and machines, on-board autonomy, human
control, and ground automation.

CHASER is comprised of three coaligned
instruments that take data in the far amxtteme
ultraviolet wave-lengths. The first and oldes$t
theseinstruments(17 yearsold) is FARUS,
which takesa continuousspectrumfrom 115
nm to 190 nm with a resolutionof .12 nm.
LASIT takes images of the full solar disk thie

the mission, DATA-CHASER will take data
while not pointing at thsun. This datais used
for testing various portions of the DATA
experimentwith nonsolar pointing data in
addition to being used for instrument
calibration.

One of the consequence®f flying on the
shuttle systemis that shuttle resourcesare
limited, and their availability is subject to

sun in the Lyman-alpha wavelength (121.6 nmgfhange every 12 hours. These resources
with a Charge Injected Device imager. The finainclude access to uplink and downlink

instrumentin the scientific package,SXEE,
consists of fourphotometersgeachhaving a
different metallic coatingso as to enablethem
to look atdifferent wavelengthdetweenl and
40 nm. The objective dheseinstrumentss to

measure the full disk solaiftravioletirradiance
and obtain imagesof the sun in the Lyman-
alpha wavelength, providing a correlation
between solar activity and radiation fluxasll

as an associationof Lyman-alphafluxes with

individual active regions of the sun.

The flight segmentof the DATA-CHASER
project consists ofa canisterthat is equipped
with a Hitchhiker Motorized Door Assembly
(HMDA), which housesthe instrumentsand
their supportelectronics.The secondcanister
containsthe flight computerfor the payloadas
well asthe 2 GB Digital Audio Tape (DAT)

drive that is usedto store all data that is

collectedduring the mission. The payloaddata
is alsosentto the groundsystemthroughboth
low rate (available90% of the time, at 1200
bps) and medium rate (available when
scheduledat 200 kbps). The payloadis also
capableof receivingcommandssentfrom the
ground system when uplink is available.

During the mission, the DATA-CHASER
payload will be operating in four different
modes. Most of the time, when DATA-

CHASER is powered,it will bein a passive
mode where it is monitoring its state and
notifying the ground ofany changes.During
the time in the mission when the orbiter is

scheduledto point the bay at the sun, the
DATA-CHASER payloadwill shift into solar

active mode where all instruments take data.

The datais both written to the DAT drive on

channels, and time that your payloaaliswed
to operateln additionto theseresourcesany
given payload may also have environmental
constraintsaasto how much contaminationthe
payloadcan take. Another exampleis thermal

constraints, such as maximum solar point time.

STS-85, the flight that DATA-CHASER

payloadis scheduledo fly on, is one of the
most complicatedflights that the shuttle has
flown to date. In addition to the DATA-

CHASER payload, there are four other
payloads sharing the same HH bridge. In

additionto the IEH-2 bridge, thereis another
HH bridge, a pallet payload,and a Spartan
deployable satellite. Needlegssaythe shuttle
pointing requirements are considerably tight.

In addition to modeling what the internal
constraintsand resourcesof the payload are,
DCAPS must also searc¢he shuttleflight plan
for times when we are allowed to operate,
downlink ourdata,uplink new commandsets,
and when we have to protect the scientific
instruments from contamination events.

DATA-CHASER is an interestingscenariofor
schedulingbecauseof the complex data and
power managemeninvolved in the science
gathering.An automatedschedulermust find
an optimal “data taking” schedule, while
adhering to the resource constraints. In
addition, the scientistswould like to perform
dynamicschedulingduring the mission.As an
example,the summarydata may indicate the
presenceof a solar flare. If this occurs,
scientists have different requirements and
goals, such ashigher priorities on certain
instrumentsor longer integrationtimes. These
new goalsmay requirea different scheduleof

board and downlinked to the ground system foactivities.

immediatedata analysis.Severaltimes during

3. USEROPERATION

The DATA-CHASER Automated Planner /
Schedulewill be partof the DATA-CHASER
mission operations software. It will be a
ground-based intelligent tool used for
generatingscheduledcommandsfor uplink to
the payload. The user’'s manual [3] can be
found at the Jet PropulsionLaboratory. There
are three phases ofoperating the DCAPS
system: a goal satisfactigghase,an interactive
repair phase, and an optimization phase.

Goal Satisfaction

The first phase of scheduling in DCAPS

involves generatingan initial schedulefrom a

set of high-level, user-defined goals. The

scientistor engineersimply requestsone or

more of the predefined goals, and gdubeduler
will generate the low-levedctivitiesthat satisfy

the goals. For example, the scientist sanply

make a request for solar observations duaihg
solar viewing periods. Given this goal, the

scheduler will create and position the

instrument data-take activiies and their

supporting activities.

Goal satisfactionis a way of generatingan
initial schedule. Goalsre parameterizedand
createactivities in positionsrelative to certain
schedule events or parametersthis way, the
same goals can be requesteddifferentinitial
states. This makes them more flexible than
alternateways of creatingan initial schedule,
such assimply loading activities from a file.
For example, the initial state in DATA-
CHASER containsshuttlemaneuveractivities.
These activities determinethe solar viewing
periodsof the payload.The solar observation
goals are basedrelative to these solar views,
andtherefore,are applicableto any maneuver
sequence.

Interactive Repair

In the second phase of scheduling, tiser has
the opportunity for interacting with the

scheduleat a more detailedlevel. The scientist
or engineercan view the activities at several
levels of abstraction. The graphical user
interface(GUI) candisplay activities from the

highestlevel, as a single event, down to the

lowest level, showing the detailed stepsthat

make-up the activity.

