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Abstract. The CMUnited-99 simulator team became the 1999 RoboCup
simulator league champion by winning all 8 of its games, outscoring op-
ponents by a combined score of 110{0. CMUnited-99 builds upon the
successful CMUnited-98 implementation, but also improves upon it in
many ways. This paper gives a detailed presentation of CMUnited-99's
improvements over CMUnited-98.

1 Introduction

The CMUnited robotic soccer project is an ongoing e�ort concerned with the
creation of collaborative and adversarial intelligent agents operating in real-time,
dynamic environments. CMUnited teams have been active and successful partic-
ipants in the international RoboCup (robot soccer world cup) competitions [1,
2, 15]. In particular, the CMUnited-97 simulator team made it to the semi-�nals
of the �rst RoboCup competition in Nagoya, Japan [9], the CMUnited-98 sim-
ulator team won the second RoboCup competition in Paris, France [13], and
the latest CMUnited-99 simulator team won the third RoboCup competition in
Stockholm, Sweden1.

The CMUnited-99 simulator team is modeled closely after its two predeces-
sors. Like CMUnited-97 and CMUnited-98, it uses layered learning [12] and a

exible team structure [11]. In addition, many of the CMUnited-99 agent skills,
such as goaltending, dribbling, kicking, and defending, are closely based upon the
CMUnited-98 agent skills. However, CMUnited-99 improves upon CMUnited-98
in many ways. This paper focuses on the research innovations that contribute to
CMUnited-99's improvements.

Coupled with the publicly-available CMUnited-99 source code [8], this article
is designed to help researchers involved in the RoboCup software challenge [3]
build upon our success. Throughout the article, we assume that the reader is
familiar with the RoboCup simulator, or \soccer server" [5]. A detailed overview
of the soccer server, including agent perception and actuator capabilities, is given
in [7].

The paper begins by brie
y summarizing the main features of the CMUnited-98
simulator team (Section 2). Section 3 describes the improvements in CMUnited-99's

1 The CMUnited small-robot team is also a two-time RoboCup champion [14, 16].



low-level skills, including the introduction of teammate and opponent modeling
capabilities. Section 4 presents the improvements in CMUnited-99's team-level
coordination methods. Section 5 focuses on the process by which the low-level
skills were improved. Section 6 introduces the concept of layered extrospec-
tion, a key advance in our development methodology. Section 7 summarizes
CMUnited-99's successful performance at RoboCup-99 and concludes.

2 Background

This section summarizes the features of the CMUnited-97 and CMUnited-98
teams which have been carried over into the CMUnited-99 implementation. Sub-
sequent sections emphasize the research innovations unique to CMUnited-99.

2.1 Main Loop

CMUnited agents are capable of perception, cognition, and action. By perceiving
the world, they build a model of its current state. Then, based on a complex set
of behaviors, they choose an action appropriate for the current world state.

A driving factor in the design of the agent architecture is the fact that the
simulator operates in 100msec cycles. The simulator accepts commands from
clients throughout a cycle and then updates the world state all at once at the
end of the cycle. Only one action command (dash, kick, or turn) is executed for a
given client during a given cycle. Meanwhile, perceptions arrive asynchronously
and unpredictably: agents can receive anywhere from zero to six perceptions in
a given cycle.

Therefore, CMUnited agents store perceptions as they arrive and then update
their internal state from these stored perceptions and the predicted e�ects of
past actions only when it is time to take an action. A detailed description of the
agents' world model and how it is updated is given in [13].

2.2 Agent Skills

Once the client has determined the server's world state as accurately as possible,
it can choose and send an action to be executed. It can choose fromamong several
low-level skills which provide it with basic capabilities. The output of the skills
are primitive movement commands. Examples of low-level skills include kicking,
dribbling, ball-interception, goaltending, defending, and clearing. CMUnited-98's
versions of these skills are described in detail in [13]. Except where speci�cally
noted in subsequent sections, CMUnited-99's low-level skills are the same.

The common thread among these skills is that they are all predictive, locally
optimal skills (PLOS). They take into account predicted world states as well as
predicted e�ects of future actions in order to determine the optimal primitive
action from a local perspective, both in time and in space. Even though the skills
are predictive, the agent commits to only one action during each cycle. When the
time comes to act again, the situation is completely reevaluated. If the world is



close to the anticipated con�guration, then the agent will act similarly to the way
it predicted on previous cycles. However, if the world is signi�cantly di�erent,
the agent will arrive at a new sequence of actions rather than being committed
to a previous plan. Again, it will only execute the �rst step in the new sequence.

2.3 Formations

Given all of the individual skills available to the CMUnited clients, it becomes
a signi�cant challenge to coordinate the team so that the players are not all
trying to do the same thing at the same time. At the core of the CMUnited-
98 coordination mechanism is the locker-room agreement [11]. Based on the
premise that agents can periodically meet in safe, full-communication environ-
ments, the locker-room agreement speci�es how they should act when in low-
communication, time-critical, adversarial environments.

A good example of the use of the locker-room agreement is CMUnited's abil-
ity to execute pre-compiled multi-agent plans after dead-ball situations. While
it is often di�cult to clear the ball from the defensive zone after goal kicks,
CMUnited-98 players move to pre-speci�ed locations and execute a series of
passes that successfully move the ball out of their half of the �eld. Such \set
plays" exist in the locker-room agreement for all dead-ball situations.

Another central part of the CMUnited locker-room agreement is the concept
of 
exible formations consisting of 
exible roles. Roles are de�ned independently
of the agents that �ll them: homogeneous agents (all except the goalie) can freely
switch roles as time progresses. Each role speci�es the behavior of the agent �lling
the role, both in terms of positioning on the �eld and in terms of the behavior
modes that should be considered. For example, an agent �lling a forward role
will never go into active defense mode. However, agents can switch roles during
the course of play.

