
S
aling Reinfor
ement Learning toward RoboCup So

erPeter StoneDepartment of Computer S
ien
esThe University of Texas at Austin1 University Station C0500Austin, TX 78712-1188phone: +1 512 471-9796fax: +1 512 471-8885pstone�
s.utexas.eduhttp://www.
s.utexas.edu/~pstoneRi
hard S. SuttonDepartment of Computing S
ien
eUniversity of Alberta2-21 Athabas
a HallEdmonton, Alberta, Canada T6G 2E8sutton�
s.ualberta.
ahttp://www.
s.ualberta.
a/~sutton/Gregory KuhlmannDepartment of Computer S
ien
esThe University of Texas at Austin1 University Station C0500Austin, TX 78712-1188kuhlmann�
s.utexas.eduhttp://www.
s.utexas.edu/~kuhlmannNovember 14, 2004

1



Abstra
tRoboCup simulated so

er presents many 
hallenges to reinfor
ement learning methods, in-
luding a large state spa
e, hidden and un
ertain state, multiple agents, and long and variabledelays in the e�e
ts of a
tions. We des
ribe our appli
ation of episodi
 SMDP Sarsa(�) withlinear tile-
oding fun
tion approximation and variable � to learning higher-level de
isions ina keepaway subtask of RoboCup so

er. In keepaway, one team, \the keepers," tries to keep
ontrol of the ball for as long as possible despite the e�orts of \the takers." The keepers learnindividually when to hold the ball and when to pass to a teammate. Our agents learned poli
iesthat signi�
antly out-performed a range of ben
hmark poli
ies. We demonstrate the generalityof our approa
h by applying it to a number of task variations in
luding di�erent �eld sizes anddi�erent numbers of players on ea
h team.Keywords: multiagent systems, ma
hine learning, multiagent learning, reinfor
ement learn-ing, robot so

erShort Title: S
aling RL toward RoboCup
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1 Introdu
tionReinfor
ement learning [Sutton and Barto, 1998℄ is a theoreti
ally-grounded ma
hine learningmethod designed to allow an autonomous agent to maximize its long-term reward via repeatedexperimentation in and intera
tion with its environment. Under 
ertain 
onditions, reinfor
ementlearning is guaranteed to enable the agent to 
onverge to an optimal 
ontrol poli
y, and has beenempiri
ally demonstrated to do so in a series of relatively simple testbed domains. Despite its the-oreti
al appeal, reinfor
ement learning is notoriously diÆ
ult to s
ale up to larger domains due tothe exponential growth of states in the number of state variables (the \
urse of dimensionality").A limited number of su

esses have been reported in large-s
ale domains, in
luding ba
kgam-mon [Tesauro, 1994℄, elevator 
ontrol [Crites and Barto, 1996℄, and heli
opter 
ontrol [Bagnell andS
hneider, 2001℄. This arti
le 
ontributes to the list of reinfor
ement learning su

esses, demon-strating that it 
an apply su

essfully to a 
omplex multiagent task, namely RoboCup simulatedso

er.RoboCup simulated so

er has been used as the basis for su

essful international 
ompetitionsand resear
h 
hallenges [Kitano et al., 1997℄. As presented in detail by Stone [2000℄, it is a fullydistributed, multiagent domain with both teammates and adversaries. There is hidden state, mean-ing that ea
h agent has only a partial world view at any given moment. The agents also havenoisy sensors and a
tuators, meaning that they do not per
eive the world exa
tly as it is, nor
an they a�e
t the world exa
tly as intended. In addition, the per
eption and a
tion 
y
les areasyn
hronous, prohibiting the traditional AI paradigm of using per
eptual input to trigger a
tions.Communi
ation opportunities are limited, and the agents must make their de
isions in real-time.These itali
ized domain 
hara
teristi
s 
ombine to make simulated robot so

er a realisti
 and
hallenging domain.In prin
iple, modern reinfor
ement learning methods are reasonably well suited to meeting the
hallenges of RoboCup simulated so

er. Reinfor
ement learning is all about sequential de
isionmaking, a
hieving delayed goals, and handling noise and sto
hasti
ity. It is also oriented towardmaking de
isions relatively rapidly rather than relying on extensive deliberation or meta-reasoning.There is a substantial body of reinfor
ement learning resear
h on multiagent de
ision making, andso

er is an example of the relatively benign 
ase in whi
h all agents on the same team sharethe same goal. In this 
ase it is often feasible for ea
h agent to learn independently, sharing3



only a 
ommon reward signal. The large state spa
e remains a problem, but 
an, in prin
iple,be handled using fun
tion approximation, whi
h we dis
uss further below. RoboCup so

er is alarge and diÆ
ult instan
e of many of the issues whi
h have been addressed in small, isolated
ases in previous reinfor
ement learning resear
h. Despite substantial previous work (e.g., Andou,1998; Stone and Veloso, 1999; U
hibe, 1999; Riedmiller et al., 2001), the extent to whi
h modernreinfor
ement learning methods 
an meet these 
hallenges remains an open question.Perhaps the most pressing 
hallenge in RoboCup simulated so

er is the large state spa
e, whi
hrequires some kind of general fun
tion approximation. Stone and Veloso [1999℄ and others haveapplied state aggregation approa
hes, but these are not well suited to learning 
omplex fun
tions.In addition, the theory of reinfor
ement learning with fun
tion approximation is not yet well un-derstood (e.g., see Sutton and Barto, 1998; Baird and Moore, 1999; Sutton et al., 2000). Perhapsthe best understood of 
urrent methods is linear Sarsa(�), whi
h we use here. This method is notguaranteed to 
onverge in the 
onventional sense, but several lines of eviden
e suggest that it isnear a good solution [Gordon, 2001; Tsitsiklis and Van Roy, 1997; Sutton, 1996℄ and re
ent resultsshow that it does indeed 
onverge, as long as the a
tion-sele
tion poli
y is 
ontinuous [Perkins andPre
up, 2003℄. Certainly it has advantages over o�-poli
y methods su
h as Q-learning, whi
h 
anbe unstable with linear and other kinds of fun
tion approximation. An important open question iswhether Sarsa's failure to 
onverge in the 
onventional sense is of pra
ti
al importan
e or is merelya theoreti
al 
uriosity. Only tests on large-state-spa
e appli
ations su
h as RoboCup so

er willanswer this question.In this arti
le we begin to s
ale reinfor
ement learning up to RoboCup simulated so

er. We
onsider a subtask of so

er involving 5{9 players rather than the full 22. This is the task ofkeepaway , in whi
h one team merely seeks to keep 
ontrol of the ball for as long as possible. Themain 
ontribution of this arti
le is that it 
onsiders a problem that is at the limits of what re-infor
ement learning methods 
an tra
tably handle and presents su

essful results using, mainly,a single approa
h, namely episodi
 SMDP Sarsa(�) with linear tile-
oding fun
tion approxima-tion and variable �. Extensive experiments are presented demonstrating the e�e
tiveness of thisapproa
h relative to several ben
hmarks.The remainder of the arti
le is organized as follows. In the next se
tion we des
ribe keepawayand how we build on prior work in RoboCup so

er to formulate this problem at an intermediate4
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Figure 1: Left: A s
reen shot from the middle of a 3 vs. 2 keepaway episode in a 20m x 20m region.Right: A starting 
on�guration for a 4 vs. 3 keepaway episode in a 30m x 30m region.level above that of the lowest level a
tions and per
eptions. In Se
tion 3 we map this task onto anepisodi
 reinfor
ement learning framework. In Se
tions 4 and 5 we des
ribe our learning algorithmin detail and our results respe
tively. Related work is dis
ussed further in Se
tion 6 and Se
tion 7
on
ludes.2 Keepaway So

erWe 
onsider a subtask of RoboCup so

er, keepaway , in whi
h one team, the keepers, tries to main-tain possession of the ball within a limited region, while the opposing team, the takers, attemptsto gain possession. Whenever the takers take possession or the ball leaves the region, the episodeends and the players are reset for another episode (with the keepers being given possession of theball again).Parameters of the task in
lude the size of the region, the number of keepers, and the numberof takers. Figure 1 shows s
reen shots of episodes with 3 keepers and 2 takers (
alled 3 vs. 2, or3v2 for short) playing in a 20m x 20m region and 4 vs. 3 in a 30m x 30m region.1All of the work reported in this arti
le uses the standard RoboCup so

er simulator2 [Nodaet al., 1998℄. Agents in the RoboCup simulator re
eive visual per
eptions every 150 mse
 indi-1Flash �les illustrating the task are available at http://www.
s.utexas.edu/~AustinVilla/sim/keepaway/2Version 8 5




ating the relative distan
e and angle to visible obje
ts in the world, su
h as the ball and otheragents. They may exe
ute a primitive, parameterized a
tion su
h as turn(angle), dash(power), orki
k(power,angle) every 100 mse
. Thus the agents must sense and a
t asyn
hronously. Randomnoise is inje
ted into all sensations and a
tions. Individual agents must be 
ontrolled by separatepro
esses, with no inter-agent 
ommuni
ation permitted other than via the simulator itself, whi
henfor
es 
ommuni
ation bandwidth and range 
onstraints. Full details of the RoboCup simulatorare presented by Chen et al. [2003℄.For the keepaway task, an omnis
ient 
oa
h agent manages the play, ending episodes when ataker gains possession of the ball for a set period of time or when the ball goes outside of theregion. At the beginning of ea
h episode, the 
oa
h resets the lo
ation of the ball and of the playerssemi-randomly within the region of play as follows. The takers all start in one 
orner (bottomleft). Three randomly 
hosen keepers are pla
ed one in ea
h of the three remaining 
orners, andany keepers beyond three are pla
ed in the 
enter of the region. The ball is initially pla
ed nextto the keeper in the top left 
orner. A sample starting 
on�guration with 4 keepers and 3 takers isshown in Figure 13.In the RoboCup so

