
In IEEE International Conference on Robotics and Automation (ICRA 05),
Barcelona, April 2005.

Simultaneous Calibration of Action and Sensor
Models on a Mobile Robot

Daniel Stronger and Peter Stone
Department of Computer Sciences, The University of Texas at Austin

1 University Station C0500, Austin, Texas 78712-1188
{stronger,pstone}@cs.utexas.edu

http://www.cs.utexas.edu/˜{stronger,pstone}

Abstract— This paper presents a technique for the Simulta-
neous Calibration of Action and Sensor Models (SCASM) on a
mobile robot. While previous approaches to calibration make use
of an independent source of feedback,SCASM is unsupervised,
in that it does not receive any well-calibrated feedback about
its location. Starting with only an inaccurate action model, it
learns accurate relative action and sensor models. Furthermore,
SCASM is fully autonomous, in that it operates with no human
supervision. SCASM is fully implemented and tested on a Sony
Aibo ERS-7 robot.

I. I NTRODUCTION

Mobile robots rely on models of their actions and sensors
in order to interact with their environment. For example,
they may select actions based on theiranticipated effects
and deduce theiractual effects based on their subsequent
sensations. These sensor and action models are typically
calibrated manually, a fairly laborious and often brittle process.
Furthermore, if the robot is placed in a novel environment
and/or its sensors and actuators change over time, the pre-
calibrated models can quickly become error-prone. Thus it is
desirable for this calibration process to be automated, so that
the robot can learn the effects of its actions and the meanings
of its observations without human supervision.

This paper presents a technique, calledSCASM,1 for a
mobile robot to simultaneously learn two calibration functions.
One maps the various readings of a visual sensor to relative
distances from a fixed landmark, and the other maps a range
of action commands to the velocities of the corresponding
movements.SCASM is completely autonomous, and it is
unsupervised, in that the robot never receives any feedback
as to its actual location or velocity.SCASM’s goal is for the
robot to learn action and sensor models that accurately reflect
its distances and velocities.

SCASM involves the robot performing the following three
tasks simultaneously.

• Walking forwards and backwards while its visual sensor
is faced at a fixed target, covering the entire range of
relevant distances and velocities.

• Learning a function from action commands to actual
velocities, assuming the distance calibration for the visual
sensor is accurate.

• Learning a function from distance observation data to
its distances from the target, assuming the robot has an
accurate sense of its velocities.

1Simultaneous Calibration of Action and Sensor Models

This process successfully learns action and sensor models
that closely approximate measurements made manually with
a stopwatch and a tape measure.

II. EXPERIMENTAL SETUP

SCASM is implemented and tested on a commercially avail-
able robot platform, namely the Sony Aibo ERS-7.2 The
results reported in this paper make use of walking and vision
processing modules that we created earlier as part of a larger
project [1]. The walk is defined by a number of parameters
that specify the attempted trajectories of the Aibo’s feet.To
move forwards and backwards at different speeds, the robot
interpolates between parameters for an idle walkpi that steps
in place, a fast forwards walkpf that goes at a speed ofvmax

(335 mm/s), and a fast backwards walkpb that goes at a speed
of vmin (−280 mm/s). The action commands are labeled by
a desired velocityr and have parameters given by:

pr =

{

pi + r
vmax

(pf − pi) if r ≥ 0

pi + r
vmin

(pb − pi) if r < 0
(1)

Note that Equation (1) is based on the assumption that the
Aibo’s velocity is linear in its walking parameters. However, it
turns out not to be linear at all, as the experimental resultswill
bear out. The robot’s actual velocity varies unpredictablywith
respect to the desired velocity.SCASM learns the function from
the robot’s action commands to their corresponding velocities.

The Aibo’s visual sensor is based on its camera, which we
have previously trained to recognize objects in the robot’s
environment. One of these objects is a colored cylindrical
beacon that the robot can use to help it localize while on
a playing field. The height of the beacon in the robot’s image
plane decreases with the robot’s distance from the beacon; this
observed height (in pixels) is the visual sensor reading used
for the experiments reported in this paper. The Aibo and the
beacon are shown in Figure 1, along with a view of the beacon
taken through the Aibo’s camera. Detailed descriptions of the
walking and vision modules used here are given in [1].