A formation is a collection of roles, again de�ned independently from the
agents. Just as agents can dynamically switch roles within a formation, the
entire team can dynamically switch formations. Formations also include sub-
formations, or units, for dealing with issues of local importance. For example,
the defensive unit can be concerned with marking opponents while not involving
the mid�elders or forwards. A player can be a part of more than one unit.

For a detailed presentation of roles, formations, and units, see [11].

2.4 Communication

Communication is another important coordination tool for CMUnited agents.
The soccer server provides a challenging communication environment for teams
of agents. With a single, low-bandwidth, unreliable communication channel for
all 22 agents and limited communication range and capacity, agents must not
rely on any particular message reaching any particular teammate. Nonetheless,
when a message does get through, it can help distribute information about the
state of the world as well as helping to facilitate team coordination.



All CMUnited messages include a certain amount of state information from
the speaker's perspective. Information regarding object position and teammate
roles are all given along with the con�dence values associated with this data. All
teammates hearing the message can then use the information to augment their
visual state information.

The principle functional uses of communication in CMUnited-98 are

{ To ensure that all participants in a set play are ready to execute the multi-
step plan. In this case, since the ball is out of play, time is not a critical
issue.

{ To assign defensive marks. The captain of the defensive unit (the goaltender
in most formations) determines which defenders should mark or track which
opponent forwards. The captain then communicates this information peri-
odically until receiving a con�rmation message.

For a detailed speci�cation of the communication paradigm as it was �rst
developed for CMUnited-97, see [11].

3 Agent Skills

CMUnited-99's basic skills are built mostly on CMUnited-98's skills. This section
focusses on CMUnited-99's improvements in low-level skills.

3.1 Ball Velocity Estimation

One of the most important part of good ball handling skills is an accurate es-
timation of the ball's velocity. When a player is facing the ball, an estimate of
the ball's velocity is "visible" via the player's sensory perceptions. However, in
both CMUnited-98 and CMUnited-99, when an agent is handling the ball, it uses
position based velocity estimation. That is, if the agent observes the ball on two
successive cycles, it knows the actual path which the ball traveled, and there-
fore its current velocity. Position based velocity estimation is useful for several
reasons:

{ Even when trying to watch the ball by turning its neck or body, the agent
does not see the ball's velocity every cycle.

{ As long as the ball is within 3m of the player, the agent will \feel" the ball,
and get position information. It only receives velocity information if the
player is facing the ball. If we can rely on just \feel" information, then the
can look around for strategic information, such as the location of teammates
and opponents.

{ Position based velocity estimation allows us to detect unexpected ball move-
ments, which occur most often when an opponent kicks the ball or the ball
collides with a player.

{ We found experimentally that position based velocity estimation is more
accurate than visual info while the ball is within the kickable area.
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Fig. 1: Correcting for position error in ball velocity estimation. The dark colored circles
represent positions as estimated in the agent's coordinate frame at time t� 1, and the
light colored circles represent positions estimated in the agent's coordinate frame at
time t. The di�erence between the players predicted position at time t and observed
(estimated) position can be used to translate one coordinate frame into another.

While this is intuitively a fairly simple idea, there are several complications.
First, each agent needs to keep track of the kicks it performed in order to accu-
rately estimate the ball velocity. This is for cases where the agent is not receiving
sensations every cycle. The server gives information about kicks that it received,
and it is important to note when requested kicks are not executed by the server.

The second is somewhat of an artifact of our world model. Our agents store
the current position of all objects in global coordinates by converting the objects'
sensed relative positions to global coordinates based on the agent's estimated
current position. When they get new visual information, our agents re-estimate
their current position. Both of the estimates are quite noisy since they are based
on usually distant 
ags. This means that the ball's old position and new position
are in essentially di�erent coordinate frames. In Figure 1, objects in the old
coordinate frame are represented in dark grey and objects in the new coordinate
frame are lighter. As shown, our agents can calculate the disparity between the
coordinate frames by taking the di�erence of the player's predicted position at
time t (judged in the coordinate frame from time t�1) and the player's observed
position at time t. The ball's position at time t � 1 can then be moved to the
new coordinate frame. The ball velocity is then simply the di�erence between
it's position at time t and position at time t � 1. This gives a good estimate of
the ball's velocity because the only error left is the error in the reported ball
positions. When the ball is close to the player, this error is quite small.

3.2 Ball Interception

The basic structure of our ball interception strategy is the same as inCMUnited-98.
We successively simulate the ball's positions on future cycles and then determine
if the agent can reach a spot that the ball will occupy before the ball does.



Several important improvements were made to this scheme. In CMUnited-98,
the agents included an estimate of the current ball position and velocity in ev-
ery communication message. Sometimes, the agent currently running after the
ball would hear such a message from a teammate further away and change its
interception strategy. This was problematic for two reasons. First, there is a dif-
ference in \coordinate frames" as discussed in Section 3.1. Second, the teammate
further away would usually have less accurate information because, in the simu-
lator, visual noise increases with distance. Therefore, the agents in CMUnited-99
will sometimes not listen to heard ball information. If the ball is within the feel
distance or if the con�dence that the agents have in the ball's position is approx-
imately equal and the communicating teammate is further away, the listener will
ignore the information.

A second important change is an emphasis on dashing instead of turning.
By careful analysis of the agents' behaviors (see Section 6), we discovered that
our agents would frequently make small turns while in pursuit of a moving ball,
largely because of noisy information about the ball's velocity. Since the agents
plan on doing at most one turn while in pursuit of the ball, this behavior was
interfering with the e�ectiveness of the ball interception skill.

Player Facing
Direction

Ball Trajectory
X

Y

No Turning
Path BPath A

Optimal
Ball
Interception

time-difference

Fig. 2: Deciding whether to turn in ball interception. Point Y is where the agent would
intersect the ball if it ran straight without turning �rst. Point X represents the agent's
estimation of the point closest to the ball at which it can intersect the ball's path by
turning and then running straight.