er simulator, agents typi
ally have limited and noisy sensors: ea
h player
an see obje
ts within a 90o view 
one, and the pre
ision of an obje
t's sensed lo
ation degradeswith distan
e. In preliminary work [Stone and Sutton, 2001℄, we simpli�ed the problem by givingour agents (both keepers and takers) a full 360o view of the �eld. This simpli�
ation ensuredthat they were always aware of the approximate lo
ations of the ball and other players (subje
t tovisual sensor noise). In some of our preliminary experiments, the players also had noise-free vision(obje
t movements and agent a
tions retained their usual noisy 
hara
teristi
s). In all experimentsreported in this paper, both of these simpli�
ations are removed. That is, all players have thestandard 90o view 
ones and the standard noisy vision. Our positive results verify that our initialtask simpli�
ations were not ne
essary.Keepaway as a whole, however, is still only subproblem of robot so

er. The prin
ipal simpli�-
ations are that there are fewer players involved; they are playing in a smaller area; and the playersare always fo
used on the same high-level goal|they don't need to balan
e o�ensive and defensive
onsiderations. In addition, in this arti
le we fo
us on learning parts of the keepers' poli
ies when3Starting with version 9, we have in
orporated support for keepaway into the standard release of the RoboCupso

er simulator. 6



playing against �xed, pre-spe
i�ed takers. Nevertheless, the skills needed to play keepaway wellare also very useful in the full problem of robot so

er. Indeed, ATT-CMUnited-2000|the 3rd-pla
e �nishing team in the RoboCup-2000 simulator league|in
orporated a su

essful hand-
odedsolution to an 11 vs. 11 keepaway task [Stone and M
Allester, 2001℄.One advantage of keepaway is that it is more suitable for dire
tly 
omparing di�erent ma
hinelearning methods than is the full robot so

er task. In addition to the reinfor
ement learningapproa
hes mentioned above, ma
hine learning te
hniques in
luding geneti
 programming, neuralnetworks, and de
ision trees have been in
orporated in RoboCup teams (e.g., see Luke et al.,1998; Andre and Teller, 1999; Stone, 2000). A frustration with these and other ma
hine learningapproa
hes to RoboCup is that they are all embedded within disparate systems, and often addressdi�erent subtasks of the full so

er problem. Therefore, they are diÆ
ult to 
ompare in anymeaningful way. Keepaway is simple enough that it 
an be su

essfully learned in its entirety,yet 
omplex enough that straightforward solutions are inadequate. Therefore it is an ex
ellent
andidate for a ma
hine learning ben
hmark problem.3 Mapping Keepaway onto Reinfor
ement LearningOur keepaway problem maps fairly dire
tly onto the dis
rete-time, episodi
, reinfor
ement-learningframework. The RoboCup so

er simulator operates in dis
rete time steps, t = 0; 1; 2; : : :, ea
hrepresenting 100 mse
 of simulated time. When one episode ends (e.g., the ball is lost to thetakers), another begins, giving rise to a series of episodes. Ea
h player learns independently andmay per
eive the world di�erently. For ea
h player, an episode begins when the player is �rst askedto make a de
ision and ends when possession of the ball is lost by the keepers.As a way of in
orporating domain knowledge, our learners 
hoose not from the simulator's primi-tive a
tions, but from higher level a
tions 
onstru
ted from low-level skills used in the CMUnited-99team4. These skills in
ludeHoldBall(): Remain stationary while keeping possession of the ball in a position that is as faraway from the opponents as possible.PassBall(k): Ki
k the ball dire
tly towards keeper k.4These skills, along with the entire CMUnited-99 team are all fully spe
i�ed by Stone [2000℄.7



GetOpen(): Move to a position that is free from opponents and open for a pass from the ball's
urrent position (using SPAR [Veloso et al., 1999℄).GoToBall(): Inter
ept a moving ball or move dire
tly towards a stationary ball.Blo
kPass(k): Move to a position between the keeper with the ball and keeper k.All of these skills ex
ept PassBall(k) are simple fun
tions from state to a 
orresponding a
tion; aninvo
ation of one of these normally 
ontrols behavior for a single time step. PassBall(k), however,requires an extended sequen
e of a
tions, using a series of ki
ks to position the ball, and thena

elerate it in the desired dire
tion [Stone, 2000℄; a single invo
ation of PassBall(k) in
uen
esbehavior for several time steps. Moreover, even the simpler skills may last more than one time stepbe
ause the player o

asionally misses the step following them; the simulator o

asionally misses
ommands; or the player may �nd itself in a situation requiring it to take a spe
i�
 a
tion, forinstan
e to self-lo
alize. In these 
ases there is no new opportunity for de
ision-making until twoor more steps after invoking the skill. To handle su
h possibilities, it is 
onvenient to treat theproblem as a semi-Markov de
ision pro
ess, or SMDP [Puterman, 1994; Bradtke and Du�, 1995℄.An SMDP evolves in a sequen
e of jumps from the initiation of ea
h SMDP a
tion to its terminationone or more time steps later, at whi
h time the next SMDP a
tion is initiated. SMDP a
tions that
onsist of a subpoli
y and termination 
ondition over an underlying de
ision pro
ess, as here, havebeen termed options [Sutton et al., 1999℄. Formally,Options 
onsist of three 
omponents: a poli
y � : S�A ! [0,1℄, a termination 
ondition� : S+ ! [0,1℄, and an initiation set I � S. An option (I; �; �) is available in state st ifand only if st 2 I. If the option is taken, then a
tions are sele
ted a

ording to � untilthe option terminates sto
hasti
ally a

ording to � [Sutton et al., 1999℄.In this 
ontext, S is the set of primitive states and A is the set of primitive a
tions in the domain.�(s; a) is the probability of sele
ting a
tion a when in state s and � denotes the probability ofterminating the option after seeing a given sequen
e of states.For our purposes, let t0; t1; t2; : : : ; tj denote the SMDP time steps, those at whi
h options areinitiated and terminated, where t0 denotes the �rst time step of the episode and tj the last (alloptions terminate at the end of an episode). From the point of view of the SMDP, then, the episode8




onsists of a sequen
e of states, options, and rewardss0; a0; r1; s1; : : : ; si; ai; ri+1; si+1; : : : ; rj ; sjwhere si denotes the state of the simulator at time step ti, ai denotes the option initiated at ti basedon some, presumably in
omplete, per
eption of si, and ri+1 2 < and si+1 represent the resultantreward and state at the termination of ai. The �nal state of the episode, sj is the state where thetakers have possession or the ball has gone out of bounds. We wish to reward the keepers for ea
htime step in whi
h they keep possession, so we set ri = ti � ti�1. Be
ause the task is episodi
, nodis
ounting is ne
essary: a keeper's goal at ea
h learning step is to take an a
tion su
h that theremainder of the episode will be as long as possible, and thus to maximize total reward.3.1 KeepersHere we lay out the keepers' poli
y spa
e in terms of the options from whi
h they 
an sele
t. Ourexperiments investigated learning by the keepers when in possession5 of the ball. Keepers not inpossession of the ball are required to sele
t the Re
eive option:Re
eive: If a teammate possesses the ball, or 
an get to the ball faster than this keeper 
an, invokeGetOpen() for one step; otherwise, invoke GoToBall() for one step. Termination 
ondition:Repeat until a keeper has possession of the ball or the episode ends.A keeper in possession, on the other hand, is fa
ed with a genuine 
hoi
e. It may hold theball, or it may pass to one of its teammates. That is, it 
hooses an option from fHoldball,PassK2ThenRe
eive, PassK3ThenRe
eive, . . . , PassKnThenRe
eiveg where the Holdball optionsimply exe
utes HoldBall() for one step (or more if, for example, the server misses the next step)and the PasskThenRe
eive options involve passes to the other keepers. The keepers are numberedby their 
loseness to the keeper with the ball: K1 is the keeper with the ball, K2 is the 
losestkeeper to it, K3 the next 
losest, and so on up to Kn, where n is the number of keepers. Ea
hPasskThenRe
eive is de�ned asPasskThenRe
eive: Invoke PassBall(k) to ki
k the ball toward teammate k. Then behave andterminate as in the Re
eive option.5\Possession" in the so

er simulator is not well-de�ned be
ause the ball never o

upies the same lo
ation as aplayer. One of our agents 
onsiders that it has possession of the ball if the ball is 
lose enough to ki
k it.9



The keepers' learning pro
ess thus sear
hes a 
onstrained poli
y spa
e 
hara
terized only bythe 
hoi
e of option when in possession of the ball as illustrated in Figure 2. Examples of poli
ieswithin this spa
e are provided by our ben
hmark poli
ies:
Teammate with ball
or can get there
faster

Receive
(GetOpen)

{HoldBall,PasskThenReceive}
(k is another keeper)

