, performance worse in presence of perturbations
- Enhancements mitigate performance degradation
 - Over 900% error increase for kidnappings without enhancements
 - Reduced to 56% increase with all enhancements
- Orientation error results similar
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Distance Error (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undisturbed</td>
</tr>
<tr>
<td>None</td>
<td>8.03</td>
</tr>
<tr>
<td>HST</td>
<td>17.6</td>
</tr>
<tr>
<td>DST+FA</td>
<td>7.83</td>
</tr>
<tr>
<td>All</td>
<td>8.67</td>
</tr>
</tbody>
</table>

- As expected, performance worse in presence of perturbations
- Enhancements mitigate performance degradation
 - Over 900% error increase for kidnappings without enhancements
 - Reduced to 56% increase with all enhancements
- Orientation error results similar
Results

<table>
<thead>
<tr>
<th>Enhance.</th>
<th>Distance Error (cm)</th>
<th>Undisturbed</th>
<th>Colliding</th>
<th>Kidnapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>8.03</td>
<td>27.7</td>
<td>74.3</td>
<td></td>
</tr>
<tr>
<td>HST</td>
<td>17.6</td>
<td>25.3</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>DST+FA</td>
<td>7.83</td>
<td>16.2</td>
<td>31.5</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>8.67</td>
<td>14.4</td>
<td>13.5</td>
<td></td>
</tr>
</tbody>
</table>

- As expected, performance worse in presence of perturbations
- Enhancements mitigate performance degradation
 - Over 900% error increase for kidnappings without enhancements
 - Reduced to 56% increase with all enhancements

Orientation error results similar
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Distance Error (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undisturbed</td>
</tr>
<tr>
<td>None</td>
<td>8.03</td>
</tr>
<tr>
<td>HST</td>
<td>17.6</td>
</tr>
<tr>
<td>DST+FA</td>
<td>7.83</td>
</tr>
<tr>
<td>All</td>
<td>8.67</td>
</tr>
</tbody>
</table>

- As expected, performance worse in presence of perturbations
- Enhancements mitigate performance degradation
 - Over 900% error increase for kidnappings without enhancements
 - Reduced to 56% increase with all enhancements

Orientation error results similar
Results

<table>
<thead>
<tr>
<th>Enhan.</th>
<th>Distance Error (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Undisturbed</td>
</tr>
<tr>
<td>None</td>
<td>8.03</td>
</tr>
<tr>
<td>HST</td>
<td>17.6</td>
</tr>
<tr>
<td>DST+FA</td>
<td>7.83</td>
</tr>
<tr>
<td>All</td>
<td>8.67</td>
</tr>
</tbody>
</table>

- As expected, performance worse in presence of perturbations
- Enhancements mitigate performance degradation
 - Over 900% error increase for kidnappings without enhancements
 - Reduced to 56% increase with all enhancements
- **Orientation** error results similar
Summary

- Monte Carlo Localization works well in theory
- Practical implementation issues
 - Especially using vision-based legged robots
- Three Enhancements
 - Significant improvement over baseline
 - More dramatic for unmodeled movements
- Help others avoid potential pitfalls