Adaptive Mechanism Design: A Metalearning Approach

> David Pardoe¹ Peter Stone¹ Maytal Saar-Tsechansky² Kerem Tomak²

¹Department of Computer Sciences ²McCombs School of Business The University of Texas at Austin

Auction Example

- Consider a book seller using an auction service
- Seller must choose parameters defining auction
- Goal is to maximize revenue
- Optimal parameters depend on bidder population

Analytical Approach

- Traditional approach
 - (e.g. Myerson 81, Milgrom and Weber 82)
- Assumptions are made about
 - bidder motivations (valuations, risk aversion, etc.)
 - information available to bidders
 - bidder rationality
- Derive equilibrium strategies
- What if assumptions are incorrect?
 - revise assumptions
 - requires time and human input
 - problem if limited time between auctions

Empirical Approach

- Possible if historical data on similar auctions
- Do data mining to identify optimal parameters (e.g. Shmueli 05)
 - a number of businesses provide this service

For "The Cat in the Hat", you should run

a 3-day auction starting on Thursday

with a starting bid of \$5.

Empirical Approach

• What if the item is new and no data exists?

• What if there is a sudden change in demand?

Overview

- Motivation
- Adaptive auction mechanisms
- Bidding scenario
- Adaptive mechanism implementation and results
- Incorporating predictions through metalearning
- Additional experiments

Adaptive Auction Mechanisms

- For use in situations with recurring auctions
 repeated eBay auctions, Google keyword auctions, etc.
- Bidder behavior consistent for some period
 possible to learn about behavior through experience
- Adapt mechanism parameters in response to auction outcomes in order to maximize some objective function (such as seller revenue)

- Seller adjusts parameters using an adaptive algorithm
 - characterizes function from parameters to results
 - essentially an active, online regression learner

Adaptive Auction Mechanisms

- Related work (e.g. Blum et al. 03)
 - apply online learning methods
 - few or no assumptions about bidders
 - worst case bounds
- What about the intermediate case?
 - between complete knowledge and no knowledge
 - can make some predictions about bidders
 - choose adaptive algorithm using this information

Overview

- Motivation
- Adaptive auction mechanisms
- Bidding scenario
- Adaptive mechanism implementation and results
- Incorporating predictions through metalearning
- Additional experiments

Loss Averse Bidders

- Loss aversion: utility of gain = X, utility of loss = - X
- Loss averse bidders "lose" if outbid after they were the high bidder
- 2 bidder equilibrium: (Dodonova 2005)
- Reserve price important

Loss Averse Bidders

Auction Scenario

- Our seller has 1000 books to sell in auctions
 - series of English auctions with choice of reserve price
- The seller interacts with a population of bidders:
 - bidders characterized by valuation v, loss aversion
 - the population is characterized by distributions over v,
 - -0 < v < 1; 1 < < 2.5
- Assume Gaussian distributions
 - mean of v chosen from [0, 1]; mean of from [1, 2.5]
 - variances are 10^x , where x chosen from [-2, 1]
- 2 bidders per auction, following equilibrium

Individual populations:

Average:

Overview

- Motivation
- Adaptive auction mechanisms
- Bidding scenario
- Adaptive mechanism implementation and results
- Incorporating predictions through metalearning
- Additional experiments

Adaptive Algorithm (Bandit)

- Discretize choices of reserve price (*k* choices)
- Results in a *k*-armed bandit problem
- Tradeoff between exploration and exploitation
- Sample averaging + softmax action selection:
 - Record *avg_i* and *count_i* for each choice
 - Choose *i* with probability $(e^{avg_i/\tau})/(\sum_{j=1}^k e^{avg_j/\tau})$
 - controls exploration vs exploitation, often decreases

Adaptive Algorithm (Bandit)

Adaptive Algorithm Parameters

- k (number of discrete choices)
- *start*, *end* (decrease linearly over time)
- How to initialize values of *avg_i* and *count_i*?
 optimistic initialization
- We choose these by hand:

$$- k = 13$$

- $_{start} = 0.1, _{end} = 0.01$
- $avg_i = 0.6, \ count_i = 1$

Adaptive Algorithm (Regression)