In 
possession

possession
Not in

Receive
(GoToBall)Figure 2: The keepers' poli
y spa
e. The predi
ate \teammate with ball or 
an get there faster"evaluates to true whenever there exists a teammate that is in possession of the ball of that 
anget to the ball more qui
kly than the keeper evaluating the predi
ate. The latter is 
al
ulated bya forward-lookahead routine simulating how long it would take ea
h agent to rea
h the ball if theball 
ontinues along its 
urrent traje
tory and the keeper moves optimally.Random: Choose randomly among the n options, ea
h with probability 1n .Hold: Always 
hoose HoldBallHand-
oded: A hand-
oded poli
y that sele
ts from among the n options based on an intuitivemapping from the same state features that are used for learning (spe
i�ed next). The hand-
oded poli
y is fully spe
i�ed in Se
tion 5.3.2.We turn now to the representation of state used by the keepers, ultimately for value fun
tionapproximation as des
ribed in the next se
tion. Note that values are only needed on the SMDPsteps, and on these one of the keepers is always in possession of the ball. On these steps the keeperdetermines a set of state variables, 
omputed based on the positions of: the keepersK1{Kn, orderedas above; the takers T1{Tm (m is the number of takers), ordered by in
reasing distan
e from K1;and C, the 
enter of the playing region (see Figure 3 for an example with 3 keepers and 2 takerslabeled appropriately). Let dist(a; b) be the distan
e between a and b and ang(a; b; 
) be the anglebetween a and 
 with vertex at b. As illustrated in Figure 3, with 3 keepers and 2 takers, we usethe following 13 state variables:� dist(K1; C); dist(K2; C); dist(K3; C); 10



� dist(T1; C); dist(T2; C);� dist(K1;K2); dist(K1;K3);� dist(K1; T1); dist(K1; T2);� Min(dist(K2; T1); dist(K2; T2));� Min(dist(K3; T1); dist(K3; T2));� Min(ang(K2;K1; T1); ang(K2;K1; T2));� Min(ang(K3;K1; T1); ang(K3;K1; T2)).This list generalizes naturally to additional keepers and takers, leading to a linear growth in thenumber of state variables.6
K

T

CT

2
1

3

2

1

K

KFigure 3: The state variables used for learning with 3 keepers and 2 takers. Keepers and takers arenumbered by in
reasing distan
e from K1, the keeper with the ball. The 13 lines and angles showthe 
omplete set of state variables.3.2 TakersAlthough this arti
le fo
uses on learning by the keepers against �xed, pre-spe
i�ed takers, wespe
ify the taker behaviors within the same framework for the sake of 
ompleteness.6More pre
isely, the growth is linear in the sum of the number of keepers and the number of takers.11



The takers are relatively simple, 
hoosing only options of minimum duration (one step, or asfew as possible given server misses) that exa
tly mirror low-level skills. When a taker has the ball,it tries to maintain possession by invoking HoldBall() for a step. Otherwise, it 
hooses an optionthat invokes one of fGoToBall(), Blo
kPass(K2), Blo
kPass(K3), . . . , Blo
kPass(Kn)g for one stepor as few steps as permitted by the server. In 
ase no keeper has the ball (e.g., during a pass), K1is de�ned here as the keeper predi
ted to next gain possession of the ball. The takers' poli
y spa
eis depi
ted in Figure 4. We de�ne the following three poli
ies as taker ben
hmarks, 
hara
terizedby their behavior when not in possession:
(k is a keeper)

HoldBall {GoToBall,BlockPass(k)}

possession
Not inIn possession

Figure 4: The takers' poli
y spa
e.Random-T: Choose randomly from the n options, ea
h with probability 1n .All-to-ball: Always 
hoose the GoToBall option.Hand-
oded-T:If fastest taker to the ball, or 
losest or se
ond 
losest taker to the ball: 
hoose the GoToBalloption;Else let k be the keeper with the largest angle with vertex at the ball that is 
lear of takers:
hoose the Blo
kPass(k) option.Note that the All-to-ball and Hand-
oded-T poli
ies are equivalent when there are only two takers,sin
e Hand-
oded-T spe
i�es that the two 
losest takers at any given time should go to the ball.The takers' state variables are similar to those of the keepers. As before, C is the 
enter ofthe region. T1 is the taker that is 
omputing the state variables, and T2{Tm are the other takersordered by in
reasing distan
e from K1. Kimid is the midpoint of the line segment 
onne
ting K1and Ki for i 2 [2; n℄ and where the Ki are ordered based on in
reasing distan
e of Kimid from T1.That is, 8i; j s.t. 2 � i < j, dist(T1;Kimid) � dist(T1;Kjmid). With 3 keepers and 3 takers, weused the following 18 state variables: 12



� dist(K1; C); dist(K2; C); dist(K3; C);� dist(T1; C); dist(T2; C); dist(T3; C);� dist(K1;K2); dist(K1;K3)� dist(K1; T1); dist(K1; T2); dist(K1; T3);� dist(T1;K2mid); dist(T1;K3mid);� Min(dist(K2mid; T2); dist(K2mid; T3));� Min(dist(K3mid; T2); dist(K3mid; T3));� Min(ang(K2;K1; T2); ang(K2;K1; T3));� Min(ang(K3;K1; T2); ang(K3;K1; T3));� number of takers 
loser to the ball than T1.On
e again, this list generalizes naturally to di�erent numbers of keepers and takers.4 Reinfor
ement Learning AlgorithmWe use the SMDP version of the Sarsa(�) algorithm with linear tile-
oding fun
tion approximation(also known as CMACs) and repla
ing eligibility tra
es (see Albus, 1981; Rummery and Niranjan,1994; Sutton and Barto, 1998). Ea
h player learns independently from its own a
tions and its ownper
eption of the state.4.1 Sarsa(�)Sarsa(�) is an on-poli
y learning method, meaning that the learning pro
edure estimates Q(s; a),the value of exe
uting a
tion a from state s, subje
t to the 
urrent poli
y being exe
uted by theagent. Meanwhile, the agent 
ontinually updates the poli
y a

ording to the 
hanging estimates ofQ(s; a).In its basi
 form, Sarsa(�) is de�ned as follows ([Sutton and Barto, 1998℄, Se
tion 7.5):
13



Initialize Q(s; a) arbitrarily and e(s; a) = 0 for all s; a.Repeat (for ea
h episode):Initialize sChoose a from s using poli
y derived from QRepeat (for ea
h step of episode):Take a
tion a, observe reward r, s0Choose a0 from s0 using poli
y derived from QÆ  r + 
Q(s0; a0)�Q(s; a)e(s; a) e(s; a) + 1For all s; a:Q(s; a) Q(s; a) + �Æe(s; a)e(s; a) 
�e(s; a)s s0; a a0;until s is terminalHere, � is a learning rate parameter and 
 is a dis
ount fa
tor governing the weight pla
ed onfuture, as opposed to immediate, rewards7. The values in e(s; a), known as eligibility tra
es, storethe 
redit that past a
tion 
hoi
es should re
eive for 
urrent rewards; the parameter � governs howmu
h 
redit is delivered ba
k to them. A typi
al poli
y derived from Q, and the one we use in thisarti
le, is an �-greedy poli
y in whi
h a random a
tion is sele
ted with probability �, and otherwise,the a
tion with maximum Q-value Q(s; a) from state s is sele
ted.In our appli
ation, one 
ompli
ation is that most des
riptions of Sarsa(�), in
luding the above,assume the agent has 
ontrol and o

asionally 
alls the environment to obtain the next state andreward, whereas here the RoboCup simulator retains 
ontrol and o

asionally presents state per-
eptions and option 
hoi
es to the agent. This alternate orientation requires a di�erent perspe
tiveon the standard algorithm. We need to spe
ify three routines: 1) RLstartEpisode, to be run bythe player on the �rst time step in ea
h episode in whi
h it 
hooses an option, 2) RLstep, to be run7Sutton and Barto [1998℄ also present a version of Sarsa(�) with fun
tion approximation (Se
tion 8.4). We refrainfrom presenting their version with fun
tion approximation here for the sake of simpli
ity. But our notation is fully
onsistent with that presentation and our detailed algorithm is based on the same. Additional parameters introdu
edby fun
tion approximation are Fa and ~�, both of whi
h are introdu
ed in Se
tion 4.2.14



on ea
h SMDP step, and 3) RLendEpisode, to be run when an episode ends. These three routinesare presented in detail in Se
tion 4.3.4.2 Fun
tion ApproximationThe basi
 Sarsa(�) algorithm assumes that ea
h a
tion 
an be tried in ea
h state in�nitely oftenso as to fully and a

urately populate the table of Q-values. A key 
hallenge for applying RL inenvironments with large state spa
es is to be able to generalize the state representation so as tomake learning work in pra
ti
e despite a relatively sparse sample of the state spa
e. In parti
ular,in keepaway we 
annot expe
t the agent to dire
tly experien
e all possible sets of values of thevariables depi
ted in Figure 3. Rather, the agent needs to learn, based on limited experien
es,how to a
t in new situations. To do so, the table of Q-values must be approximated using somerepresentation with fewer free variables than there are states, a te
hnique 
ommonly known asfun
tion approximation.Many di�erent fun
tion approximators exist and have been used su

