
and machines, on-board autonomy, human
control, and ground automation.

CHASER is comprised of three coaligned
instruments that take data in the far and extreme
ultraviolet wave-lengths. The first and oldest of
these instruments (17 years old) is FARUS,
which takes a continuous spectrum from 115
nm to 190 nm with a resolution of .12 nm.
LASIT takes images of the full solar disk of the
sun in the Lyman-alpha wavelength (121.6 nm)
with a Charge Injected Device imager. The final
instrument in the scientific package, SXEE,
consists of four photometers, each having a
different metallic coating so as to enable them
to look at different wavelengths between 1 and
40 nm. The objective of these instruments is to
measure the full disk solar ultraviolet irradiance
and obtain images of the sun in the Lyman-
alpha wavelength, providing a correlation
between solar activity and radiation flux as well
as an association of Lyman-alpha fluxes with
individual active regions of the sun.

The flight segment of the DATA-CHASER
project consists of a canister that is equipped
with a Hitchhiker Motorized Door Assembly
(HMDA), which houses the instruments and
their support electronics. The second canister
contains the flight computer for the payload as
well as the 2 GB Digital Audio Tape (DAT)
drive that is used to store all data that is
collected during the mission. The payload data
is also sent to the ground system through both
low rate (available 90% of the time, at 1200
bps) and medium rate (available when
scheduled, at 200 kbps). The payload is also
capable of receiving commands sent from the
ground system when uplink is available.

During the mission, the DATA-CHASER
payload will be operating in four different
modes. Most of the time, when DATA-
CHASER is powered, it will be in a passive
mode where it is monitoring its state and
notifying the ground of any changes. During
the time in the mission when the orbiter is
scheduled to point the bay at the sun, the
DATA-CHASER payload will shift into solar
active mode where all instruments take data.

The data is both written to the DAT drive on
board and downlinked to the ground system for
immediate data analysis. Several times during

the mission, DATA-CHASER will take data
while not pointing at the sun. This data is used
for testing various portions of the DATA
experiment with nonsolar pointing data in
addition to being used for instrument
calibration.

One of the consequences of flying on the
shuttle system is that shuttle resources are
limited, and their availability is subject to
change every 12 hours. These resources
include access to uplink and downlink
channels, and time that your payload is allowed
to operate. In addition to these resources, any
given payload may also have environmental
constraints as to how much contamination the
payload can take. Another example is thermal
constraints, such as maximum solar point time.

STS-85, the flight that DATA-CHASER
payload is scheduled to fly on, is one of the
most complicated flights that the shuttle has
flown to date. In addition to the DATA-
CHASER payload, there are four other
payloads sharing the same HH bridge. In
addition to the IEH-2 bridge, there is another
HH bridge, a pallet payload, and a Spartan
deployable satellite. Needless to say the shuttle
pointing requirements are considerably tight.

In addition to modeling what the internal
constraints and resources of the payload are,
DCAPS must also search the shuttle flight plan
for times when we are allowed to operate,
downlink our data, uplink new command sets,
and when we have to protect the scientific
instruments from contamination events.

DATA-CHASER is an interesting scenario for
scheduling because of the complex data and
power management involved in the science
gathering. An automated scheduler must find
an optimal “data taking” schedule, while
adhering to the resource constraints. In
addition, the scientists would like to perform
dynamic scheduling during the mission. As an
example, the summary data may indicate the
presence of a solar flare. If this occurs,
scientists have different requirements and
goals, such as higher priorities on certain
instruments or longer integration times. These
new goals may require a different schedule of
activities.

3. USER OPERATION

The DATA-CHASER Automated Planner /
Scheduler will be part of the DATA-CHASER
mission operations software. It will be a
ground-based intelligent tool used for
generating scheduled commands for uplink to
the payload. The user’s manual [3] can be
found at the Jet Propulsion Laboratory. There
are three phases of operating the DCAPS
system: a goal satisfaction phase, an interactive
repair phase, and an optimization phase.

Goal Satisfaction

The first phase of scheduling in DCAPS
involves generating an initial schedule from a
set of high-level, user-defined goals. The
scientist or engineer simply requests one or
more of the predefined goals, and the scheduler
will generate the low-level activities that satisfy
the goals. For example, the scientist can simply
make a request for solar observations during all
solar viewing periods. Given this goal, the
scheduler will create and position the
instrument data-take activities and their
supporting activities.