While the robot learns the action and sensor models, its
behavior must allow it to experience the full range of relevant
action commands and observations. To achieve this goal, the
Aibo walks alternatingly forwards and backwards across a pre-
set range of distances from the beacon. For the experiments
reported in this paper, the robot’s goal is to learn about
the action commands in the range[−300, 300]. Hence, the

2http://www.aibo.com



robot chooses a random action command in the range[0, 300]
while going forwards and from[−300, 0] during the backwards
phase. It continues to execute each action for three seconds
before choosing a new one. It switches between walking
forwards and backwards when the beacon height in the image
gets too big or too small. These size thresholds are chosen
manually so as to keep the robot in its field of operation.
This behavior covers the full range of relevant distances and
velocities, as desired.

distance

sensor
input

Fig. 1. The Aibo and the beacon. The inset is a picture of the beacon taken
through the Aibo’s camera.

Although the action commands being executed only attempt
to move forwards and backwards, random drift would cause
the Aibo to slowly get off course. To counteract this effect,
the walking controller is set to constantly turn towards the
beacon with an angular velocity proportional to the beacon’s
horizontal angular distance from straight ahead. This small an-
gular velocity has a negligible impact on the robot’s forwards
or backwards velocity. A video of the Aibo performing the
training behavior described here is available online.3

III. A CTION AND SENSOR MODELS

As the robot moves towards and away from the beacon, we
denote its (actual) distance from the beacon at timet asx(t).
During this process, the robot has two sources of information
about its location along its axis of movement. For one, the
robot receives a sequence of visual sensor observations, the
kth one denoted byobsk and occurring at timetk. Each
value reported by the visual sensor corresponds to a specific
distance. We call this function thesensor model, and denote it
by S, so thatx(tk) = S(obsk)+ωk, whereωk is a zero-mean
random offset due to the inherent noise in the visual sensor.
This functionS is one of the two functions that the robot is
trying to learn.

At the same time, the robot continuously executes an action
command,C(t), that varies with time. Each action command
moves the robot at a specific velocity, and we denote the
function from command to velocity byA. This function is
the action model that the robot learns along with the sensor
modelS. The action model also provides information about the
robot’s location:x(t) = x(0) +

∫ t

0
A(C(s)) ds. SCASM works

by implicitly performing a continual comparison of these two
sources of information. The robot knows the values ofobsk,
tk, andC(t), and its task is to learn the functionsA andS.

3http://www.cs.utexas.edu/˜AustinVilla/?p=research/simultaneouscalibration

Because the robot is trying to learn two arbitrary continuous
functions, it must represent them with a function approximator.
Polynomial regression is used for both functions. That is, for
the sensor model, the robot’s goal is to learn coefficientss0

through sd such that the polynomial
∑d

i=0 siobs
i approxi-

mates the actualS(obs) as closely as possible, whered is the
degree of the polynomial being fitted to the data. Similarly,
the robot will learn coefficientsa0 throughad for the action
model, with the goal of

∑d

i=0 aic
i
≈ A(c) over the range

of commandsc. The sensor and action models are learned as
polynomials of degree three and four respectively, based on
the estimation (without detailed experimentation) that these
are roughly the polynomial degrees necessary to capture the
complexity of the functions being modeled.

SCASM learns the action and sensor modelsfrom each other
in that it is not given any ground truth as to the robot’s
distance to the beacon or its speed. Therefore, it cannot learn
the two models in any particular units. For example, the sensor
model maps observations onto points on a linear axis, but it
makes no claims as to what physical distance from the beacon
corresponds to the number zero, or what length corresponds
to the model’s units. Similarly, the action model is learnedin
arbitrarily units, although here the number zero is constrained
to correspond to a speed of zero. However, the learned action
and sensor models will be consistent with each other. That
is, since the robot knows how long a second is, whatever
distance turns out to be the unit for the learned distances, that
distance per second is the unit for the learned velocities. Note
that this property is sufficient for it to perform domain-centric
tasks, such as predicting the amount of time a specific action
command will take to yield a certain visual sensor reading.

IV. L EARNING THE SENSOR MODEL

First we demonstrate that it is possible to learn a relative
sensor model given any constant action. Note that while the
robot executes a constant action command,c, it is moving at
a constant velocity,A(c). Thus if this command is executed
continuously starting at time0, the robot’s location at timet
will be given byx(t) = x(0) + t ·A(c). Thus there is enough
information to learn the sensor model, even in the absence of
knowledge of the value ofA(c).