essfully ([Sutton and Barto,1998℄, Se
tion 8). Here we use general tile 
oding software to spe
ify how the feature sets, Fa, areused for learning. Tile 
oding allows us to take arbitrary groups of 
ontinuous state variables andlay in�nite, axis-parallel tilings over them (e.g., see Figure 5). The tiles 
ontaining the 
urrentstate in ea
h tiling together make up a feature set Fa, with ea
h a
tion a indexing the tilingsdi�erently. The tilings are formally in�nite in extent, but in our 
ase, all the state variables are infa
t bounded. Nevertheless, the number of possible tiles is extremely large, only a relatively fewof whi
h are ever visited (in our 
ase about 10,000). Thus the primary memory ve
tor, ~�, and theeligibility tra
e ve
tor ~e have only this many nonzero elements. Using open-addressed hash-
oding,only these nonzero elements need be stored.An advantage of tile 
oding is that it allows us ultimately to learn weights asso
iated withdis
rete, binary features, thus eliminating issues of s
aling among features of di�erent types. Themost straightforward way to get binary features is to break the state spa
e into dis
rete bins.However, doing so 
an lead to over-generalization based on the fa
t that points in the same bin arerequired to have the same value and under-generalization due to the fa
t that points in di�erentbins, no matter how 
lose, have unrelated values. By overlaying multiple tilings it is possible toa
hieve qui
k generalization while maintaining the ability to learn �ne distin
tions. See Figure 615
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Figure 5: Our tile-
oding feature sets were formed from multiple overlapping tilings of the statevariables. Here we show two grid-tilings overlaid over the spa
e formed by two state variables. (Inthis arti
le we primarily 
onsidered one-dimensional tilings.) Any state, su
h as that shown by thedot, is in exa
tly one tile of ea
h tiling. Tile 
oding, also known as CMACs, has been widely usedin 
onjun
tion with reinfor
ement learning systems (e.g., Watkins, 1989; Lin and Kim, 1991; Deanet al., 1992).for an illustrative example.In our experiments we used primarily single-dimensional tilings, i.e., simple stripes or intervalsalong ea
h state variable individually. For ea
h variable, 32 tilings were overlaid, ea
h o�set fromthe others by 1/32 of a tile width. In ea
h tiling, the 
urrent state is in exa
tly one tile. The set ofall these \a
tive" tiles, one per tiling and 32 per state variable, is what makes up the Fa ve
tors.In the 3v2 
ase, there are 416 tiles in ea
h Fa be
ause there are thirteen state variables makingthirteen single-variable groups, or 13 � 32 = 416 total. For ea
h state variable, we spe
i�ed thewidth of its tiles based on the width of generalization that we desired. For example, distan
es weregiven widths of about 3.0 meters, whereas angles were given widths of about 10.0 degrees.The 
hoi
e here of state variables, widths, groupings, and so on, was done manually. Just aswe as people have to sele
t the state variables, we also have to determine how they are representedto the learning algorithm. A long-term goal of ma
hine learning is to automate representationalsele
tions, but to date this is not possible even in supervised learning. Here we seek only to makethe experimentation with a variety of representations relatively easy for us to do. The spe
i�

hoi
es des
ribed here were made after some experimentation with learning by the keepers in apoli
y-evaluation s
enario [Stone et al., 2001℄. Our 
omplete representation s
heme is illustrated16
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State VariableFigure 6: The generalization from a single training example point when using CMACs with learningrate � = :5, and 8 overlapping tilings with width 8. The graph shows the predi
ted value (Q-value)as a fun
tion of a single state variable. The training example, shown as the point (8,16), indi
atesthat when the state variable was set to 8, a reward of 16 was re
eived. Prior to this example, allpoints were initialized to a value of 0. The tiles that 
ontain the example point from 3 di�erenttilings are shown in the �gure. The points that are in all of the same tiles as the example point(those between 7.5 and 8.5) generalize the full amount (16 � :5 = 8). Those that share fewer tilesin 
ommon generalize proportionately less, out to the points that are almost a full tile-width away(those between 14.5 and 15.5) whi
h only share one tile in 
ommon with 8 and therefore onlygeneralize to 18 of 8 = 1. Carrying this example further by pla
ing additional training examples,one 
an see that it is possible to generalize broadly and qui
kly, but also to learn �ne distin
tions,for example if there are many training examples near (8,16) and many others near (7,0). In that
ase a near step fun
tion will be learned eventually.in Figure 7.
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omplete representation s
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er state ismapped to a few 
ontinuous state variables, whi
h are then tiled into binary features, and ultimately
ombined to get a
tion values.
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4.3 Algorithmi
 DetailIn this se
tion, we present the full details of our approa
h as well as the parameter values we
hose, and how we arrived at them. Figure 8 shows pseudo
ode for the three top-level subroutines,RLstartEpisode, RLstep, and RLendEpisode.4.3.1 RLstartEpisodeRLstartEpisode is run by the player on the �rst time step in ea
h episode in whi
h it 
hooses anoption. In line 1, we iterate over all a
tions available in the 
urrent state. For ea
h a
tion, a, andfor ea
h tiling of ea
h state variable, we �nd the set of tiles, Fa, a
tivated in the 
urrent state (line2). Next, in line 3, the Q-value for a
tion a in the 
urrent state is 
al
ulated as the sum of theweights of the tiles in Fa. We then 
hoose an a
tion from the set of available a
tions by followingan �-greedy poli
y (line 4). The 
hosen a
tion is stored in LastOption and the 
urrent time isstored in LastOptionT ime (lines 4{5). In line 6, the eligibility tra
e ve
tor is 
leared. Finally, inlines 7{8, the eligibility tra
es for ea
h a
tive tile of the sele
ted a
tion are set to 1, allowing theweights of these tiles to re
eive learning updates in the following step.4.3.2 RLstepRLstep is run on ea
h SMDP step (and so only when some keeper has the ball). First, in line 9,the reward for the previous SMDP step is 
omputed as the number of time steps sin
e the a
tionbegan exe
ution. Se
ond, in line 10, we begin to 
al
ulate the error in our Q-value estimates by
omputing the di�eren
e between r, the reward we re
eived, and QLastOption, the expe
ted returnof the previous SMDP step. Next, in lines 11{13, we �nd the a
tive tiles and use their weightsto 
ompute the Q-values for ea
h a
tion in the 
urrent state. In lines 14{15, the next a
tion issele
ted as in RLstartEpisode. In line 16, we �nish our 
al
ulation of the error that began online 10. Here, we add the new QLastOption, the expe
ted return of 
hoosing a
tion LastOption inthe 
urrent state. Next, in line 17, we adjust the weights by the learning fa
tor � times our errorestimate Æ, for tiles with non-zero eligibility tra
es. Be
ause the weights have 
hanged, in line 18,we must re
al
ulate QLastOption. In line 19, the eligibility tra
es are de
ayed. Note that the tra
esde
ay only on SMDP time steps. In e�e
t, we are using variable � [Sutton and Barto, 1998℄, setting� = 1 for these missing time steps. In lines 20{25, the tra
es for the 
hosen a
tion are set to 1, and18



RLstartEpisode:1 For all a 2 A(
urrent state):2 Fa  set of tiles for a and 
urrent state3 Qa  Pi2Fa �(i)4 LastOption ( argmaxaQa w/prob. 1� �random option w/prob. �5 LastOptionT ime CurrentT ime6 ~e = ~07 For all i 2 FLastOption:8 e(i) 1RLstep:9 r  CurrentT ime� LastOptionT ime10 Æ  r �QLastOption11 For all a 2 A(
urrent state):12 Fa  set of tiles for a and 
urrent state13 Qa  Pi2Fa �(i)14 LastOption ( argmaxaQa w/prob. 1� �random option w/prob. �15 LastOptionT ime CurrentT ime16 Æ  Æ +QLastOption17 ~�  ~� + � Æ ~e18 QLastOption  Pi2FLastOption �(i)19 ~e �~e20 If player a
ting in 
urrent state:21 For all a 2 A(
urrent state) s.t. a 6= LastOption:22 For all i 2 Fa:23 e(i) 024 For all i 2 FLastOption:25 e(i) 1RLendEpisode:26 r  CurrentT ime� LastOptionT ime27 Æ  r �QLastOption28 ~�  ~� + � Æ ~eFigure 8: The three main routines of our Sarsa(�) implementation presented for a keeper. A takerhas the sign of the reward, r, reversed. As dis
ussed in the text, the set of a
tions available, A, maydepend on the state. For example, the keepers not in possession of the ball must sele
t the Re
eiveoption, whereas the keeper with the ball 
hooses from among HoldBall and PasskThenRe
eive.
19



the tra
es for the remaining available a
tions are 
leared. Note that we do not 
lear the tra
es fora
tions that are not in A be
ause they don't apply in this state. This s
heme, known as repla
ingtra
es is one reasonable way to handle eligibility tra
es for SMDPs.4.3.3 RLendEpisodeRLendEpisode, is run when an episode ends. First, in line 26, we 
al
ulate the reward for the lastSMDP step. Next, in line 27, we 
al
ulate the error Æ. There is no need to add the expe
ted returnof the 
urrent state sin
e this value is de�ned to be 0 for terminating states. In line 28, we performthe �nal weight update for this episode.4.3.4 Computational Considerations and Parameter ValuesThe primary memory ve
tor ~� and the eligibility tra
e ve
tor ~e are both of large dimension (e.g.,thousands of dimensions for 3v2 keepaway), whereas the feature sets Fa are relatively small (e.g.,416 elements for 3v2 keepaway). The steps of greatest 
omputational expense are those in whi
h~� and ~e are updated. By keeping tra
k of the few nonzero 
omponents of ~e, however, this expense
an be kept to a small multiple of the size of the Fa (i.e., of 416). The initial value for ~� was ~0.For the results des
ribed in this arti
le we used the following values of the s
alar parameters: � =0:125, � = 0:01, and � = 0. In previous work [Stone et al., 2001℄, we experimented systemati
allywith a range of values for the step-size parameter. We varied � over negative powers of 2 andobserved the 
lassi
al inverted-U pattern, indi
ating that values of � both too 
lose to 0 and too
lose to 1 lead to slower learning than do intermediate values. In our 
ase, we observed the fastestlearning at a value of about � = 2�3 = 0:125, whi
h we use here. We also experimented informallywith � and �. The value � = 0:01 appears suÆ
iently exploratory without signi�
antly a�e
ting�nal performan
e. The e�e
t of varying � appears not to be large (i.e. results are not sensitive tovarying �), so in this arti
le we treat the simplest 
ase of � = 0. The only ex
eption is on SMDPsteps, for whi
h we set � = 1.Sin
e many of these parameters have been 
hosen as a result of brief, informal experimentation,we make no 
laims that they are the optimal values. Indeed, our overall methodology throughoutthis resear
h has been to �nd good parameter values and algorithmi
 