To improve this situation, the agents now calculate how long it would take
to intercept the ball with no turning at all. This is just a simple ray-ray intersec-
tion as shown in Figure 2, path B. time-di�erence is the distance between the
calculated optimal (point X) and the path with no turning (point Y ), judged by
how long it would take the ball to get from X to Y . If time-di�erence is below
a threshold of a few cycles, then the agent will proceed along path B instead of
path A. Proceeding along path B will always result in a dash instead of a turn.



3.3 Modeling of Opponents and Teammates

In CMUnited-98, decisions about when to shoot were made in one of three ways:

{ Based on the distance to the goal
{ Based on the number of opponents between the ball and the goal
{ Based on a decision tree.

Each of these methods is imperfect. Distance to goal completely ignores how
the opponents are positioned. The number of opponents between the ball and
the goal does not accurately re
ect in how good of a position the defenders are.
Lastly, the decision tree was trained for passing[7], so its performance on the
related but di�erent behavior of shooting is questionable.

CMUnited-99 makes this decision in a more principled way by using a model
of an \optimal" goalie. That is, we use a model of a goalie that reacts instan-
taneously to a kick, moves to exactly the right position to stop the ball, and
catches with perfect accuracy.

When deciding whether to shoot, the agent �rst identi�es its best shot target.
It generally considers two spots, just inside of the two sides of the goal. The agent
then considers the lines from the ball to each of these possible shot targets. shot-
target is the position whose line is further from the goalie's current position.

The agent then predicts, given a shot at shot-target, the ball's position and
goalie's reaction using the optimal goalie model. We use the following predicates:

blocking-point The point on the ball's path for which an optimal goalie heads.
ball-to-goalie-cycles The number of cycles for the ball to get to the blocking-

point

goalie-to-ball-cycles The number of cycles for the goalie to get to the blocking-
point

shot-margin =ball-to-goalie-cycles�goalie-to-ball-cycles

better-shot(k) Whether teammate k has a better shot than the agent with the
ball, as judged by shot-margin

The value shot-margin is a measure of the quality of the shot. The smaller the
value of shot-margin, the more di�cult it will be for the goalie to stop the shot.
For example, for a long shot, the ball may reach the blocking-point in 20 cycles
(ball-to-goalie-cycles= 20), while the goalie can get there in 5 cycles (goalie-to-
ball-cycles= 5) This gives a shot-margin of 15. This is a much worse shot than
if it takes the ball only 12 cycles (ball-to-goalie-cycles= 12) and the goalie 10
cycles to reach the blocking-point (goalie-to-ball-cycles= 10). The latter shot has
a shot-margin of only 2. Further, if shot-margin< 0, then the \optimal" goalie
could not reach the ball in time, and the shot should succeed.

Using a model of opponent behavior gives us a more reliable and adaptive
way of making the shooting decision. We can also use it to make better passing
decisions. When near the goal, the agent may often be faced with the decision
about whether to pass or shoot the ball. The agent with the ball simulates the
situation where its teammate is controlling the ball, using the goalie model to
determine how good of a shot the teammate has. If the teammate has a much



better shot, then the predicate better-shot(k) will be true. This will tend to make
the agent pass the ball, as described in Section 4.1.

There is one complication here; it takes some time to pass the ball. In the
time that elapses during a pass, the world will change, and the receiving agent
may then decide the original agent has a better shot. This could potentially lead
to passing loops where neither agent will shoot. CMUnited-99 does two things
to avoid this loop. First, the agent will only pass to a teammate with a better
shot if, given the current state of the world, the goalie cannot stop the shot.
Secondly, the extra time di�erence between the passing and receiving agents
must be greater than some threshold (5 in CMUnited-99).

Note that this analysis of shooting ignores the presence of defenders. Just
because the goalie can not stop the shot (as judged by the optimal goalie model)
does not mean that a nearby defender can not run in to kick the ball away.

3.4 Breakaway

An important idea in many team ball sports like soccer is the idea of a \break-
away." Intuitively, this is when some number of o�ensive players get the ball
and themselves past the defenders, leaving only perhaps a goalie preventing
them from scoring. After looking at log�les from previous competitions, we saw
many opportunities for breakaways which were not taken advantage of.

Goalie

Teammate Defender

Fig. 3: The Breakaway Cone

The �rst question which has to be answered is \What exactly is a break-
away?" This is built upon several predicates:

controlling-teammate Which teammate (if any) is currently controlling the
ball. \Control" is judged by whether the ball is within the kickable area of
a player.

controlling-opponent Which opponent (if any) is currently controlling the
ball

opponents-in-breakaway-cone The breakaway cone is shown in Figure 3. The
cone has its vertex at the player with the ball and extends to the opponents
goal posts.



teammates-in-breakaway-cone The same as the previous de�nition, but for
the other side of the �eld. This is used when judging whether the opponents
currently have a breakaway.

our-breakaway = (controlling-teammate 6=None) ^ (controlling-opponent=None)
^ (opponents-in-breakaway-cone�1)

their-breakaway = (controlling-opponent 6= None) ^ (controlling-teammate=None)
^ (teammates-in-breakaway-cone�1)

O�ensive Breakaways. The �rst new skill we use in breakaways is a general-
ization of dribbling called \kick and run." When executing the normal dribbling
skill, the agent aims to do one kick and then one dash and have the ball end
up in its kickable area again. However, this causes a player dribbling the ball to
move only half as quickly as a player without the ball since half of its action op-
portunities are spent kicking rather than moving. Therefore, defenders are able
to easily catch up to dribbling players.

For kick and run, the agents aim for one kick and n dashes before being in
control of the ball again. In e�ect, they kick the ball harder to allow them to
spend more of their time running. However when doing so, they risk losing the
ball if an opponent is able to catch up to the ball before they are back in control
of it. Therefore, there is a trade-o� involved in the decision of how hard to kick
the ball. For use in breakaways, n varies with the proximity of opponents. The
closer the opponents are, the smaller n will be.