Goal satisfaction is a way of generating an
initial schedule. Goals are parameterized, and
create activities in positions relative to certain
schedule events or parameters. In this way, the
same goals can be requested for different initial
states. This makes them more flexible than
alternate ways of creating an initial schedule,
such as simply loading activities from a file.
For example, the initial state in DATA-
CHASER contains shuttle maneuver activities.
These activities determine the solar viewing
periods of the payload. The solar observation
goals are based relative to these solar views,
and therefore, are applicable to any maneuver
sequence.

Interactive Repair

In the second phase of scheduling, the user has
the opportunity for interacting with the
schedule at a more detailed level. The scientist
or engineer can view the activities at several
levels of abstraction. The graphical user
interface (GUI) can display activities from the
highest level, as a single event, down to the
lowest level, showing the detailed steps that
make-up the activity.

The user can also modify the schedule by
moving, adding, or deleting activities, as well
as changing activity parameters. For example,
the scientist might want to delete a LASIT data-
take and replace it with a FARUS or SXEE
data-take. Or, perhaps he/she may simply want
to change the target of some data-take, from a
solar scan to an earth scan.

Although the user has the capability of making
these types of adjustments, he/she does not
need to worry about the various interactions,
constraints, or resource usage of the activities
being modified. This information is monitored
by DCAPS, and changes are propagated to the
dependent objects. The results of the
modification, including any conflicts, are
displayed by the GUI. In addition, when the
user introduces scheduling conflicts, DCAPS
can resolve them automatically.

DCAPS can be called upon at any time to
resolve any conflicts residing in the schedule.
Conflicts are violations of resource capacities
or temporal constraints. In this way, the user
does not need to be very informed, careful, or
specific about his/her requests. For example, a
scientist can move a data-take activity without
concern for its power usage. Or, a general
request for data-takes can be made, without
specifying the exact times for the activities to
occur. Although these changes or requests may
cause one or more conflicts, DCAPS can
resolve these conflicts with one simple
command.

Optimization

Finally, the third phase of DCAPS operation is
schedule optimization. After resolving all
conflicts, the schedule may still contain
violations of user preferences. These
preference violations can be repaired in a
manner similar to repairing regular conflicts.
The main difference is that the modeler must
explicitly represent the types of violations and
general mechanisms for repairing them. As an
example, considered an engineer’s desire to
have all data written to permanent storage at the
end of the mission. Having data in the RAM at
the end of the schedule is a violation of a
preference, rather than a violation of a
resource.

Preferences can also be expressed in a schedule
evaluation function. In the optimization phase,
DCAPS can score valid schedules based on the
evaluation function developed by the modeler.
One simple evaluation function may give higher
scores to schedules with more science
observations. Due to the fact that DCAPS
utilizes a stochastic scheduling procedure, more
optimal schedules can be found by simply
running the scheduler many times and retaining
the schedule with highest score.

4. MODEL REPRESENTATION

In order to use either Plan-IT II standalone or
the full DCAPS system, the user must write a
software model of the mission activities and
spacecraft resources. This process involves
defining a set of objects and how they interact.
These definitions are then used by the
scheduler to create instances of the objects.

Model Objects

The basic objects in the PI2 sequencing tool are
activities, resources, slots, and dependencies.

Activities—Activities are used to model the
events that happen that affect the DATA-
CHASER payload, and the actions that the
DATA-CHASER payload can take. All
activities have some basic components: a
duration, a list of slots, and a list of slot-value
assignments. In addition, certain types
(described below) have a list of subactivities.
For these activities, the user can also define a
set of temporal constraints between the
subactivities. Next, we describe in more detail
the four basic types of activities: events, steps,
step-activities, and activities.

Events are used to model activities that do not
occur in a fixed relation to other activities (e.g.
Tracking and Data Relay Satellite System
(TDRSS) contacts) and are not part of an
activity hierarchy.

Steps are the “leaf” nodes in the activity
hierarchy tree. In other words, they do not
contain any subactivities. Steps cannot be
instantiated without their parents and are used
to model the activities at the lowest level of
detail. For instance, we model an activity
called CHASER-heating, which consists of

two steps, CHASER-heater-on and CHASER-
heater-off.

Step-activities are used to model activities at a
middle level of abstraction. They can contain
steps, but must also have parent activities. In
DCAPS, we model an activity SXEE-Data-
Take, which models the SXEE instrument
opening its aperture and taking a scan. In this
case, there is a step-activity called SXEE-Scan-
Step, which has sensor read steps and cannot
be instantiated by itself.