omponents (e.g. representa-tion, fun
tion approximator, et
.) as qui
kly as possible and to move on, rather than �xating on20



any individual portion of the problem and insisting on �nding the best values and/or 
omponents.This methodology has allowed us pro
eed relatively qui
kly towards our goal of �nding e�e
tivesolutions for large-s
ale problems. In this arti
le we report all of the values that we used and howwe rea
hed them. However, there may very well be room for further optimizations at any numberof levels.5 Empiri
al ResultsIn this se
tion we report our empiri
al results in the keepaway domain. In previous work [Stone etal., 2001℄, we �rst learned a value fun
tion for the 
ase in whi
h the agents all used �xed, hand-
oded poli
ies. Based on these experiments, we 
hose the representation des
ribed in Se
tion 4 thatwe then used for poli
y learning experiments, but with the simpli�
ations of full, noise-free visionfor the agents [Stone and Sutton, 2001℄. Here we extend those results by reporting performan
ewith the full set of sensory 
hallenges presented by the RoboCup simulator.5.1 Initial ResultsIn the RoboCup so

er simulator, agents typi
ally have limited and noisy sensors: ea
h player
an see obje
ts within a 90o view 
one, and the pre
ision of an obje
t's sensed lo
ation degradeswith distan
e. However, to simplify the task, we initially removed these restri
tions. The learnerswere given 360o of noiseless vision to ensure that they would always have 
omplete and a

urateknowledge of the world state. Here we begin by summarizing these initial results. The remainderof this se
tion examines, among other things, the extent to whi
h these simpli�
ations were usefuland ne
essary.Using the setup des
ribed in Se
tion 4, we were able to show an in
rease in average episodeduration over time when keepers learned against hand-
oded takers. We 
ompared our results witha Random poli
y that 
hooses among its options with uniform probability, an Always Hold poli
ythat invokes the HoldBall() a
tion in every 
y
le, and a hand-
oded poli
y that uses a de
isiontree for pass evaluation. Experiments were 
ondu
ted on several di�erent �eld sizes. In ea
h
ase, the keepers were able to learn poli
ies that outperformed all of the ben
hmarks. Most ofour experiments mat
hed 3 keepers against 2 takers. However, we also showed that our resultsextended to the 4 vs. 3 s
enario. 21



Our initial results fo
used on learning by the keepers in 3v2 keepaway in a 20x20 region. Forthe opponents (takers) we used the Hand-
oded-T poli
y (note that with just 2 takers, this poli
y isidenti
al to All-to-ball). To ben
hmark the performan
e of the learned keepers, we �rst ran the threeben
hmark keeper poli
ies, Random, Always Hold, and Hand-
oded8, as laid out in Se
tion 3.1.Average episode lengths for these three poli
ies were 5.5, 4.8, and 5.6 se
onds respe
tively. Figure 9shows histograms of the lengths of the episodes generated by these poli
ies.
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Episode length (sec)Figure 9: Histograms of episode lengths for the 3 ben
hmark keeper poli
ies in 3v2 keepaway in a20x20 region.We then ran a series of eleven runs with learning by the keepers against the Hand-
oded-Ttakers. Figure 10 shows learning 
urves for these runs. A sample learned behavior, along with theben
hmark behaviors and several of the other behaviors reported in this arti
le, 
an be viewed athttp://www.
s.utexas.edu/~AustinVilla/sim/keepaway/. The y-axis is the average time thatthe keepers are able to keep the ball from the takers (average episode length); the x-axis is trainingtime (simulated time � real time). The performan
e levels of the ben
hmark keeper poli
ies areshown as horizontal lines.This data shows that we were able to learn poli
ies that were mu
h better than any of theben
hmarks. All learning runs qui
kly found a mu
h better poli
y than any of the ben
hmarkpoli
ies, in
luding the hand-
oded poli
y. A better poli
y was often found even in the �rst datapoint, representing the �rst 1000 episodes of learning. Qualitatively, the keepers appear to qui
kly8The hand-
oded poli
y used in the initial experiments, as des
ribed fully by Stone and Sutton [2001℄, was slightlysimpler than the one spe
i�ed and used in the main experiments in this arti
le.22
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Figure 10: Multiple su

essful runs under identi
al 
hara
teristi
s: 3v2 keepaway in a 20x20 regionagainst hand-
oded takers.learn roughly how long to hold the ball, and then gradually learn �ne distin
tions regarding whenand to whi
h teammate to pass.It is important to note that the x-axis represents real time. That is, when the episodes last10 se
onds on average, the simulator exe
utes just 360 episodes per hour. Therefore the playersare learning to outperform the ben
hmark poli
ies in hundreds of episodes and rea
hing their peakperforman
e in just thousands of episodes. Espe
ially given the enormity of the state spa
e, weview these results as representing fast, su

essful learning on the part of the Sarsa(�) algorithm.We also applied our learning algorithm to learn poli
ies for a slightly larger task, 4 vs. 3 keep-away. Figure 11 shows that the keepers learned a poli
y that outperformed all of our ben
hmarksin 4v3 keepaway in a 30x30 region. In this 
ase, the learning 
urves still appear to be rising after40 hours: more time may be needed to realize the full potential of learning.5.2 Follow-up QuestionsThe initial results in Se
tion 5.1 represent the main result of this work. They demonstrate thepower and robustness of distributed SMDP Sarsa(�) with linear tile-
oding fun
tion approximationand variable �. However, as is not un
ommon, these positive results lead us to many additionalquestions, some of whi
h we 
onsider here. In parti
ular:23
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Figure 11: Multiple su

essful runs under identi
al 
hara
teristi
s: 4v3 keepaway in a 30x30 regionagainst hand-
oded takers.1. Does the learning approa
h des
ribed above 
ontinue to work if the agents arelimited to noisy, narrowed vision?Our initial 
omplete, noiseless vision simpli�
ation was 
onvenient for two reasons. First,the learning agents had no un
ertainty about the state of the world, e�e
tively 
hanging theworld from partially observable to fully observable. Se
ond, as a result, the agents did notneed to in
orporate any information-gathering a
tions into their poli
ies, thus simplifyingthem 
onsiderably. However, for these te
hniques to s
ale up to more diÆ
ult problems su
has RoboCup so

er, agents must be able to learn using sensory information that is oftenin
omplete and noisy.2. How does a learned poli
y perform in 
omparison to a hand-
oded poli
y thathas been manually tuned?Our initial results 
ompared learned poli
ies to a hand-
oded poli
y that was not tuned at all.This poli
y was able to perform only slightly better than Random. Also, it used a previouslylearned de
ision tree for pass evaluation, so it was not 100% \hand-
oded" [Stone and Sutton,24



2001℄. Although the need for manual tuning of parameters is pre
isely what we try to avoidby using ma
hine learning, to assess properly the value of learning, it is important to 
ompareits performan
e to a ben
hmark that has been 
arefully thought out. In parti
ular, we seek todis
over here whether the learning as opposed to hand-
oding (i) leads to a superior solution;(ii) saves e�ort but produ
es a similarly e�e
tive solution; or (iii) trades o� manual e�ortagainst performan
e.3. How robust are these methods to di�ering �eld sizes?The 
ost of manually tuning a hand-
oded poli
y 
an generally be tolerated for single prob-lems. However, having to retune the poli
y every time the problem spe
i�
ation is slightly
hanged 
an be
ome quite 
umbersome. A major advantage of learning is that, typi
ally,adapting to variations in the learning task requires little or no modi�
ation to the algorithm.Reinfor
ement learning be
omes an espe
ially valuable tool for RoboCup so

er if it 
an han-dle domain alterations more robustly than hand-
oded solutions.4. How dependent are the results on the state representation?The 
hoi
e of input representation 
an have a dramati
 e�e
t on the performan
e and 
om-putation time of a ma
hine learning solution. For this reason, the representation is typi
ally
hosen with great 
are. However, it is often diÆ
ult to dete
t and avoid redundant and ir-relevant information. Ideally, the learning algorithm would be able to dete
t the relevan
e ofits state variables on its own.5. How dependent are the results on using Sarsa rather than Q-learning?Throughout this arti
le, we use a variant of the Sarsa reinfor
ement learning algorithm,an on-poli
y learning method that learns values based on the 
urrent a
tual poli
y. Theo�-poli
y variant, Q-learning, is similar ex
ept that it learns values based on the optimal25




ontrol poli
y. While Q-learning is provably 
onvergent to the optimal poli
y under restri
-tive 
onditions [Watkins, 1989℄, it 
an be unstable with linear and other kinds of fun
tionapproximation. Nonetheless, Q-learning has proven to be robust at least in some large par-tially observable domains, su
h as elevator s
heduling [Crites and Barto, 1996℄. Thus, it isimportant to understand the extent to whi
h our su

essful results 
an be attributed to usingSarsa rather than Q-learning.6. How well do the results s
ale to larger problems?The overall goal of this line of resear
h is to develop reinfor
ement learning te
hniques thatwill s
ale to 11 vs. 11 so

er on a full-sized �eld. However, previous results in the keepawaydomain have typi
ally in
luded just 3 keepers and at most 2 takers. The largest learnedkeepaway solution that we know of is in the 4 vs. 3 s
enario presented in Se
tion 5.1. Thisresear
h examines whether 
urrent methods 
an s
ale up beyond that.7. Is the sour
e of the diÆ
ulty the learning task itself, or the fa
t that multipleagents are learning simultaneously?Keepaway is a multiagent task in whi
h all of the agents learn simultaneously and indepen-dently. On the surfa
e, it is un
lear whether the learning 
hallenge stems mainly from thefa
t that the agents are learning to intera
t with one another, or mainly from the diÆ
ultyof the task itself. For example, perhaps it is just as hard for an individual agent to learnto 
ollaborate with previously trained experts as it is for the agent to learn simultaneouslywith other learners. Or, on the other hand, perhaps the fewer agents that are learning, andthe more that are pre-trained, the qui
ker the learning happens. We explore this questionexperimentally.
26