In particular, in this situation it suffices to learn a function
from obsk to tk. If Ŝ(obsk) = tk, then sincetk = (x(tk) −
x(0))/A(c), Ŝ(obsk) = (x(tk)− x(0))/A(c). This expression
represents a shifted and scaled version of the robot’s location,
and sinceSCASM is only trying to learn a sensor model up
to shifting and scaling,̂S is a satisfactory sensor model. The
robot learns the function by performing polynomial regression
on the pairs(obsk, tk).

Given n data points(obsk, tk), SCASM computes the co-
efficients of the best fitd-degree polynomial,P (obs) = α +
∑d

i=1 βiobs
i, which minimizes the total squared error between

P (obsk) and the correspondingtk over all k from 1 to n.
To computeα and β = (β1, · · · , βd)

⊤, we reformulate the
problem as a multivariable linear regression by representing
each of the powers ofobs with its own variableVj = obsj .
The input data is then ann×d matrix V given byVi,j = obsj

i



and we denote then-dimensional output vector byy where
yi = ti. To perform this regression, first we defineM andY
to be versions ofV and y where the variables are centered
around zero. That is, their means are subtracted from their
values:Mi,j = Vi,j − Vj andYi = yi − y. Thenα andβ are
given by [2], [3]

β = (M⊤M)−1(M⊤Y ) and α =
1

n

n
∑

i=1

(y − V β)i (2)

Fortunately, it is not necessary to storeV and y explicitly
and compute these quantities from them each time. To save
space and time as arbitrarily many data points come in, the
robot incrementally maintains a number of sums that require
constant storage space in the number of data points. For
example,(M⊤M)i,j evaluates to

∑

k

Vk,iVk,j −
1

n
(
∑

k

Vk,i)(
∑

k

Vk,j) (3)

The robot maintains these sums (for alli andj from 1 to d)
incrementally, along with

∑

k Vk,iyk and
∑

k yk. They enable
it to computeM⊤M as above,M⊤Y , and thenβ andα.

When this process is applied to the pairs(obsk, tk) with
d = 3 while a constant action command is being executed,
the cubic learned is typically quite an accurate fit to the data,
as shown in Figure 2a).

Observations:
Best Fit Cubic:

Beacon Height (in pixels)

Time
(s)

Best Fit Cubic (to all data):
Walking Backwards Observations:

Walking Forwards Observations:

Beacon Height

x (t)a

a) b)
Fig. 2. a) After walking forwards via a constant action, these are the observed
data points (+), mapped against time. The dashed curve is the best fit cubic
to these points. The variation in beacon height at any given time is due to
inherent noise in vision. b) The plotted points are(obsk, xa(tk)) as the robot
performs one full cycle of walking towards the beacon and backing away from
it. The+’s are the observations while walking forwards and the×’s are while
walking backwards. The polynomial is fitted to all the points.

It is also desirable for the robot to be able to learn a sensor
model while it performs a series of various actions, such as in
the randomized behavior described in Section II. This process
relies on the robot having access to an accurate action model.
Although it does not have one initially, Section VI shows how
this ability can be incorporated into a process that can learn
both models from scratch.

Given an action modelA, the robot can use dead reck-
oning to compute its location as a function of time. As
mentioned in Section III, the robot’s locationx(t) is given
by x(0) +

∫ t

0
A(C(s)) ds, which we denote byxa(t). It

suffices to assume thatx(0) = 0, since it is learning relative
distances. Thus the robot can accumulate an estimate forx(t)
by initializing x to be0 at time0 and continually incrementing
it by A(C(t))∆t, where∆t is the amount of time between
increments. Then, by performing cubic regression on the pairs
(obsk, xa(tk)), the robot effectively learns a sensor model

from the action model. The result of such a regression is shown
in Figure 2b). Note that because the action model used here
is inaccurate, the estimates taken while walking forwards and
backwards are not well aligned with each other. Nonetheless,
the learned sensor model is still a qualitatively reasonable one,
in that as the beacon height increases, the rate of change of
the corresponding location decreases, as would be expected.