Activities are used to model activities at the
highest level of abstraction. They are the “root”
nodes in the hierarchy tree, containing
subactivities, but no parent activity. The
activity and event objects are what the
scheduler can instantiate, and Plan-It II
provides methods to access the varying levels
of abstraction.

Resources—Resources define the various
physical resources and the constraints they
impose. Resources come in essentially five
varieties: state, concurrency, depletable,
nondepletable, and simple.

State resources are used to model the systems
in the DATA-CHASER payload that have states
associated with them. For each state resource,
the modeler must specify the possible values
that the state can be. Most of the systems have
at least one state variable, which is whether or
not they are activated. The orientation of the
payload is also modeled as a state variable.

Concurrency resource constraints are used to
model rules that stipulate that an activity either
must occur with another activity or cannot
occur with another activity. One relationship
that is modeled with a concurrency resource is
the requirement that a downlink or uplink can
only occur during contact with a TDRSS
satellite. This is modeled as a resource that is
present when there is TDRSS contact activity,
and required when there is a downlink or
uplink activity.

Depletable resources are used to model
resources with a fixed quantity, such a fuel or
RAM. Activities can use some finite amount of
a depletable resource, which may or may not be
restorable. The amount used by the activity is

persistent to the end of the schedule. In
addition, the modeler must specify a maximum
capacity for each depletable resource. In
DCAPS, RAM is modeled as a depletable
resource. Science observations produce data
and use some amount of the depletable
resource. Other activities, such as a transfer to
permanent storage, may restore this resource.

Non-depletable resources are used to model
resources which have a limit to the usage at any
one time, but are reset at the end of the activity
that consumes the resource. Similar to
depletable resources, nondepletables are
assigned a maximum capacity. Resources like
power are modeled with nondepletable
resources.

Simple resources are used to model devices that
can only be used by one activity at a time. For
instance, each of the instruments on board
DATA-CHASER, FARUS, SXEE, and
LASIT, are capable of taking only one image at
a time and are modeled with simple resources.
Simple resources are essentially nondepletable
resources with an capacity of one.

Slots—Slots are parameters of activities that
allow them to affect resources. They are
defined separately but referenced inside activity
definitions along with a value assignment for
each slot. In the slot definition, the modeler
must specify which resource it affects. The
main types of slots are: info slots, simple slots,
availability slots, choice slots, amount slots,
and state slots.

Info slots are for embedding text information in
activities. They are merely placeholders and do
not have any effect on scheduling.

Simple slots are included in activity type
definitions in order to model usage of a simple
resource. For instance, there is a slot called
FARUS, which is included in activity
definitions of activities which use the FARUS
instrument. This info slot models the usage of
the FARUS instrument.

Availability slots are the slots that allow
activities to provide or require the presence of a
concurrency resource. There is a slot in
DCAPS called TDRSS-coverage and a slot
called TDRSS-coverage-needed. Both affect

the TDRSS-coverage resource. TDRSS
activities have the TDRSS-coverage slot, and
downlink activities have the TDRSS-coverage-
needed slot. TDRSS activities can be placed
anywhere and provide the presence of the
resource. Downlinks can only be placed in
intervals where TDRSS activities are present,
since this activity possesses the slot that
requires the TDRSS resource to be present.

Amount slots come in two varieties: amount
and reset-amount. Amount slots reduce a
depletable or nondepletable resource, and reset-
amount slots increase a depletable or
nondepletable resource. Amount slots do not
have to be associated with a resource,
however. In DCAPS, we have an amount slot
called Rate, which is how we model the
different bit transfer rates in activities that move
data, such as a downlinks or DAT reads and
writes. To find the amount of data an activity
transfers, we multiply the rate by the duration
of the activity.

There are also two types of state slots: state-
users and state-changers. State-user slots
require the presence of a certain state in a state
resource, and state-changer slots change the
state of a state resource. The modeler must
define the set of possible states. In DCAPS,
there is a state resource that models the shuttle
orientation, which can be solar, earth, lunar, or
deep-space. Solar science activities require the
shuttle orientation state to be solar, while
shuttle maneuver activities change the
orientation state.

Dependencies—Plan-It II provides the ability to
set up links that allow one object to affect
another object. These links are called
dependencies. There are several types of
dependencies based on the types of objects it
relates: slot-to-resource, slot-to-slot, slot-to-
activity start or duration, activity start or
duration-to-slot, and resource-to-resource
dependencies.