5.3 Detailed StudiesThis se
tion addresses ea
h of the questions listed in Se
tion 5.2 with fo
used experiments in thekeepaway domain.5.3.1 Limited VisionLimited vision introdu
es two 
hallenges with respe
t to the 
omplete vision setup of Se
tion 5.1 andStone and Sutton [2001℄. First, without 
omplete knowledge of the world state, agents must modelthe un
ertainty in their knowledge and make the appropriate de
isions based on those un
ertainties.Se
ond, the agents must o

asionally take expli
it information-gathering a
tions to in
rease their
on�den
e in the world state, thus 
ompli
ating their a
tion poli
ies.To keep tra
k of the un
ertainty in its world state, a player stores a 
on�den
e value alongwith ea
h state variable. When the player re
eives sensory information, it updates its world stateand sets its 
on�den
e in those values to 1:0. Ea
h time step in whi
h the player re
eives no newinformation about a variable, the variable's 
on�den
e is multiplied by a de
ay rate (0.99 in ourexperiments). When the 
on�den
e falls below a threshold (0.5), the value is no longer 
onsideredreliable.We assume that if the keeper with the ball does not have reliable information about the positionof its teammates, then it would almost 
ertainly do more harm than good by trying to make ablind pass. Therefore, in this situation, we for
e the keeper to perform a safe default a
tion whileit is gathering enough sensory information to 
ompute the values of all of its state variables. Akeeper's default a
tion is to invoke HoldBall() and turn its ne
k to try to lo
ate its teammatesand the opponents. This a
tion persists until the keeper knows the positions of itself and all of itsteammates so as to be able to make an informed de
ision, in e�e
t be
oming an SMDP step.Using this method, we attempted to reprodu
e the results reported in Figure 10 but withoutthe simpli�
ation of unrestri
ted vision. In Figure 10, keepers were able to learn poli
ies withaverage episode durations of around 15 se
onds. However, learning with noisy, narrowed vision is amore diÆ
ult problem than learning with 
omplete knowledge of the state. With in
omplete infor-mation about the ball position, the ball be
omes more diÆ
ult to inter
ept; and with in
ompleteinformation about teammate positions, passes be
ome more diÆ
ult to exe
ute. For this reason,we expe
ted our learners to hold the ball for less than 15 se
onds. However, these same diÆ
ulties27



impa
t the ben
hmark poli
ies as well. So the salient question is whether or not learning is stillable to outperform the ben
hmarks.We ran a series of 6 independent learning trials in whi
h the keepers learned while playingagainst the hand-
oded takers. In ea
h run, the keepers gradually improved their performan
ebefore leveling o� after about 25 hours of simulator time9. The learning 
urves are shown inFigure 12. We plotted all 6 trials to give a sense of the varian
e.
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Random

Always HoldFigure 12: Learning 
urves for 3 keepers playing against 2 takers on a 20m� 20m �eld along withseveral ben
hmarks.The keepers start learning from a random poli
y that is able to maintain possession for about 6se
onds per episode on average. After 25 hours (simulator time) of training, they are able hold theball an average of 9.6s to 11.1s. Note that as in Se
tion 5.1, one hour of simulator time representsjust 600 10-se
ond episodes. Thus the learning o

urs over just a few thousand episodes. All ofthe learning runs were able to outperform the Always Hold and Random ben
hmark poli
ieswhi
h had average possession times of 4.9 and 6.1 se
onds, respe
tively. The learned poli
ies alsooutperformed our Hand-
oded poli
y whi
h we des
ribe in detail in the next se
tion.5.3.2 Comparison to Hand-
odedIn addition to the Always Hold and Random ben
hmark poli
ies des
ribed previously, we 
om-pared our learners to a Hand-
oded poli
y. In this poli
y, the keeper in possession, K1 assigns as
ore, Vi, to ea
h of its teammates based on how \open" they are. The degree to whi
h the player is9By default, ea
h 
y
le in the RoboCup simulator lasts 100ms. \Simulator time" is simply the number of 
y
lesmultiplied by 100ms. For these experiments, however, we exploited the simulator's \syn
hronous mode" to speedup the experiments by 5 or 6 times. Be
ause 
y
le durations are in
onsistent in this mode, we report all times insimulator time rather than a
tual time. 28



open is 
al
ulated as a linear 
ombination of the teammate's distan
e to its nearest opponent, andthe angle between the teammate, K1, and the opponent 
losest to the passing line. The relativeimportan
e of these two features are weighted by the 
oeÆ
ient �. If the most open teammatehas a s
ore above the threshold, �, then K1 will pass to this player. Otherwise, K1 will invokeHoldBall() for one 
y
le.Figure 5.3.2 shows pseudo-
ode for the Hand-
oded poli
y. It has been designed to use onlystate variables and 
al
ulations that are available to the learner. Our initial values, based onedu
ated guesses, for � and � were 3 and 50, respe
tively. We tuned these values by experimentingwith values near our initial guesses, trying � values between 2 and 4.5 and � values between 30and 100. Altogether, we tried about 30 
ombinations, eventually �nding the best performan
e at� = 4 and � = 90.Hand-
oded:If no taker is within 4m (i.e. dist(K1; T1) > 4) ThenHoldBall()Else For i 2 [2; n℄Vi  Min(ang(Ki;K1; T1); ang(Ki;K1; T1)) +� � Min(dist(Ki;K1; T1); dist(Ki;K1; T1))I  argmaxi ViIf VI > � ThenPassBall(KI)Else HoldBall() Figure 13: The Hand-
oded poli
y.We ran a few thousand episodes of our tuned Hand-
oded poli
y and found that it was ableto keep the ball for an average of 9.6 se
onds per episode. Also, for 
omparison, we tested ourHand-
oded poli
y before manual tuning (i.e. � set to 3 and � set to 50). This poli
y was ableto hold the ball for an average of 8.2 se
onds. From Figure 12 we 
an see that the keepers are able29



to learn poli
ies that outperform our initial Hand-
oded poli
y and exhibit performan
e roughlyas good as (perhaps slightly better than) the tuned version.Figure 12 also shows that, with some �ne tuning, it is possible to 
reate a fairly simple hand-
oded poli
y that is able to perform almost as well as a learned poli
y. On the one hand, it isdisappointing that learning does not vastly outperform a tuned hand-
oded solution as it did theinitial hand-
oded solution. But on the other hand, it is promising that the learned solution is atleast as good as the tuned, hand-
oded approa
h. We examined the Hand-
oded poli
y furtherto �nd out to what degree its performan
e is dependent on tuning.5.3.3 Robustness to Di�ering Field SizesIn our preliminary work, we demonstrated that learning is robust to 
hanges in �eld sizes, albeitunder 
onditions of unrestri
ted vision [Stone and Sutton, 2001℄. Here we verify that learning isstill robust to su
h 
hanges even with the addition of signi�
ant state un
ertainty, and we alsoben
hmark these results against the robustness of the Hand-
oded poli
y to the same 
hanges.Overall, we expe
t that as the size of the play region gets smaller, the problem gets more diÆ
ultand the keepers have a harder time maintaining possession of the ball regardless of poli
y. Herewe 
ompare the Hand-
oded poli
y to learned poli
ies on �ve di�erent �eld sizes. The averageepisode durations for both solutions are shown in Table 1. Ea
h value for the learned runs was
al
ulated as an average of six separately learned poli
ies. The standard deviation is reported alongwith the mean.As 
an be seen from the table, the hand-
oded poli
y does better on the easier problems(30m� 30m and 25m� 25m), but the learned poli
ies do better on the more diÆ
ult problems.Keeper Poli
yField Size Hand-
oded Learned (�1�)30� 30 19.8 18.2 � 1.125� 25 15.4 14.8 � 0.320� 20 9.6 10.4 � 0.415� 15 6.1 7.4 � 0.910� 10 2.7 3.7 � 0.4Table 1: Comparison of average possession times (in simulator se
onds) for hand-
oded and learnedpoli
ies on various �eld sizes. 30