V. L EARNING THE ACTION MODEL

In this section, we assume that the robot has an accurate
sensor model and show how the robot can use it to learn an
action model. This learning uses the sensor model to give the
robot an estimate of its location from each observation. We
denote this estimate byxs(tk), and it is given byS(obsk).
The robot’s goal is to learn the functionA(c) =

∑d

i=0 aic
i

that causes the values ofx(tk) based onA to match those
based onS as closely as possible. That is, the robot computes
the coefficientsai that minimize the error defined by

E =

n
∑

k=1

[

xs(tk) −

(

x(0) +

∫ tk

0

d
∑

i=0

aiC(s)i ds

)]2

=

n
∑

k=1

[

xs(tk) −

(

x(0) +

d
∑

i=0

ai

∫ tk

0

C(s)i ds

)]2

, (4)

where the robot knows the valuesobsk, xs(tk), and the values
of C(s). This problem is an instance of a multivariable linear
regression, withd + 1 variablesV1 throughVd+1 defined as
Vj =

∫ t

0
C(s)j−1 ds and outputyk = xs(tk). The regression

computes the weightsai (and a value forx(0)) that minimize
the error. SinceC(s) changes every three seconds, the value
for x(t) suggested by an estimate forx(0) and the weights
ai varies in a piecewise linear manner with respect to time.
The regression being performed has the effect of finding the
piecewise linear curve that fits the data(tk, xs(tk)) as closely
as possible (as shown in Figure 3), provided that the slope of
the line at any timet is a constant quartic function of(C(t)).

x (t)s

Learned Action Model:
Observations:

Time (s)

Fig. 3. The plotted points are(tk, xs(tk)) as the robot performs one
full cycle of walking towards the beacon and backing away from it. The
learned action model is applied to the executed action commandsto yield the
piecewise linear location estimate shown here.

To learn an action model, the robot first learns a rough
sensor model using the constant action method at the top of
Section IV. Then it uses that sensor model to execute the
process described in this section. The result of this process is
shown in Figure 3.



VI. L EARNING BOTH SIMULTANEOUSLY

We have so far demonstrated the ability for the robot to
learn the sensor model from the action model and vice versa.
Making use of both of these capabilities, this section shows
how the robot can simultaneously learn both models, even
when it is given very little useful starting information. This
learning is possible because, even though the action (sensor)
model learned from an inaccurate sensor (action) model will
be inaccurate, it will be an improvement. As each model
grows more accurate, its ability to help the other model
improve grows. As this bootstrapping process continues, the
two models converge to functions that accurately reflect what
they are trying to model.

Because both models grow in accuracy as time goes on, the
regressions should give more weight to the more recent data
points. Thus a weighted regression is used, where each data
point has a weight that decreases over time. Note that for both
learning directions, there is one regression data point foreach
visual sensor observation. Thus the weight of each data point
starts at one and decreases by a constant factorγ < 1 every
time a new observation is taken. Thus if there have beenn
observations so far, the weight of the data points corresponding
to the ith one isγn−i.

To compute the solution to the weighted regression, we
define W as ann × n diagonal matrix withWi,i = γn−i

and N as the sum of the weights
∑n

i=1 γn−i. Then we can
use a weighted version of Equation (2) [3]:

β = (M⊤WM)−1(M⊤WY ) and α =
1

N

n
∑

i=1

γn−i(y − V β)i (5)

As before, these quantities are expressed in terms of sums.
For example(M⊤WM)i,j is given by

∑

k

γn−kVk,iVk,j −
1

N
(
∑

k

γn−kVk,i)(
∑

k

γn−kVk,j) (6)

These sums can also be maintained incrementally, because
∑n+1

k=1 γ(n+1)−kzk = γ(
∑n

k=1 γn−kzk) + zn+1 for any se-
quencezk.

Pseudocode for the entire algorithm is given in Figure 4.
At time t, the robot makes use of its best estimates thus far
as to the action and sensor models,At and St. Throughout
the learning, the robot maintains two estimates of its loca-
tion, one based on its current sensor model,xs(t), and the
other based primarily on its action model,xa(t). After any
observationobsk at time tk, xs(tk) is given by St(obsk).
At the same time,xa(t) is maintained by continually in-
crementing it byAt(C(t))∆t, where ∆t is the amount of
time between increments andAt(C(t)) is the robot’s current
estimate of its velocity. Unfortunately, it is not sufficient for
xa(t)’s derivative to be an accurate estimate of the robot’s
velocity. This constraint still allows for the possibilitythat
xa(t) is a constant displacement away fromxs(t). When this
approach was tried on the robot, it occasionally happened
that the estimates diverged, both increasing continually,in
which case neither model can be learned accurately. To prevent
this problem,xa(t) is adjusted towardsxs(t) every time an
observation is taken. The adjustment is implemented by the

assignmentxa(tk) ← (1 − λ)xa(tk) + λxs(tk), whereλ is
a constant that determines the strength with whichxa(t) is
pulled towardsxs(t).