Slot-to-resource dependencies are the default
dependencies in the Plan-It II system. They
allow a slot to affect a resource, and are created
automatically when a slot is defined with the
same name as a resource.

Slot-to-slot dependencies allow the value of
one slot to affect the value of another slot. For
instance, in the DAT-transfer activity, there are
two slots, one that models the removal of data
from the RAM, and one that models the
addition of data to the DAT (digital tape). In
DCAPS, a dependency has been defined that
sets the value of one of the slots equal to the
value of the other slot (so that the amount
subtracted from RAM is never different than
the data added to the DAT).

Activity start time or duration-to-slot
dependencies and slot-to-activity start time or
duration dependencies facilitate the modeling of
convenient relationships among Plan-It II
objects. For instance, the DAT-transfer has a
slot called Rate, which is the rate at which data
can be moved from the RAM to the DAT. We
have a dependency that sets the amount of data
that is removed from the RAM equal to the rate
multiplied by the duration. An example of a
dependency that goes from slot to duration is a
dependency which links the selected target for a
science image to the length of time it takes for
the instrument to scan. The duration of a
FARUS scan varies depending on its use of the
shuttle orientation state (solar, earth, or lunar).

Resource-to-resource dependencies allow one
resource to affect another resource directly.
This is very convenient for modeling power
usage, since power consumption can be tied to
activities or states. For instance, power
consumption by the heater can be linked to an
activity (e.g., the activation of the heater), or to
a state of the heater (e.g., when the state of the
heater is “on,” more power is used).

Hierarchy

The modeler can create an activity hierarchy
when defining the activities. All this means is
that activities can have subactivities which can
also have subactivities, and so on. Only the
activity at the top of the hierarchy can be
instantiated in the schedule. When an activity is
created, all of its subactivities are created
automatically. Therefore, the scheduler must
schedule the entire hierarchy if it wants to
schedule one of the components.

In modeling the DATA-CHASER shuttle
payload, decisions had to be made about where

to put activities in the activity hierarchy. We
decided to model those activities that could be
scheduled arbitrarily (and had no subactivities)
as events not in a hierarchy. Some activities
that were modeled as events were TDRSS
contacts, shuttle venting, and very simple
activities that could occur independently, like
relay activations and HMDA operations
(opening and closing).

If one event always occurred in some fixed
temporal relationship to another, then we
modeled it as an activity in a hierarchy. For
instance, a SXEE data-take consists of a
number of calibrations, a door opening activity,
several scans, a door closing activity, then a
data transfer to the RAM buffer. We modeled
all of these activities as steps in an activity
called SXEE-Data-Take.

Common Strategies

There were a number of strategies that we
employed in the modeling process that made
modeling the DATA-CHASER payload
simpler.

One strategy that we employed was to reduce
the number of states that state variables could
have through discretization. For instance,
spacecraft orientation is best modeled with a
real valued 3 dimensional vector. But for
modeling purposes, we reduced the number of
possible orientations to a discrete set of four:
solar, lunar, earth, and deep space.

Another strategy that we employed in modeling
DATA-CHASER was to separate one
component into several. For instance, there
was really only one memory buffer that was
used for storing several types of data, but we
modeled it as though it were three buffers: one
for science data, one for engineering data, and
one for storing data to be downlinked. We also
did this with power. There are really only two
power sources, DATA power and CHASER
power, but we modeled them as though there
were different power resources for each of the
science instruments and several of the other
subsystems. This allowed us to track power
usage more conveniently.

5. Automated PLANNER/SCHEDULER

The DATA-CHASER Automated Planner /
Scheduler produces a complete, valid schedule
of payload operation commands from a model,
initial state, and set of high-level goals. In
addition, it can input intermediate, invalid
schedules (resulting from user changes) and
produce a similar, but valid schedule. Finally,
the scheduler can take several valid schedules,
score them, and select the most optimal
schedule.

The planner/scheduler consists of two main
parts, the Plan-IT II (PI2) sequencing tool [4]
and the schedule reasoner (see Figure 2). PI2
was written by William C. Eggemeyer and
originally designed as an “expert assistant
sequencing tool.” PI2 includes a GUI that
allows for easy manipulation of the schedule.
In addition, it serves as an activity/resource
database that supplies valuable information to
the schedule reasoner. PI2 supports complex
monitoring and reasoning about activities and

the various constraints between them. The
schedule reasoner uses Artificial Intelligence
(AI) techniques to automatically generate new
schedules, repair existing faulty schedules, and
optimize valid schedules. PI2 provides
information about resource availability and
conflicts; the scheduler must decide which
activities to use to resolve the conflicts and
where to place the activities temporally. The

two components work together to provide easy
and fast sequencing of mission activities.