A possible explanation for this result is that the easier 
ases of keepaway have more intuitivesolutions. Hen
e, these problems lend themselves to a hand-
oded approa
h. When the �eld islarge, and the takers both 
harge dire
tly for the ball, the obvious solution is to wait until thetakers are fairly 
lose to the ball, then pass the ball to the teammate whose passing lane is notbeing 
overed. If this behavior is repeated with the proper timing, the ball 
an be kept almostinde�nitely. The tuned hand-
oded poli
y exhibits this behavior on the larger �eld sizes. However,without any impetus to 
hoose a simpler approa
h over a more 
ompli
ated one, learned poli
iestend to be more asymmetri
 and irregular. This la
k of rhythm seems to lead to suboptimalperforman
e on easier tasks.In 
ontrast, when the keepers are for
ed to play in a smaller area, the \intuitive" solutionbreaks down. The hand-
oded keepers tend to pass too frequently, leading to missed passes. Inthese more diÆ
ult tasks, the trained keepers appear to �nd \safer" solutions in whi
h the ball isheld for longer periods of time. Learned poli
ies are hard to 
hara
terize, but in general, the keeperin possession waits until the takers are about to 
onverge on the ball from both sides. Then, itqui
kly spins the ball around and makes a pass to one of its two teammates both of whi
h tend tobe 
lumped together in the opposite side of the �eld. Even if the intended re
eiver misses the pass,the se
ondary re
eiver has a very good 
han
e of rea
hing it before either taker. This approa
hleads to fewer missed passes and better overall performan
e than the hand-
oded solution.5.3.4 Changing the State RepresentationA frequent 
hallenge in ma
hine learning is �nding the 
orre
t state representation. In all of theexperiments reported so far, we have used the same state variables, whi
h were 
hosen without anydetailed exploration. Here we explore how sensitive the learning is to the set of state variables used.Ideally, if it is not parti
ularly sensitive to these variables, then we 
an avoid detailed sear
hes inthis part of representation spa
e10.As a starting point, noti
e that our Hand-
oded poli
y uses only a small subset of the 13 state10As indi
ated in Figure 7, the state variables are just one part of building the state representation. From thepoint of view of the learning algorithm, the real features 
ome from the binary feature ve
tor Fa. However, from apra
ti
al point of view, we do not usually manipulate these features individually. Rather, we 
reate them from the
ontinuous state variables using CMACs. Thus our experimentation in this se
tion is not dire
tly in feature spa
e.But it does tou
h on one of the most dire
t pla
es in whi
h human knowledge is inje
ted in our learning pro
ess.31



variables mentioned previously. For 3 keepers and 2 takers, the 5 variables are:� dist(K1; T1);� Min(dist(K2; T1); dist(K2; T2));� Min(dist(K3; T1); dist(K3; T2));� Min(ang(K2;K1; T1); ang(K2;K1; T2));� Min(ang(K3;K1; T1); ang(K3;K1; T2)).Be
ause theHand-
oded poli
y did quite well without using the remaining variables, we wonderedif perhaps the unused state variables were not essential for the keepaway task.To test this theory, we performed a series of learning runs in whi
h the keepers used only the �vevariables from the hand-
oded poli
y. The takers followed the Hand-
oded-T poli
y as before.Figure 14(a) shows the learning 
urves for six runs. As is apparent from the graph, the results arevery similar to those in Figure 12. Although we found that the keepers were able to a
hieve betterthan random performan
e with as little as one state variable, the �ve variables used in the hand-
oded poli
y seem to be minimal for peak performan
e. Noti
e by 
omparing Figures 12 and 14(a)that the keepers are able to learn at approximately the same rate whether the nonessential statevariables are present or not. The learner seems not to be deterred by the presen
e of extraneousstate variables.To explore this notion further, we tried adding additional state variables to the original 13.We ran two separate experiments. In the �rst experiment, we added 2 new angles that appearedrelevant but perhaps redundant:� ang(K1; C;K2)� ang(K1; C;K3)In the se
ond experiment, we added 2 
ompletely irrelevant variables: ea
h time step, new valueswere randomly 
hosen from [-90,90℄ with uniform probability. We performed several learning runsfor both state representations and plotted them all in Figure 14(b).From the graph, we 
an see that the learners are not greatly a�e
ted by the addition of relevantvariables. The learning 
urves look roughly the same as the ones that used the original 13 state32
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Random vars added(a) (b)Figure 14: (a) Keepers learning with only the 5 state variables from the Hand-
oded poli
y. (b)Learning with the original 13 state variables plus an additional two.variables (Figure 12). However, the 
urves 
orresponding to the additional random variables looksomewhat di�erent. The 
urves 
an 
learly be divided into two groups. In the �rst group, teamsare able to perform about as well as the ones that used the original 13 variables. In the se
ondgroup, the agents perform very poorly. It appears that agents in the se
ond group are 
onfusedby the irrelevant variables while the agents in the �rst group are not. This distin
tion seems tobe made in the early stages of learning (before the 1000th episode 
orresponding to the �rst datapoint on the graph). The learning 
urves that start o� low stay low. The ones that start o� high
ontinue to as
end.From these results, we 
on
lude that it is important to 
hoose relevant variables for the staterepresentation. However, it is unne
essary to 
arefully 
hoose the minimum set of these variables.5.3.5 Comparison to Q-learningTo understand the extent to whi
h our su

essful results 
an be attributed to our 
hoi
e of reinfor
e-ment learning algorithm, we 
ompared our results to those a
hieved by another popular algorithm,Q-learning. Unlike Sarsa, whi
h uses the same poli
y for 
ontrol and updates, Q-learning learnsvalues using the optimal 
ontrol poli
y. Besides this subtle, yet important, di�eren
e, the algorithmwas implemented identi
ally to the Sarsa algorithm des
ribed earlier.We performed �ve runs of the Q-learning algorithm for 3 keepers and 2 takers in a 20x20 region.The learning 
urves for these runs are plotted in Figure 15 along with our results using Sarsa underthe same 
onditions. From the graph, we 
an see that Q-learning takes more time to 
onverge thanSarsa, requiring 40{50 hours of learning time versus 15{20. Also, the poli
ies learned by Q-learning33



have a higher variability in performan
e a
ross the runs. This may be attributed to the instabilityof Q-learning when using fun
tion approximation. Finally, the graph shows that, with unlimitedlearning time, the best poli
ies found by Q-learning perform about as well as those learned by Sarsain this task.
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Figure 15: Learning 
urve 
omparison for Q-learning and Sarsa(�).5.3.6 S
aling to Larger ProblemsIn addition to our experiments with 3 vs. 2 keepaway with limited vision, we ran a series of trialswith larger team sizes to determine how well our te
hniques s
ale. First we performed severallearning runs with 4 keepers playing against 3 hand-
oded takers. We 
ompared these to our threeben
hmark poli
ies. The results are shown in Figure 16(a). As in the 3 vs. 2 
ase, the players areable to learn poli
ies that outperform all of the ben
hmarks. These results again serve to verifythat SMDP Sarsa(�) is able to learn this task even with limited vision.We also ran a series of experiments with 5 vs. 4 keepaway. The learning 
urves for these runsalong with our three ben
hmarks are shown in Figure 16(b). Again, the learned poli
ies outperformall ben
hmarks. As far as the authors are aware, these experiments represent the largest s
alekeepaway problems that have been su

essfully learned to date.From these graphs, we see that the learning time approximately doubles every time we moveup in size. In 3 vs. 2, the performan
e plateaus after roughly (by eyeballing the graphs) 15 hoursof training. In 4 vs. 3, it takes about 30 hours to learn. In 5 vs. 4, it takes about 70 hours.
34
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Always Hold(a) (b)Figure 16: (a) Training 4 Keepers against 3 takers with ben
hmarks. (b) Training 5 Keepersagainst 4 takers with ben
hmarks.5.3.7 DiÆ
ulty of Multiagent LearningA key outstanding question about keepaway is whether it is diÆ
ult as an individual learningtask, or if the multiagent 
omponent of the problem is the largest sour
e of diÆ
ulty. To see howthe number of agents learning simultaneously a�e
ts the overall training time, we ran a series ofexperiments in whi
h a subset of the keepers learned while its remaining teammates followed a�xed poli
y learned previously. In ea
h run, 3 keepers played against 2 hand-
oded takers.We began by training all of the keepers together until their learning 
urves appeared to 
attenout. We then �xed two of them, and had the third learn from random initial 
onditions. Finally, weallowed one keeper to 
ontinue to use its learned poli
y while the other two learned from s
rat
h.We ran ea
h experiment three times. The learning 
urves for all nine runs are shown in Figure 17.From the graph we 
an see that the learning 
urves for 2 learning agents and 3 learning agentslook roughly the same. However, the runs with only 1 player learning peak mu
h sooner. Appar-ently, having pre-trained teammates allows an agent to learn mu
h faster. However, if more thanone keeper is learning, the presen
e of a pre-trained teammate is not helpful. This result suggeststhat multiagent learning is an inherently more diÆ
ult problem than single agent learning, at leastfor this task. In the long run, all three 
on�gurations' learned poli
ies are roughly equivalent. Thenumber of learning agents does not seem to a�e
t the quality of the poli
y, only the rate at whi
hthe poli
y is learned.
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urves for varying number of keepers learning simultaneously.6 Related WorkReinfor
ement learning has been previously applied to robot so

er. Using real robots, U
hibe[1999℄ used reinfor
ement learning methods to learn to shoot a ball into a goal while avoiding anopponent. This task di�ers from keepaway in that there is a well-de�ned goal state. In morere
ent resear
h on the same task, they used a
tions with (probabilisti
) termination 
onstraintsreminis
ent of the options used in this arti
le [U
hibe et al., 2001℄. Also using goal-s
oring as thegoal state, TPOT-RL [Stone and Veloso, 1999℄ was su

essfully used to allow a full team of agentsto learn 
ollaborative passing and shooting poli
ies using a Monte Carlo learning approa
h, asopposed to the TD learning explored in this arti
le. Andou's [1998℄ \observational reinfor
ementlearning" was used for learning to update players' positions on the �eld based on where the ballhas previously been lo
ated.Perhaps most related to the work reported here, Riedmiller et al. [2001℄ use reinfor
ementlearning to learn low-level skills (\moves"), su
h as ki
king, ball-inter
eption, and dribbling, as wellas a 
ooperative behavior in whi
h 2 atta
kers try to s
ore against one or two takers. In 
ontrastto our approa
h, this work uses the full sensor spa
e as the input representation, with a neuralnetwork used as a fun
tion approximator. The taker behaviors were always �xed and 
onstant,and no more than 2 atta
kers learned to 
ooperate. More re
ently, this approa
h was s
aled up to3 atta
kers against 4 defenders in several di�erent s
oring s
enarios [Riedmiller et al., 2003℄. Thisresear
h is also part of an on-going e�ort to implement a full so