- Bandit restricts choices, assumes independence
- Solve by using regression:
 - Locally Weighted Quadratic Regression (instance based)
 - can estimate revenue at any point
 - considers all experience, uses a Gaussian weighting kernel
- Continue to discretize choices, but at high resolution
- Parameters nearly the same
 - need to choose kernel width (0.1)

Adaptive Algorithm (Regression)

Results

 Average results over 10,000 generated bidder populations

Adaptive algorithm	Avg. revenue
best fixed reserve price (0.54)	0.367
bandit	0.374
regression	0.385

Significant
 with 99%
 confidence
 (paired t-tests)

Overview

- Motivation
- Adaptive auction mechanisms
- Bidding scenario
- Adaptive mechanism implementation and results
- Incorporating predictions through metalearning
- Additional experiments

Taking Advantage of Predictions

- Adaptive mechanism requires no assumptions
- But what if reasonable predictions are possible?
- Example: selling a brand new book
 - could make guesses about bidder valuations, strategies
 - could consider books with similar author or subject

Taking Advantage of Predictions

- Seller can predict plausible bidder populations
- Adaptive mechanism should work well if correct

Metalearning

- Suppose seller can simulate bidder populations
- Choose an adaptive algorithm that is parameterized
- Search for optimal parameters in simulation
- An instance of metalearning

Metalearning

Simulation of Bidders by the Seller

- Suppose seller can predict possible populations (distributions of *v* and)
- Essentially a distribution over bidder populations
- Choose adaptive algorithm that performs best *with respect to this distribution*

Adaptive Parameters

- Now chosen through metalearning
- start end
- Kernel width
- *avg*_{*i*} and *count*_{*i*}

– optimistic initialization becomes initial experience

Parameter Search

- A stochastic optimization task
- Use Simultaneous Perturbation Stochastic Approximation (SPSA):
 - generate two estimates for slightly different parameters
 - move in direction of gradient
- Start with previously hand chosen parameters
- Time consuming, but done offline

Search Results

Results

- Average results over 10,000 populations drawn from predicted distribution
- Significant with 99% confidence (paired t-tests)

Adaptive algorithm	Avg. revenue
best fixed reserve price (0.54)	0.367
bandit, initial parameters	0.374
bandit, learned parameters	0.394
regression, initial parameters	0.385
regression, learned parameters	0.405

Overview

- Motivation
- Adaptive auction mechanisms
- Bidding scenario
- Adaptive mechanism implementation and results
- Incorporating predictions through metalearning
- Additional experiments

Questions

- Why not learn a model of the population?
- What if the population behaves unexpectedly? (different from simulated)
- What if the population changes over time?

Modeling the Population

- Bayesian approach
 - maintain probability distribution over possible populations (distributions of *v* and)
 - update after each new observation (auction result)
 - softmax action selection using expected revenues

Adaptive method	Avg. revenue
Bayesian approach	0.407
regression, initial parameters	0.385
regression, learned parameters	0.405

Unexpected Behavior

- Generate populations differently
 - before: mean of v in [0, 1]; mean of in [1, 2.5]
 - now: mean of *v* in [.3, .7]; mean of in [1.5, 2]

Adaptive method	Avg. revenue
Bayesian approach	0.414
regression, initial parameters	0.575
regression, learned parameters	0.593

Related Work

- Evolve ZIP traders and CDA together (Cliff 01)
- Evolve buyer and seller strategies and auction mechanism with genetic programming (Phelps et al. 02)
- Identify optimal price parameter of sealed bid auction for various bidder populations (Byde 03)

Future Work

- Encountered populations with unexpected behavior
- Non-stationary populations
- Learning populations
- Multiple mechanism parameters
- More sophisticated adaptive algorithms
- Evaluate on actual auction data

Conclusion

- Described design of adaptive auction mechanisms
- Experimented with a specific bidder scenario
- Adaptive mechanism outperforms fixed one
- Introduced metalearning approach
- Improve performance when predictions available