The model estimatesSt andAt are continually updated in
accordance with the location estimatesxa(t) andxs(t), with
each model being updated by the location estimate based on
the other model. These updates consist of the incremental
updates that comprise the weighted polynomial regressions
that give the best fit estimates ofS andA, as described above.
The flow of information is depicted in Figure 5b). Note that
because the regressions can be computed incrementally, they
can be calculated every time the robot processes an image,
corresponding to about20 Hertz. This process happens con-
currently with all of the robot’s other real-time computation,
including vision and motion processing, all on-board on a
single576 MHz processor.

xa(t)← 0
for each time stepdo

if t < 2tstart then
xa(t)← xa(t) + A0(C(t))∆t

else
xa(t)← xa(t) + At(C(t))∆t

end if
if an observationobsk is madethen

if t > tstart then
xs(t)← St(obsk)
UPDATE At with (t, xs(t))
xa(t)← (1− λ)xa(t) + λxs(t)

end if
UPDATE St with (t, xa(t))

end if
end for

Fig. 4. Algorithm for simultaneous action and sensor model learning. The
routine UPDATE incorporates one new data point into the weighted regression
for the model being updated.

tS A tA 0
t = 0

t = t

t = 2tstart

start

S A

x x

S A

s a

a) b)
Fig. 5. a) The ramping up process. The arrows indicate one modelbeing
learned based on another. Note that aside fromA0, a model is not learned
from until it has been learned for a sufficient amount of time. b)The flow
of information. The thick arrows represent incorporating a data point into the
weighted regression for a model. The thin arrows indicate that each model
is used to construct the corresponding estimate of the robot’s location. The
dashed arrow signifiesS’s influence on the estimatexa.

At the start of the training, there is no data to motivate
either the action model or the sensor model to get the learning
process started. For a period of time at the beginning,tstart,
the robot uses a fixed, pre-set action model,A0, instead of
At. The function used forA0 is the identity function, so that
A0(c) = c. During this time, the sensor model is learned
based onA0, but the action model is not being learned yet,
because the sensor model is based on too few data points.
After time tstart has passed, the sensor model can be used to



start learning an action model. However, until another period
of time lengthtstart has passed, this new action model is not
based on enough data points to be used for learning. From time
2tstart into the learning on, the action and sensor models can
learn from each other. This process is depicted in Figure 5a).

Figure 6 depicts howxs(t) andxa(t) vary over time when
S and A are being learned simultaneously. Note that both
oscillate with the robot’s walking towards and away from the
beacon. AsA andS grow more accurate, their corresponding
estimates of the location come into stronger agreement.

Time (s)

x(t)

Fig. 6. This figure shows howxa(t), and xs(t) vary over time. In this
example run, the+’s are values ofxs(t), and the curve depictsxa(t). Over
time, each model learns how to keep its estimate of the location close to the
other model’s estimate.

The algorithm described above makes use of a few constants
that did not require any extensive tuning. The discount factor
for the regression weights,γ, is 0.999. The strength of the pull
of xa towardsxs, λ, is 1/30. These values were the first ones
that were tried forγ andλ. The starting phase time,tstart, is
20 seconds. We tried10 seconds first but that was too short.

VII. E XPERIMENTAL RESULTS

After SCASM has run for a pre-set amount of time (two and
a half minutes), we consider its best estimates forA and S
to be the models that it has learned at that point. The success
of SCASM is evaluated by comparing the learned action and
sensor models to those measured with a stopwatch and a tape
measure. The measured action model is obtained by measuring
the velocity of each action command that is a multiple of
20 from −300 to 300. We measure the velocity of an action
command by timing it across an appropriate distance five
times. The standard deviation of the velocity measurement for
a given action command across the five timings never exceeded
7 mm/s. The measured action model is shown in Figure 7a).

a) b)

Measured Action Model:
Learned Action Model:

Vel.

Action Command

Learned Sensor Model:
Measured Sensor Model:

Beacon Height

Dist.