When to shoot is one of the most important decisions the agents make,
especially in breakaways. If the agent shoots too early, the goalie will have plenty
of time to stop the ball. If the agent shoots too late, then the goalie may have
time to get the ball before the kick is complete.

We use the optimalmodel described in Section 3.3 to help make this decision.
During a breakaway, the agent shoots when either one of the following is true:

{ shot-margin (de�ned in Section 3.3) gets below a certain threshold (1 cycle
in CMUnited-99)

{ The time that it would take for the goalie to proceed directly to the ball and
steal it gets below a certain threshold (6 cycles in CMUnited-99).

This skill was extremely e�ective in the competition, with the vast majority
of our goals being scored using the specialized breakaway code.

Defensive Breakaways. Given an e�ective o�ense on breakaways, it is a sig-
ni�cant challenge to respond e�ectively on defense. Running straight for the ball
is ine�ective since the striker keeps moving with the ball. Before trying to get
the ball, the defenders must \run past" both the striker and the ball in order to
get in better position. This should usually be possible because the striker will be
spending time controlling the ball, where the defenders should be running con-
stantly. Therefore, we de�ned a special \running-past" mode of playing defense.
However, problems occur for several reasons:



{ It is easy to lose sight of the striker and the ball while running past.
{ Noise may cause the decision about whether an opponent has a breakaway
to oscillate.

{ Ordinarily, the fastest defender to the ball uses regular ball interception and
the second fastest runs past the player. However, during a breakaway, these
roles switch between the two players often, causing oscillation. Any sort
of oscillation is usually bad because the agents will waste time by turning
constantly or dashing towards the wrong spot.

We solved these problems in two ways. First, each agent remembers if it
was in running-past mode on the last cycle. If it was, then the agent biases
its behavior decision towards staying in running-past mode. It also remembers
the point for which it was aiming, so that it can continue to run at that point.
Otherwise, the target point for which the agent is aiming can oscillate, causing
the agent to turn more often, and therefore take longer to get to the correct
point. Secondly, when opponents have a breakaway, both the fastest and second
fastest player to the ball run past the player, rather than either one going for the
ball directly. When the players have run su�ciently past the opponent, they will
get into the breakaway cone (see Figure 3) and the opponent will no longer have
a breakaway. At that point, the players revert to the normal defensive modes.

4 Coordination

A great deal of CMUnited-99's coordination mechanisms have not changed sig-
ni�cantly from those of CMUnited-98. We refer the reader to [13] for information
about behavior modes, the locker-room agreement, roles and formations, strate-
gic positioning using attraction and repulsion (SPAR), and communication.

4.1 Ball Handling Decision

One crucial improvement in CMUnited-99 is the agents' decision-making process
when in control of the ball. The decisions made at these times are the most crucial
in the robotic soccer domain. In general, the agent has the options of

{ dribbling the ball in any direction
{ passing to any teammate
{ shooting the ball
{ clearing the ball, or
{ simply controlling the ball.

Which it chooses a�ects the future options of teammates and opponents.
The agent uses a complex heuristic decision mechanism, incorporating a ma-

chine learning module, to choose its action. The most signi�cant changes from
CMUnited-98 are that the agents use special-purpose code for breakaways (see
Section 3.4); that the pass-evaluation decision tree [10] has been retrained dur-
ing practice games to capture the agents' improved ball-interception ability (see



Section 3.2; that the agents can cross the ball (see below); and that the agents
consider whether there is a teammate in a better position than they are to shoot
the ball (see Section 3.3).

In presenting the agent decision-making process, we make use of the predi-
cates de�ned in Section 3 as well as the following:

distance-to-their-goal The distance to the opponent's goal
distance-to-our-goal The distance to own goal
opponents-in-front-of-goal The number of opponents (including the goalie)

in the breakaway cone shown in Figure 3
closest-opponent The distance to the closest opponent
closer-to-goal(k) Whether teammate k is closer to the opponent's goal than

the agent with the ball
can-shoot Whether distance-to-their-goal < 25 and (opponents-in-front-of-goal

� 1 and shot-margin � 6.
can-shoot(k) Same as above but from teammate k's position
congestion =

P
opponents

1
(distance�to�opponent)2)

congestion(k) Same as above but from teammate k's position
can-dribble-to(x) No defender is nearby or in a cone extending towards the

point x

Following is a rough sketch of the decision-making process without all of
the parametric details. In all cases, passes are only made to teammates that the
decision tree predicts will be able to successfully receive the pass (called potential

receivers or PR below). If there is more than one potential receiver satisfying
the given criteria, then the one predicted with the highest con�dence to receive
the pass is chosen.

{ If 9r 2 PR s.t. better-shot(r): pass to r.
{ If our-breakaway : execute special-purpose breakaway code (see Section 3.4).
{ If (distance-to-their-goal < 17 and opponents-in-front-of-goal � 1) or shot-

margin � 3: shoot on goal.
{ At the other extreme, if distance-to-our-goal < 25 or closest-opponent < 10:
clear the ball (kick it towards a sidelines at mid�eld and not towards an
opponent [13]).

{ If 9r 2 PR s.t. closer-to-goal(r) and can-shoot(r) and congestion(r) � con-

gestion: pass to r.
{ If can-dribble-to(opponent's goal): dribble towards the goal.
{ If 9r 2 PR s.t. closer-to-goal(r) and congestion(r) � congestion (even if
unable to shoot): pass to r.

{ If close to a corner of the �eld (within a grey or black area in Figure 4) then
cross the ball as follows.
� if very near the base line or the corner (in the black area): kick the ball
across the �eld (to \cross target"), even if no teammate is present (\cross
it").

� If able to dribble towards the baseline: dribble towards the baseline (for
a later cross).



� If able to dribble towards the corner: dribble towards the corner.
� Otherwise, cross it.