er team through reinfor
ementlearning te
hniques.Distributed reinfor
ement learning has been explored previously in dis
rete environments, su
h36



as the pursuit domain [Tan, 1993℄ and elevator 
ontrol [Crites and Barto, 1996℄. The keepawaytask di�ers from both of these appli
ations in that keepaway is 
ontinuous, that it is real-time, andthat there is noise both in agent a
tions and in state-transitions.One of reinfor
ement learning's previous biggest su

ess stories is Tesauro's TD-Gammon [1994℄whi
h a
hieved a level of performan
e at least as good as that of the best human players in thegame of ba
kgammon. Like so

er keepaway, ba
kgammon is a sto
hasti
 domain with a large statespa
e. However, keepaway also in
ludes the 
hallenges of per
eptual and a
tuator noise, distributedlearning, and 
ontinuous state variables.There has been 
onsiderable re
ent e�ort in the �eld of reinfor
ement learning on s
aling upto larger problems by de
omposing the problem hierar
hi
ally (e.g., Dietteri
h, 2000; Andre andRussell, 2001) or by exploiting fa
tored representations (e.g., Boutilier et al., 1999; Koller and Parr,1999; Guestrin et al., 2001). Our approa
h to keepaway is hierar
hi
al in some respe
t, given thatthe low-level a
tions are pre-
omposed into more abstra
t a
tions and temporally extended options.However, in our 
ase, the low-level a
tions are not learned: from a learning perspe
tive, we are in a
ompletely \
at" s
enario. The main leverage for both fa
tored and hierar
hi
al approa
hes is thatthey allow the agent to ignore the parts of its state that are irrelevant to its 
urrent de
ision [Andreand Russell, 2002℄. Although our state variables 
an be seen as a fa
toring of the state spa
e,there are no independen
ies among the variables su
h that a
tions a�e
t only subsets of the statevariables. Thus, existing fa
tored approa
hes are not dire
tly appli
able. We believe that it is stilla very interesting topi
 of resear
h to try to s
ale hierar
hi
al and fa
tored methods to work welltabula rasa in su
h a 
omplex environment as the one we are 
onsidering. However, the empiri
alresults with these methods on large-s
ale problems have been s
ar
e. By fo
using on learning onepart of the problem with a 
at te
hnique, we have been able to a
hieve su

essful results on a verylarge-s
ale problem (with respe
t to the size of the state spa
e), despite the la
k of useful fa
toringsof the state spa
e.Ma
hine learning te
hniques other than reinfor
ement learning have also been applied su

ess-fully in the RoboCup domain. There have been two attempts to learn the entire simulated RoboCuptask via geneti
 programming (GP) [Luke et al., 1998; Andre and Teller, 1999℄. While both e�ortswere initially intended to test the ability of GP to s
ale to the full, 
ooperative robot so

er task,the �rst system ended up evolving over hand-
oded low-level behaviors, and the se
ond a
hieved37



some su

essful individual behaviors but was unable to generate many 
ollaborative team behav-iors. Whether this approa
h 
an be s
aled up to produ
e more su

essful teams remains to beseen.Neural networks and de
ision trees have been used to address various so

er subtasks su
h asde
iding whether to pass or shoot near the goal [Noda et al., 1996℄, and learning how to shootand inter
ept the ball [Marsella et al., 2001℄. A hierar
hi
al paradigm 
alled layered learning wasused to 
ombine a ball-inter
eption behavior trained with a ba
k-propagation neural network; apass-evaluation behavior trained with the C4.5 de
ision tree training algorithm [Quinlan, 1993℄;and a pass-de
ision behavior trained with TPOT-RL (mentioned above) into a single, su

essfulteam [Stone, 2000℄.Several previous studies have used keepaway so

er as a ma
hine learning testbed. Whitesonand Stone [2003℄ used neuroevolution to train keepers in the So

erBots domain [Bal
h, 2000b℄.The players were able to learn several 
on
eptually di�erent tasks from basi
 skills to higher-levelreasoning using a hierar
hi
al approa
h they 
all \
on
urrent layered learning." A hand-
odedde
ision tree was used at the highest level. The keepers were evaluated based on the numberof 
ompleted passes. Hsu and Gustafson [2002℄ evolved keepers for 3 vs. 1 keepaway in the mu
hsimpler and more abstra
t TeamBots simulator [Bal
h, 2000a℄. In this domain, players move aroundin a 
oarse grid and exe
ute dis
rete a
tions. The takers move twi
e as qui
kly as the keepers andthe ball moves twi
e as qui
kly as the takers. Keepers were trained to minimize the number ofturnovers in �xed duration games. It is diÆ
ult to 
ompare these approa
hes to ours be
ause theyuse di�erent �tness fun
tions and di�erent game dynami
s.More 
omparable work to ours applied evolutionary algorithms to train 3 keepers against 2takers in the RoboCup so

er simulator [Pietro et al., 2002℄. Similar to our work, they fo
used onlearning keepers in possession of the ball. The keepers 
hose from the same high-level behaviors asours. Also, they used average episode duration to evaluate keeper performan
e. However, be
ausetheir high-level behaviors and basi
 skills were implemented independently from ours, it is diÆ
ultto 
ompare the two learning approa
hes empiri
ally.In 
onjun
tion with the resear
h reported here, we have explored te
hniques for keepaway ina full 11 vs. 11 s
enario played on a full-size �eld [M
Allester and Stone, 2001℄. The su

essfulhand-
oded poli
ies were in
orporated into ATT-CMUnited-2000, the 3rd-pla
e �nisher in the38



RoboCup-2000 simulator 
ompetition.ATT-CMUnited-2000 agents used an a
tion ar
hite
ture that is motivated by a desire to fa-
ilitate reinfor
ement learning over a larger, more 
exible a
tion spa
e than is 
onsidered in thisarti
le: a
tions are parameterized su
h that hundreds of options are 
onsidered at a time [Stoneand M
Allester, 2001℄. The agents sele
t a
tions based on their per
eived values and su

ess prob-abilities. However, the value fun
tion is tuned manually.7 Con
lusionThis arti
le presents an appli
ation of episodi
 SMDP Sarsa(�) with linear tile-
oding fun
tionapproximation and variable � to a 
omplex, multiagent task in a sto
hasti
, dynami
 environment.With remarkably few training episodes, simultaneously learning agents a
hieve signi�
antly betterperforman
e than a range of ben
hmark poli
ies, in
luding a reasonable hand-
oded poli
y, and
omparable performan
e to a tuned hand-
oded poli
y. Although no known theoreti
al resultsguarantee the su

ess of Sarsa(�) in this domain, in pra
ti
e it performs quite well.Taken as a whole, the experiments reported in this arti
le demonstrate the possibility of multipleindependent agents learning simultaneously in a 
omplex environment using reinfor
ement learningafter a small number of trials. The main 
ontribution is an empiri
al possibility result and su

essstory for reinfor
ement learning.Our on-going resear
h aims to build upon the resear
h reported in this arti
le in many ways. Inthe long-term, we aim to s
ale up to the full RoboCup so

er task and to enable learned behaviorsto out-perform the best 
urrent 
ompetition entries, at least in the RoboCup simulation league,and ideally in one of the real robot leagues as well. In parallel, we aim to explore the appli
ationof the 
urrent te
hniques as reported here to other large-s
ale multiagent real-time domains, su
has distributed training simulations.Meanwhile, there are three more immediate, short-term goals along the path to our ultimate aim.First, though we have some moderately su

essful results at taker learning, we aim at improvingthe ability of the takers to learn by altering their representation and/or learning parameters. Onepromising line of inquiry is into the eÆ
a
y of alternately training the takers and the keepers againstea
h other so as to improve both types of poli
ies.Se
ond, while the formulation of keepaway presented in this arti
le in
ludes an enormous state39



spa
e, the a
tion spa
e is quite limited. An important dire
tion for future resear
h is to explorewhether reinfor
ement learning te
hniques 
an be extended to keepaway with large, dis
rete, or
ontinuous, parameterized a
tion spa
es, perhaps using poli
y gradient methods [Sutton et al.,2000℄. For example, the agents 
ould learn where to move when not in possession of the ball orthey 
ould learn dire
tion in whi
h to pass as opposed to the player to whi
h to pass. This latterpossibility would enable passes in front of a teammate so that it 
an move to meet the ball.Third, when training in a new, but related environment (su
h as a di�erent �eld size or adi�erent number of players), one alternative is always to train a 
ompletely new behavior froms
rat
h, as we have done throughout this arti
le. However, another alternative is to begin trainingfrom a previously learned behavior. We plan to investigate the extent to whi
h behavior transferof this form is feasible and bene�
ial using the learning approa
h presented in this arti
le.In 
onjun
tion with the resear
h reported in this arti
le, by having in
orporated the substratedomain for this resear
h|keepaway|into the publi
ly available, open-sour
e distribution of theRoboCup so

er simulator, we hope to en
ourage additional resear
h on learning in the keepawaydomain. We believe that keepaway is a promising ben
hmark problem for ma
hine learning algo-rithms [Stone and Sutton, 2002℄. While Sarsa(�) has shown promising results, it may not be the�nal answer.A
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