Fig. 7. A learned action and sensor model

Similarly, the accuracy of the learned sensor model is
gauged by comparing it to a measured sensor model. The
sensor model is measured by having the Aibo stand at mea-
sured distances from the beacon. The distances used were the

multiples of20 cm from120 cm to360 cm. At each distance,
the robot looked at the beacon until it had collected100 beacon
height measurements. The average of these measurements was
used as a data point for the sensor model, and their standard
deviation did not exceed1.1 pixels at any distance. The
measured sensor model is shown in Figure 7b).

The learning process was executed15 times, with each trial
lasting for two and a half minutes. Figure 7a) shows a typical
learned action model, compared to the measured action model
data. Note that since the action model is not learned in any
specific units, in order to compare the learned model to the
measured one, we must first determine the appropriate scaling
factor. This evaluation is done by calculating the scaling factor
that minimizes the mean squared error. On average, the root
mean square error between the scaled learned action model and
the measured action model was29.6± 12.4 mm/s. Compared
to the velocity range of600 mm/s, the error is4.9 percent. The
best fit possible by a fourth degree polynomial to the measured
action model has an error of17.2 mm/s. By contrast, when the
the initial action model,A0, is evaluated in the same manner,
the error is43.0 mm/s.

Figure 7b) shows a typical learned sensor model with the
measured sensor model. The learned modelS maps obser-
vations to relative distances,S(obs), which are intended to
model the actual distances from the beacon. These actual
distances are given bya + bS(obs), wherea and b are two
constants that are not learned. Thus in order to evaluate a
learned sensor model, we compute the values ofa andb that
minimize the mean squared error betweena + bS(obs) and
the measured sensor model. This minimization is done with
a linear regression on the points(S(obsi), Sm(obsi)), where
theobsi are the sensor readings corresponding to the measured
distancesSm(obsi). Our evaluation of a learned sensor model
is the root mean square error between it and the measured
model, once this process has been applied. This value was, on
average,70.4± 13.9 mm. Compared to the distance range of
2400 mm, the error is2.9 percent. The best fit possible by a
cubic to the measured sensor model has an error48.8 mm.

Over the course of a trial, both models get progressively
more accurate. The learning curves are depicted in Figure 8.
Both models’ errors are shown, compared to the best possible
error for the measured model and the degree of the polynomial
being learned. The data is averaged over all15 trials.

Although the action and sensor models are not learned to
any particular scale, since they are learned from each other
they should be to the same scale. This property is tested by
comparing the scaling constants used to give the best fits
to the measured models, the scaling constant for the action
model andb for the sensor model. These two values should be
equal to each other in absolute value. We evaluate the degree
of equality by computing the average distance between the
absolute value of the ratio between the two scaling constants
and1. The average distance is0.08± 0.06. This result shows
that the two learned models are consistent with each other.

The amount of time taken bySCASM to accurately learn its
action and sensor models is two and a half minutes. Note that



for a fixed environment,SCASM only needs to be executed
once. Given that each time the robot is booted up, it takes
about27 seconds to initialize, we considerSCASM’s one-time
execution time to be qualitatively quite short. Certainly,it is
within the bounds of what can be reasonably executed on-line
upon insertion into a new environment.

Learned Action Model Error

Learned Sensor Model Error

Time (s)

Error

Fig. 8. This figure depicts the average error in the learned models as a
function of time. The error for the action model is in mm/s, and forthe
sensor model in mm. The horizontal lines are at the minimum possible error
to the measured models for a polynomial of the appropriate degree.

The results described above start from a linear action
model that is somewhat similar to the measured action model
(shown in Figure 7). To examine the reliance of our approach
on the starting action model, we performed two tests with
more impoverished starting points. First, we used a piecewise
constant model equal to1 for positive action commands and
−1 for negative ones. This model conveys only the direction
of the action but no information about its speed. In15 runs,
the robot was able to achieve an average error of85.3± 24.5
mm in its learned sensor model and31.3 ± 9.2 mm/s in the
action model after two and a half minutes. Even with a starting
model ofA(x) = 1, which imparts no information about the
action model, on10 out of 15 trials the robot was able to
achieve an average performance of88.6 ± 11.5 mm error in
the sensor model and27.3 ± 6.2 in the action model after
five minutes. The remaining trials diverged, presumably dueto
initially learning a pair of models that were so inaccurate that
no useful information could be recovered from them. Note that
the errors achieved with these more impoverished models are
comparable to those attained with the linear model (70.4±13.9
mm and29.6 ± 12.4 mm/s for the sensor and action models
respectively), indicating that these results are not particularly
sensitive to the starting action model.