Even though the cross doesn't depend on a teammate being present to re-
ceive the ball, we observed many goals scored shortly after crosses due to
teammates being able to catch up to the ball and shoot on goal.

Cross Target Cross Target

Fig. 4: The \cross" behavior. When within one of the black areas, the agent kicks the
ball to the \cross target" on the opposite side of the �eld. When within one of the grey
areas, it tries to dribble to the baseline or the closer corner. If that's not possible due
to opponent positions, it kicks the ball to the \cross target" on the opposite side of the
�eld.

{ If can-shoot : shoot.
{ can-dribble-to(one of the corner 
ags): dribble towards the corner 
ag.
{ If approaching the line of the last opponent defender (the o�sides line): send
the ball (clear) past the defender.

{ If 9r 2 PR s.t. closer-to-goal(r) or congestion(r) � congestion: pass to r.
{ no opponent is nearby: hold the ball (i.e. essentially do nothing and wait for
one of the above conditions to �re).

{ If 9r 2 PR s.t. no opponent is within 10 or r: pass to r.
{ Otherwise: Kick the ball away (clear).

Notice that such a ball-handling strategy can potentially lead to players pass-
ing the ball backwards, or away from the opponent's goal. Indeed, we observed
such passes several times during the course of games. However, the forward
passes and shots are further up in the ball-handling decision, and therefore will
generally get executed more often.

4.2 On-Line Coach

Whenever the play stops (due to a foul, an o�sides call, or the ball going out
of bounds), CMUnited-99 agents execute one of several possible \set-plays" as
determined by the locker-room agreement. Which set-play is to be executed and
which agent is to �ll each set-play role depends on the ball's location. However, in
general the players' knowledge of the ball's location is imperfect and may di�er
from player to player. CMUnited-98 agents used a communication-based negoti-
ation protocol to resolve possible discrepancies among agents. In CMUnited-99,
the on-line coach settles the issue by announcing the ball's exact location once
the play has stopped. In CMUnited-99, the on-line coach is not used in any other
way.



4.3 Deferring Ball Handling

Generally, two defenders go to the ball. If both players are able to kick the ball,
problems often result. This happens both because the players may have di�erent
ideas of where to kick the ball and because both players assume their kicks get
executed (when only one of the two kicks does). To solve this problem, anytime
an agent is handling the ball, it considers whether there is a teammate who
could also kick the ball this cycle. If there are multiple teammates who can kick
the ball, then only the one further up�eld will actually send a kick command.
When the agents are close enough together to both kick the ball, they will receive
position information about each other on every visual sensation. Therefore, the
agents will generally have correct ideas about their relative positions, and exactly
one will perform a kick.

5 O�-line Training

For the various agent skills described in Section 3 and in [13], there are many
parameters a�ecting the details of the skill execution. For example, in the ball
skill of dribbling, there are parameters which a�ect how quickly the agent dashes,
how far ahead it aims the ball, and how opponents a�ect the location of the ball
during dribbling.

The settings for these parameters usually involve a tradeo�, such as speed
versus safety, or power versus accuracy. It is important to gain an understanding
of what exactly those tradeo�s are before \correct" parameter settings can be
made.

We created a trainer client that connects to the server as an omniscient
o�-line coach client (this is separate from the on-line coach). The trainer is
responsible for three things:

1. Repeatedly setting up a particular training scenario. In the dribbling
skill, for example, the trainer would repeatedly put a single agent and the
ball at a particular spot. The agent would then try to dribble the ball to a
�xed target point.

2. Recording the performance of the agent on the task. Here we use a
hand-coded performance metrics, generally with very simple intuitive ideas.
In the kicking skill, for example, we record how quickly the ball is moving,
how accurate the kicking direction is, and how long it took to kick the ball.

3. Iterating through di�erent parameter settings. Using the server's
communication mechanism, the trainer can instruct the client on which pa-
rameter settings to use. The trainer records the performance of the agent for
each set of parameter values.

Once the scenario is set up, the system runs autonomously. Since most skills
only involve one or two clients, we could a�ord to have the trainer iterate over
many possible parameter values, taking several hours or days.

Once the trainer has gathered the data, we would depict the results graphi-
cally and decide which parameters to use. An example for the hard kicking skill
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Fig. 5: An example of training data. Two parameters are varied here: the player angle
(displayed on the x-axis) and the bu�er around the player out of which the agent
tries to keep the ball (the di�erent lines). The goal is to maximize the kick velocity
(displayed on the y-axis).

is shown in Figure 5. The two parameters varied for the test shown are the an-
gle the agent is facing relative to the kicking angle (the x-axis), and the bu�er
around the player out of which the agent tries to keep the ball (the di�erent
lines).

Sometimes, the \optimal" parameter selection was fairly clear. For example,
in Figure 5, we are trying to maximize the kick velocity. Therefore, we would
select a player angle of approxiamtely 60 degrees and a bu�er of 0.10. Other
times, the data looked much noisier. In those cases we could narrow our search
down somewhat and get more data over the relevant parts of the parameter
space.

We were sometimes limited by processing power in the breadth or resolu-
tion of the parameter space that we could examine. A more adaptive searching
strategy, such as might be given by various learning techniques like genetic pro-
gramming [4], would be a useful addition.

6 Layered Extrospection

A perennial challenge in creating and using complex autonomous agents is follow-
ing their choice of actions as the world changes dynamically, and understanding
why they act as they do. In complex scenarios, even the human computer-agent



developer is often unable to identify what exactly caused an agent to act as it did
in a given situation. Adding support for human developers and observes to bet-
ter follow and understand the actions of autonomous agents can be a signi�cant
enhancement to processes of development and use of agents.

To this end, we introduce the concept of layered extrospection2 by which
autonomous agents include in their architecture the foundations necessary to
allow a person to probe into the speci�c reasons for an agent's action. This
probing may be done at any level of detail, and either retroactively or while the
agent is acting.