Schedule Data-Base

In the DCAPS system, PI2 is used primarily as
a “schedule database” and resource constraint
checker. It was originally developed as a
graphical sequencing tool. Activities and
resources are displayed on a graphical output.
An activity represents some mission event that
occurs over a period of time and uses some of
the mission resources. A resources represents
some limited available material whose usage is
modeled as discrete blocks over time.

For each type of activity and resource, PI2
displays a timeline, which represents the
behavior of that activity/resource type over a
period of time. When activities are created, they
are placed at a specified time on the timeline.
Resources used by that activity are updated to
reflect the additional usage. In addition to
schedule visualization, PI2 provides an easy-
to-use input interface for modifying the
schedule. Moving activities is as simple as a
click-and-drag with a mouse.

PI2 helps ease the burden on sequencers by
continually monitoring all activities in the
sequence. As activities are added or moved, the
change in resource usage is automatically
updated, and the new resource profiles are
displayed. With this information available, the
user can immediately see the effects of a
schedule change on the mission resources. For
each resource, PI2 also monitors any conflicts
that are occurring on the resource.

Conflicts are time intervals where the
limitations of the resource have been exceeded.
These conflict intervals are highlighted in red to
flag their existence for easy identification.
Finally, PI2 monitors any dependencies that
have been defined between activities and
resources. The values of specific parameters of
activities and resources may be functionally
dependent on values of other parameters. PI2
automatically keeps these parameter values
consistent.

PI2 also helps out by serving as an activity and
resource database, producing/accepting
information to/from a sequencer. The

Schedule Reasoner

Plan-IT II

GUI Schedule DB

Figure 2: DCAPS architecture

Schedule
Generator

Schedule
Repairer

Schedule
Optimizer

User
Model

functional interface to PI2 has been extended to
better assist an automated sequencer. A basic
set of “fetch” functions have been developed to
quickly retrieve information about conflicts and
the resources and activities involved in the
conflict. For example, an interface function has
been written to fetch the legal times where an
activity can occur in the schedule. Here, “legal
times” refers to positions where no conflicts are
caused by any of the resources used by the
given activity.

In addition to fetching information about the
current state of the schedule, the user will need
to be able to change the current state in attempt
to fix or optimize the schedule. Some basic
primitive functions are provided by PI2 to
allow an external system to add and move
activities, change their duration, etc. These
primitives make up the set of actions that a
scheduler can take when trying to resolve
conflicts.

Schedule Reasoner

The second major component of DCAPS is the
automated schedule reasoner. This is the next
step in automating and simplifying the
spacecraft command sequencing process. There
are three parts to the schedule reasoner: a
schedule generator, a schedule repairer, and a
schedule optimizer. First, the schedule
generator will transform a set of user-defined,
high-level goals into a valid sequence of low-
level commands. Second, the schedule repairer
will automatically restore the consistency of the
sequence after arbitrary user interaction by
rescheduling using repair actions. The
scheduler repairer iteratively attempts to resolve
each conflict, which involves making choices
on what to repair and how to repair it. Finally,
the schedule optimizer can optimize a valid
schedule to increase the scientific return.

Schedule Generator—The first step in
sequencing spacecraft commands is to come up
with an initial schedule of events for each phase
of the mission. This process has been partially
automated in DCAPS with the schedule
generator. Expressing schedules and partial
schedules to be generated is done through user
defined goals. There are two ways in which
user goals are handled in DCAPS. First, initial
science and engineering goals are handled with

parameterized scheduling functions. Each
function implements a goal. For example, there
is a “Place-Power” function that schedules
power switching activities in appropriate places
based on some engineering parameters.
Parameters may include such things as a
minimum time between switching, or a power
on during a particular state of a different
resource.

Second, science goals can also be expressed
through data-take requests, which do not have
to be a part of the initial schedule generation.
For example, a scientist can request ten
additional scans from a particular instrument to
occur any time during some phase of the
mission. This type of general request does not
include specific locations or necessary
supporting activities. The scheduler will simply
place them at random positions and allow any
conflicts to be resolved by the automated
repairer.