VIII. R ELATED WORK

Some previous work has focused on mobile robots cali-
brating their odometry models automatically based on their
sensors. For example, Roy and Thrun [4] calibrate the odom-
etry on a wheeled robot using an incremental maximum
likelihood method, while Martinelli et al. [5] and Larsen et
al. [6] use an augmented Kalman Filter to estimate odometry
errors. There has also been work on calibrating networks of
sensors. However, this work (e.g., [7], [8]) typically focuses
on networks with large numbers of sensors and calibrating
their respective locations and orientations. We know of no
previous work calibrating a sensor based on an action model.
Furthermore, to the best of our knowledge,SCASMdiffers from

all previous work along these lines in the following significant
way. SCASM learns models of its actions and sensors starting
without an accurate model of either. Previous approaches to
calibration rely either on accurate training data or on sensors
that are already well calibrated (as in [4]).

IX. CONCLUSION AND FUTURE WORK

This paper presents a technique by which a mobile robot
can learn an action model and a sensor model from each
other simultaneously. Starting with only a very simplistic
action model estimate, the robot learns highly accurate ap-
proximations to its true action and sensor models. The learning
process is completely autonomous and unsupervised, so that
no human oversight or feedback is necessary. The technique
is successfully implemented on a Sony Aibo ERS-7, which
calibrates its action commands to the resultant velocitiesand
its visual sensor readings to the corresponding distances,all
in two and a half minutes of autonomous behavior.

One direction for future work is to explore potential syn-
ergies betweenSCASM and particle filtering methods that
integrate sensor and action models into a position estimate
(e.g., [9]). The work presented here represents an excitingstart
towards the long-term challenge of enabling fully autonomous
calibration of complex, multi-modal sensor and action models
on mobile robots.

ACKNOWLEDGMENTS

We would like to thank Ben Kuipers for helpful discussions.
Thanks also to the members of the UT Austin Villa team for their
efforts in developing the software used as a basis for the work
reported in this paper. This research was supported in part by NSF
CAREER award IIS-0237699, ONR YIP award N00014-04-1-0545,
and DARPA grant HR0011-04-1-0035.

REFERENCES

[1] P. Stone, K. Dresner, P. Fidelman, N. K. Jong, N. Kohl, G. Kuhlmann,
M. Sridharan, and D. Stronger, “The UT Austin Villa 2004 RoboCup
four-legged team: Coming of age,” The University of Texas at Austin,
Department of Computer Sciences, AI Laboratory, Tech. Rep. UT-AI-
TR-04-313, October 2004.

[2] R. F. Gunst and R. L. Mason,Regression Analysis and its Application.
New York: Marcel Dekker, Inc., 1980.

[3] S. Weisberg,Applied Linear Regression. New York: John Wiley & Sons,
Inc., 1980.

[4] N. Roy and S. Thrun, “Online self-calibration for mobile robots,” in
Proceeding of the IEEE International Conference on Robotics and
Automation, vol. 3. Detroit, MI: IEEE Computer Society Press, May
1999, pp. 2292–2297.

[5] A. Martinelli, N. Tomatis, A. Tapus, and R. Siegwart, “Simultaneous
localization and odometry calibration for mobile robot,” inProceedings
of the 2003 International Confrerence on Intelligent Robots and Systems,
Las Vegas, NV, October 2003.

[6] T. D. Larsen, M. Bak, N. Andersen, and O. Ravn, “Location estimation
for an autonomously guided vehicle using an augmented Kalman filter to
autocalibrate the odometry,” inFUSION98 Spie Conference, Las Vegas,
NV, July 1998.

[7] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonparametric
belief propagation for self-calibration in sensor networks,” in Proceedings
of the third international symposium on Information processing in sensor
networks, Berkeley, CA, April 2004.

[8] R. Moses and R. Patterson, “Self-calibration of sensor networks,” inSPIE
vol. 4743: Unattended Ground Sensor Technologies and Applications IV,
2002.

[9] C. Kwok, D. Fox, and M. Meila, “Adaptive real-time particle filters for
robot localization,” inProc. of the IEEE International Conference on
Robotics & Automation, 2003.


