CS395T Agent-Based Electronic Commerce Fall 2006

Peter Stone

Department or Computer Sciences The University of Texas at Austin

Week 3a

Good Afternoon, Colleagues

Are there any questions?

Logistics

• Reading responses

Logistics

- Reading responses
- Changed readings

Logistics

- Reading responses
- Changed readings
- Presentation dates: pick a topic and a date

Rational choice theory

• Section 1.2.4: people are not always rational.

Rational choice theory

- Section 1.2.4: people are not always rational.
- Can this be explained away by arguing that with humans, the payoff function is not fixed once and for all?

Rational choice theory

- Section 1.2.4: people are not always rational.
- Can this be explained away by arguing that with humans, the payoff function is not fixed once and for all?
- No! (Kahneman and Tversky)

• Second-price auction: bid your value

- Second-price auction: bid your value
 - (v₁,v₂,...)

• Second-price auction: bid your value

- (v₁,v₂,...)

• First-price auction: $(v_2, v_2, ...)$ is a Nash eq.

• Second-price auction: bid your value

- (*v*₁,*v*₂,...)

- First-price auction: $(v_2, v_2, ...)$ is a Nash eq.
 - Many other Nash equilibria exist, but this one is "distinguished"

• Second-price auction: bid your value

- (*v*₁,*v*₂,...)

- First-price auction: $(v_2, v_2, ...)$ is a Nash eq.
 - Many other Nash equilibria exist, but this one is "distinguished"
- In both cases, revenue is v_2

Solution Concepts

- Dominant Strategy
- Nash equilibrium strategy
- Pareto optimal strategy
- Strategies that maximize social welfare

• Chris Jones on Nash equilibrium

		Action	Player 1	2 Action	2
Player 1	Action 1	4,8		2,0	
	Action 2	6,2		0,8	

Mixed strategy equilibrium Player 2 Action 1 Action 2 Player 1 Action 2 6,2 0,8

• What if player 2 picks action 1 3/4 of the time?

Mixed strategy equilibrium Player 2 Action 1 Action 2 Player 1 Action 2 6,2 0,8

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?

Player 2 Action 1 Action 2 Action 1 4,8 2,0 Player 1 Action 2 6,2 0,8

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2

Player 2 Action 1 Action 2 Action 1 4,8 2,0 Player 1 Action 2 6,2 0,8

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2

Player 2 Action 1 Action 2 Action 1 4,8 2,0 Player 1 Action 2 6,2 0,8

- What if player 2 picks action 1 3/4 of the time?
- What if player 2 picks action 1 1/4 of the time?
- Player 1 must be indifferent between actions 1 and 2
- Player 2 must be indifferent between actions 1 and 2

Do actual numbers matter?