A key component of layered extrospection is that the relevant agent informa-
tion is organized in layers. In general, there is far too much information available
to display all of it at all times. The imposed hierarchy allows the user to select
at which level of detail he or she would like to probe into the agent in question.

Layered extrospection has two main uses:

1. As a debugging tool for agent development in complex environments.
2. As a vehicle for interactive agent control.

When an agent does something unexpected or undesirable, it is particularly
useful to be able to isolate precisely why it took such an action. Using layered
extrospection, a developer can probe inside the agent at any level of detail to
determine precisely what needs to be altered in order to attain the desired agent
behavior. For example, if a software agent is left to perform some action over
night, but fails to complete its assigned task, the developer could use layered
extrospection to trace the precise reasons that the agent took each of its actions,
and identify which parts of the agent need to be altered.

The fact that layered extrospection also works in real time means that a user
can monitor the internals of an agent as it acts. When coupled with an interface
for in
uencing agent behaviors, layered extrospection could be used to allow the
interleaving of autonomous and manual control of agents. For example, given
a set of robots autonomously cleaning the 
oors in a large building, a person
might want to monitor agents' perceptions of which 
oors are in most urgent
need of attention. Upon noticing that one of the agents is ignoring an area that is
particularly dirty, the person could determine the cause of the agent's oversight
and manually alter the internal state or goal stack within the agent in real time.

Layered extrospection was a signi�cant part of the development of CMUnited-99,
and led to many of the improvements in the team over CMUnited-98. Our de-
velopment of layered extrospection was inspired in part by our own inability to
trace the reasons behind the actions of CMUnited-98. For example, whenever a
player kicks the ball towards its own goal, we would wonder whether the agent
was mistaken about its own location in the world, whether it was mistaken about
the ball's or other agents' locations, or if it \meant" to kick the ball where it did,
and why. Due to the dynamic, uncertain nature of the environment, it is usually

2 We use the term \extrospection" in order to evoke the connotations of \introspec-
tion," a re
ective looking inwards to oneself. In contrast, extrospection is meant to
connote a re
ective looking inwards to the agent.



impossible to recreate the situation exactly in order to retroactively �gure out
what happened.

Our layered extrospection implementation is publicly available[8]. It can be
easily adapted for use with other RoboCup simulator teams. It works as follows.

During the course of a game, our agents store detailed records of selected
information in their perceived world states, their determination of their short-
term goals, and their selections of which actions will achieve these goals, along
with any relevant intermediate decisions that lead to their action selections.

After the game is over, it can be replayed using the standard \logplayer"
program which comes with the soccer server. Our extrospection module, imple-
mented as an extension to this logplayer, makes it possible to inspect the details
of an individual player's decision-making process at any point. Figure 6 shows
our robotic soccer layered extrospection interface.

The log �le of the player being examined in Figure 6 contains the following
lines. Notice that in Figure 6, only the lines at level 20 and below are displayed.
881 (35) My Pos: (15.85, -3.73) angle: -24.00

881 (35) Ball Pos: (17.99, -4.87)conf: 0.95

881 (45) Sight at 880: Bv team:_ opp: 1

881 (5) Mode: AM_Offense_Active (I'm fastest to ball)

881 (15) get_ball: going to the moving ball (5) pow 100.0

881 (25) go_to_point: dash 100.0

881 (20) go_to_point 3 (21.1 -6.2)

881 (30) dashing 100.0

881 (45) Heard message of type 1 from 11

In the remainder of this section we provide two examples illustrating the
usefulness of layered extrospection.

6.1 Discovering Agent Beliefs

When observing an agent team performing, it is tempting, especially for a person
familiar with the agents' architectures, to infer high level beliefs and intentions
from the observed actions. Sometimes, this can be helpful to describe the events
in the world, but misinterpretation is a signi�cant danger.

Consider the example in Figure 7. Here, two defenders seem to pass the
ball back and forth while quite close to their own goal. In general, this sort of
passing back and forth in a short time span is undesirable, and it is exceptionally
dangerous near the agents' own goal. Using the layered extrospection tool, we
get the information displayed in Figure 8. Note that each dash '-' represents 5
levels.

First, we see that in both cases that player number 2 was in control of the
ball (time 831 and 845), it was trying to clear it (just kick it away from the goal),
not pass to player number 5. Given the proximity of the goal and opponents,
clearing is a reasonable behavior here. If a teammate happens to intercept a
clear, then our team is still in control of the ball. Therefore, we conclude that
this agent's behavior matches what we want and expect.

Next, we can see that player number 5 was trying to dribble towards the
opponent's goal in both cases that he controlled the ball (time 838 and 850).



Ball

Opponent: 0CMUnited99: 0

Fig. 6: The hierarchical extrospection tool. The terminal window at the top is dis-
playing the high-level information for the agent with the ball (number 10 on the light-
colored team) at the instant shown in the graphical display of the game. At level 10,
only the agent's active mode (\o�ense active") is shown. At level 20, information about
its high-level actions are also included. In this case, the agent is trying to intercept the
moving ball at a speci�c point. Details about how this point was arrived at, as well
as the resulting low-level action, the agent's most recent sensory perceptions, and the
agent's current world state can be displayed by moving to a lower hierarchical behavior
layer. On the control bar in the middle, the buttons labeled with a \P" are used to
control which agent is being examined. The buttons labeled \L" are used to control at
what layer it is being examined (\L/0" and \L/M" are shortcuts for the lowest and
highest layers respectively).



Time 832 Time 838

Time 845 Time 854

Fig. 7: Undesired passing behavior. Two defenders pass the ball back and forth while
very near to their own goal. The direction of the passes is indcated by arrows.