Schedule Repairer—The generated initial
schedule may still violate some of the
spacecraft constraints. Also, the scientists and
engineers might feel that their goals were not
completely satisfied, and may need to interact
with and modify the generated schedule. By
modifying the schedule, new conflicts may be
introduced. Therefore, we need some way of
automatically resolving any existing conflicts in
the schedule, while disrupting the current state
of the schedule as little as possible. Having the
process automated allows the user to be less
careful, and therefore spend less time on the
details of sequencing the activities. When
general requests or changes have been made,
all conflicts can be resolved by executing one
simple command to invoke the schedule
repairer.

Before describing the schedule repairer, we
must present a few definitions. A “hard
conflict,” or just “conflict,” is a violation of one
of the resource constraints. A conflict occurs
over a certain time period and is caused by
activities called “culprits.” For example, if the
power capacity is exceeded from time t1 to time
t2, then a conflict exists from time t1 to time t2,
and the culprits are any activities that use power
during this time (see Figure 3). A “soft
conflict” is a violation of one of the user's high
level goals. “Hard conflicts” are violations of

legal constraints, while “soft conflicts” are
violations of user preferences. “Choice points”
are places in the scheduling algorithm when a
decision must be made. For example, when
there are many conflicts to resolve, the
scheduler must decide which conflict to resolve
first. A “hard choice,” or just “choice,” is a
decision made solely on the basis of possible
hard conflicts. It may be decided, for example,
not to place an activity at a certain time because
new conflicts will be added as a result of that
placement. A “soft choice” is a decision made
on the basis of user preferences or heuristics
with the hopes of generating a more optimal
schedule. An example of a user preference is a
priority scheme on certain activities. One
heuristic may be to move lowest-priority
culprits to the nearest legal position.

There are three possible actions to take in
attempt to resolve a conflict: move, add, or
delete an activity. The “move” action involves
moving one of the culprits of the conflict to a
positions that will either resolve the conflict or
at least ensure that the moved activity is no
longer a culprit. Some conflicts can be resolved
by adding a new activity. These activities
usually provide some resource that was
previously not available. Finally, a conflict can
also be resolved by simply deleting the culprits.
This is obviously not a preferred method and is
only used as a last resort.

The resolution of a conflict greatly depends on
the type of resource that is in violation. There
are five different types of conflicts
corresponding to the five types of resources. A
state conflict occurs when an activity requires
the resource to be in a state which it is not. The
culprits in this type of conflict are all of the
activities that require the incorrect state and the
activity that changed the resource to the
incorrect state. Several possibilities for

resolving a state conflict include moving the
culprits to another interval where the required
state is present or adding an activity that will
change the state of the resource to the required
state.

A concurrency conflict is when an activity
requires the presence of the resource during a
time for which it is absent. The culprits in this
type of conflict are all of the activities that
require the presence of the resource. To resolve
a concurrency conflict, the scheduler can move
the culprits to an interval where the resource is
present or add an activity that provides the
presence of the resource.

A depletable conflict means that the activities of
the schedule have used too much of the
resource. In this type of conflict, the culprit is
the activity that caused the resource to overflow
during the time that it first overflows. Some
depletable resources have “resetter” activities
and this sort of conflict can be resolved by
adding an activity that “resets” the available
resource. For example, a downlink activity will
free up space in the downlink buffer. A
nondepletable conflict is when activities
overuse a resource during a particular time
interval. The culprits in this type of conflict are
all of the activities that use the resource during
the conflict interval. This sort of conflict can be
resolved by moving or deleting culprits. There
are no activities in the DATA-CHASER model
that can add to a nondepletable resource.

Simple conflicts occur when two or more
activities use the same resource at the same
time. This type of conflict can only be resolved
by moving culprits.

For any type of initial schedule, the schedule
repairer must find the correct activities to move,
add, or delete and position them temporally in
such a way that no conflicts remain. The
scheduler makes decisions randomly except at
certain choice points where heuristics are used.
The scheduler relies on some interface
functions to PI2 that describe the conflicts in
the current schedule, describe the activities that
could resolve a conflict, and manipulate the
schedule. We first describe the random
scheduler, followed by the heuristic
enhancements that facilitate scheduling within
the DATA-CHASER domain. The ultimate task

Figure 3: Conflicts

Power
Capacity

Culprits

Conflict

t1 t2