Action log for CMUnited99 2, level 30, at time 831
-Mode: AM_With_Ball
--Handling the ball
----OurBreakaway() == 0

---handle_ball: need to clear

---clear_ball: target ang == -93.0
-----starting kick to angle -93.0, translated to point (-6.4, -34.0)

Action log for CMUnited99 5, level 50, at time 838

------- Invalidating ball vel :0.36 > 0.36, thought vel was (1.73, -0.70)

-------Position based velocity estimating:
gpos (-32.1 -23.4), prev_seen_pos (-33.5 -23.1)

---------Sight 838.0: B_ team:___________opp:________9__
-Mode: AM_With_Ball
--Handling the ball
----OurBreakaway() == 0
-----CanDribbleTo (-22.05, -20.52): TRUE No players in cone

---handle_ball: dribbling to goal (2) -- have room

Action log for CMUnited99 2, level 20, at time 845
-Mode: AM_With_Ball
--Handling the ball

---handle_ball: need to clear

---clear_ball: target ang == 24.0
----starting kick to angle 24.0, translated to point (-16.5, -34.0)
----kick_ball: starting kick to angle 24.0

Action log for CMUnited99 5, level 20, at time 850
-Mode: AM_With_Ball
--Handling the ball

---handle_ball: dribbling to goal (2) -- have room

Fig. 8: Extrospection information for the passing example (the boxes have been added
for emphasis)

There are no opponents immediately around him, and the path on the way to
the goal is clear. This agent's intention is certainly reasonable.

However, at time 838, player number 5 does not perform as it intended.
Rather than dribbling forward with the ball, it kicked the ball backwards. This
points to some problem with the dribbling behavior. As we go down in the
layers, we see that the agent invalidated the ball's velocity. This means that
it thought the ball's observed position was so far o� of its predicted position
that the agent's estimate for the ball's velocity could not possibly be right. The
agent then computed a new estimate for the ball's velocity based on its past and
current positions.

Given this estimation of the ball's velocity (which is crucial for accurate ball
handling), we are led to look further into how this velocity is estimated. Also,
we can compare the estimate of the velocity to the recorded world state. In the
end, we �nd that the ball collided with the player. Therefore, it was invalid to



estimate the ball's velocity based on position. In fact, this led us to more careful
application of this velocity estimation technique.

In this case, inferring the intentions of the players was extremely challenging
given their behaviors. Without extrospection, the natural place to look to correct
this undesirable behavior would have been in the passing decisions of the players.
It would have been di�cult or impossible to determine that the problem was with
the estimation of the ball's velocity.

6.2 The Use of Layers

Time 3665

Time 3624 Time 3659

Fig. 9: Poorly performing defenders. Two defenders start close to an opponent who is
about to receive the ball. However, they are unable to steal the ball and in fact do not
catch up to the opponent signi�cantly.

The fact that the agents' recordings are layered is quite important. One impor-
tant e�ect is that the layers allow the observer to look at just higher levels, then
explore each case more deeply as required.

Consider the example depicted in Figure 9. Here, two defenders are unable to
catch up and stop one o�ensive player with the ball, even though the defenders
were in a good position to begin with.

Since this is a scenario that unfolds over many time steps, we need to be
able to understand what happens over that time sequence. The �rst pass at this



Time Player 2 Player 3
3624 -Defense Active(poss=?) -O�ense Active

3625 -Defense Active(poss=l) -O�ense Active

3626 -Defense Active(poss=?) -O�ense Active

3627 -Defense Active(poss=l) -O�ense Active

3628 -O�ense Active -Defense Active(poss=?)

3629 -O�ense Active -O�ense Active

3630 -O�ense Active -Defense Active(poss=l)

3631 -O�ense Active -Defense Active(poss=l)

3632 -O�ense Active -Defense Active(poss=l)

3633 -O�ense Active -Defense Active(poss=l)

3634 -O�ense Active -Defense Active(poss=l)

3635 -O�ense Active -Defense Active(poss=l)

3636 -Defense Active(poss=l) -O�ense Active

3637 -Defense Active(poss=l) -O�ense Active

3638 -Defense Active(poss=l) -O�ense Active

3639 -O�ense Active -Defense Active(poss=l)

3640 -O�ense Active -Defense Active(poss=?)

3641 -Defense Active(poss=l) -Defense Active(poss=l)

3642 -Defense Active(poss=?) -Defense Active(poss=l)

3643 -O�ense Active -O�ense Active

3644 -O�ense Active -Defense Active(poss=l)

3645 -O�ense Active -Defense Active(poss=l)

3646 -Defense Active(poss=l) -Defense Active(poss=l)

3647 -O�ense Active -O�ense Active

3648 -Defense Active(poss=?) -O�ense Active

3649 -O�ense Active -O�ense Active

3650 -Defense Active(poss=l) -O�ense Active

3651 -O�ense Active -Defense Active(poss=l)

3652 -O�ense Active -Defense Active(poss=l)

3653 -O�ense Active -Defense Active(poss=?)

3654 -O�ense Active -Defense Active(poss=?)

3655 -O�ense Active -Defense Active(poss=?)

3656 -O�ense Active -Defense Active(poss=?)

3657 -O�ense Active -O�ense Active

3658 -O�ense Active -O�ense Active

3659 -O�ense Active -O�ense Active

Fig. 10: Extrospection information for the defending example (the bold italics have
been added for emphasis)

is to just look at the highest level decision. The �rst decision our agents make
is in which \action mode" they are [13]. This decision is based on which team
is controlling the ball, current location, role in the team structure, etc. Usually,
the player fastest to the ball will be in \O�ense Active" mode, meaning they
will try to get to the ball as fast as possible. In a defensive situation, the second
fastest player will be in \Defense Active" mode, which means basically to get in
the way of the player with the ball, without actively trying to steal it.



The output of just the highest level from the extrospection tool is depicted
in Figure 10. There are two things to notice. First, the agents change roles many
times over this sequence. Secondly, the agents' are often unsure about which side
is in control of the ball (the 'poss=' �eld).

This constant changing of mode causes a problem for the agents. \O�ense Active"
and \Defense Active" modes tell the players to move to di�erent spots on the
�eld. By switching back and forth, the agents will waste a great deal of time turn-
ing to face the direction they want to go instead of actually going. Therefore,
the agents do not catch up.

Noticing the 'poss=' �eld is also in 
ux allows further diagnosis of the prob-
lem. The decision about what mode to go into is sometimes a�ected by which
team the agent believes is controlling the ball. Realizing that this value is often
unknown should lead to changes in the way that value is determined, or changes
in the manner in which it is used.

In this case, making use of layered extrospection to examine just the high-
level reasoning decisions of a pair of agents allows us to focus on a problem that
would have otherwise been easily overlooked.

We envision that layered extrospection will continue to be useful in the
RoboCup simulator and in other agent development projects, particularly those
with complex agents acting in complex, dynamic environments. We also plan to
begin using layered extrospection in interactive semi-autonomous agent-control
scenarios.

7 Results and Conclusion

The third international RoboCup championship, RoboCup-99, was held on July
28{August 4, 1999 in Stockholm, Sweden in conjunction with the IJCAI-99 con-
ference [15]. As the defending champion team, the CMUnited-98 simulator team
was entered in the competition. Its code was left unaltered from that used at
RoboCup-98 except for minor changes necessary to update to version 5 of the
soccer server. Server parameter changes that reduced player size, speed, and kick-
able area required adjustments in the CMUnited-98 code. However CMUnited-98
did not take advantage of additions to the players' capabilities such as the ability
to look in a direction other than straight ahead (simulation of a neck).

The CMUnited-98 team became publicly available soon after RoboCup-98
so that other people could build upon our research. Thus, we expected there
to be several teams at RoboCup-99 that could beat CMUnited-98, and indeed
there were. Nonetheless, CMUnited-98 performed respectably, winning 3 games,
losing 2, and tying 1 and outscoring its opponents by a combined score of 29{3.
Table 1 presents the details of CMUnited-98's matches.

Meanwhile, the CMUnited-99 teamwas even more successful at the RoboCup-99
competition than was its predecessor at RoboCup-98. It won all 8 of its games
by a combined score of 110{0, �nishing 1st in a �eld of 37 teams. Table 2 shows
CMUnited-99's game results.



Opponent A�liation Score
(CMU{Opp.)

Kasuga-Bitos III Chubu University, Japan 19 { 0
Karlsruhe Brainstormers University of Karlsruhe, Germany 1 { 0
Cyberoos CSIRO, Australia 1 { 0
Essex Wizards University of Essex, UK 0 { 0
Mainz Rolling Brains University of Mainz, Germany 0 { 2
Gemini Tokyo Institute of Technology, Japan 8 { 0
11 Monkeys Keio University, Japan 0 { 1
TOTAL 29 { 3

Table 1: The scores of CMUnited-98's games in the simulator league of RoboCup-99.
CMUnited-98 won 3, lost 2, and tied 1 game.

Note 1. The last game was lost by one goal in overtime.

Opponent A�liation Score
(CMU{Opp.)

Ulm Sparrows University of Ulm, Germany 29 { 0
Zeng99 Fukui University, Japan 11 { 0
Headless Chickens III Link�oping University, Sweden 17 { 0
Oulu99 University of Oulu, Finland 25 { 0
11 Monkeys Keio University, Japan 8 { 0
Mainz Rolling Brains University of Mainz, Germany 9 { 0
Magma Freiburg Freiburg University, Germany 7 { 0
Magma Freiburg Freiburg University, Germany 4 { 0
TOTAL 110 { 0

Table 2: The scores of CMUnited-99's games in the simulator league of RoboCup-99.
CMUnited-99 won all 8 games, �nishing in 1st place out of 37 teams.

Qualitatively, there were other signi�cant di�erences between CMUnited-98's
and CMUnited-99's performances. In RoboCup-98, several of CMUnited-98's
matches were quite close, with many o�ensive and defensive sequences for both
teams. CMUnited-98's goalie performed quite well, stopping many shots. In
RoboCup-99, CMUnited-99's goalie only had to touch the ball three times over
all 8 games. Only two teams (Zeng99 and Mainz Rolling Brains) were able to
create enough of an o�ense in order to get shots on our goal. Improvements in
ball velocity estimation (Section 3.1), ball interception (Section 3.2), and a myr-
iad of small improvements made possible by layered extrospection (Section 6)
greatly improved CMUnited-99's mid�eld play over CMUnited-98.

Another qualitative accomplishment of CMUnited-99 was how closely its ac-
tions matched our ideas of what should be done. When watching games progress,
we would often just be starting to say \Pass the ball!" or \Shoot it" when the
agents would do exactly that. While this is certainly not a solid criterion on
which to judge a team in general, it is a testament to our development tech-



niques that we were able to re�ne behaviors in such a complex domain to match
our high level expectations.

There are certainly many improvements to be made. For example, in CMUnited-99's
game against Zeng99, our breakaway behavior (Section 3.4) was much less ef-
fective in general. This was because the Zeng99 team put an extra defender
behind the goalie. CMUnited-99's agents assumed the defender closest to the
goal was the goalie. Therefore, the agents applied the goalie model to that de-
fender instead of to the real goalie. This allowed the real goalie to stop many
shots which our agents did not anticipate could be stopped. Creating models of
other opponents and using them more intelligently could improve this behavior.

Further, adapting models to opponents during play, as well as changing team
strategy is a promising future direction. We have done some experimentation
with approaches to quick adaptation in complex domains like robotic soccer[6].
Other researchers associated with RoboCup are also looking in this direction,
especially with the newly introduced coach agent.

Various software from the team is available [8]. The binaries for the player
and coach agents are available. Full source code for the coach agent, the trainer
agent, and the layered extrospection tool are also available. Further, skeleton
source code for the player agents, including the low level skills, is also available.
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