The user can also modify the schedule by

moving, adding,or deleting activities, as well

aschangingactivity parametersFor example,
the scientist might want to delete ASIT data-
take and replaceit with a FARUS or SXEE
data-take. Or, perhaps he/shay simply want
to changethe targetof somedata-take from a
solar scan to an earth scan.

Although theuser haghe capability of making
thesetypes of adjustments,he/she does not
needto worry aboutthe various interactions,
constraints, oresourceusageof the activities
being modified. This informationis monitored
by DCAPS,and changesare propagatedo the
dependent objects. The results of the
modification, including any conflicts, are
displayedby the GUI. In addition, when the
userintroducesschedulingconflicts, DCAPS
can resolve them automatically.

DCAPS can be called upon at any time to

resolveany conflicts residingin the schedule.
Conflicts are violations of resourcecapacities
or temporalconstraints. Irthis way, the user
doesnot needto be very informed, careful, or

specific abouhis/herrequestsFor example,a

scientistcanmove a data-takeactivity without

concernfor its power usage.Or, a general
requestfor data-takescan be made, without

specifying the exacttimes for the activities to

occur. Although these changesreguestsnay
cause one or more conflicts, DCAPS can
resolve these conflicts with one simple
command.

Optimization

Finally, the third phasef DCAPS operationis
schedule optimization. After resolving all
conflicts, the schedule may still contain
violations of wuser preferences. These
preferenceviolations can be repaired in a
mannersimilar to repairing regular conflicts.
The main differenceis that the modeler must
explicitly representhe types of violations and
generalmechanismdgor repairingthem. As an
example,consideredan engineer’s desire to
have all data written to permanent storag¢he
end of the mission. Havindatain the RAM at
the end of the scheduleis a violation of a
preference, rather than a violation of a
resource.

Preferences can also be expressedschadule
evaluationfunction. Inthe optimization phase,
DCAPS can score valid schedulessedon the
evaluationfunction developedoy the modeler.

two steps,CHASER-heater-omnd CHASER-
heater-off.

Step-activitiesare usedto model activities at a
middle level of abstraction.They can contain

One simple evaluation function may give highersteps,but must also have parengctivities. In

scores to schedules with more science
observations.Due to the fact that DCAPS

DCAPS, we model an activity SXEE-Data-
Take, which models the SXEE instrument

utilizes a stochastic scheduling procedure, morepeningits apertureandtaking a scan.In this

optimal schedulescan be found by simply
running the scheduler many timasd retaining
the schedule with highest score.

4. MODEL REPRESENTATION

In orderto useeitherPlan-IT Il standaloneor
the full DCAPS system,the usermust write a
software model of the mission activities and
spacecraftresources.This processinvolves
defining a set obbjectsand how they interact.
These definitions are then used by the
scheduler to create instances of the objects.

Model Objects
The basic objects in the PI2 sequencing el

activities, resources, slots, and dependencies.varieties:

Activities—Activities are used to model the
events that happen that affect the DATA-
CHASER payload, and the actions that the
DATA-CHASER payload can take. All
activities have some basic components: a
duration, alist of slots, anda list of slot-value
assignments. In addition, certain types
(describedbelow) have a list of subactivities.
For theseactivities, the user can also define a
set of temporal constraints between the
subactivities Next, we describein more detall
the four basidypesof activities: events,steps,
step-activities, and activities.

Eventsare usedto modelactivitiesthat do not
occur in a fixedrelationto otheractivities(e.g.
Tracking and Data Relay Satellite System
(TDRSS) contacts)and are not part of an
activity hierarchy.

Steps are the “leaf” nodes in the activity
hierarchytree. In other words, they do not
contain any subactivities. Steps cannot be
instantiatedwvithout their parentsand are used
to model the activities at the lowest level of
detail. For instance,we model an activity
called CHASER-heating,which consists of

case, there is a step-activitglled SXEE-Scan-
Step,which hassensorread stepsand cannot
be instantiated by itself.

Activities are usedto model activities at the
highest level of abstraction. They dhe “root”
nodes in the hierarchy tree, containing
subactivities, but no parent activity. The
activity and event objects are what the
scheduler can instantiate, and Plan-I1t I
providesmethodsto accesshe varying levels
of abstraction.

Resources-Resources define the various
physical resourcesand the constraints they
iImpose. Resourcescome in essentially five
state, concurrency, depletable,
nondepletable, and simple.

Stateresourcesare usedto model the systems

in the DATA-CHASER payload that have states
associatedvith them.For eachstateresource,
the modelermust specify the possiblevalues
that the stateanbe. Most of the systemshave

at leastone statevariable,which is whetheror
not they are activated. The orientation of the
payload is also modeled as a state variable.

Concurrencyresourceconstraintsare used to
modelrulesthat stipulatethat an activity either
must occur with another activity or cannot
occur with anotheractivity. One relationship
thatis modeledwith a concurrencyresources
the requirementhat a downlink or uplink can
only occur during contact with a TDRSS
satellite.This is modeledas a resourcethat is
presentwhenthereis TDRSS contactactivity,
and required when there is a downlink or
uplink activity.

Depletable resources are used to model
resourcevith a fixed quantity, sucha fuel or
RAM. Activities can usesomefinite amountof
a depletable resource, which may or may not be
restorable.The amountused bythe activity is

persistentto the end of the schedule. In
addition, the modelemust specify a maximum
capacity for each depletable resource. In

DCAPS, RAM is modeled as a depletable
resource. Science observationsproduce data
and use some amount of the depletable
resource Otheractivities,such asa transferto

the TDRSS-coverage resource. TDRSS
activities have the TDRSS-coverageslot, and
downlink activities havethe TDRSS-coverage-
neededslot. TDRSS activities can be placed
anywhere and provide the presenceof the
resource.Downlinks can only be placed in
intervalswhere TDRSS activities are present,

permanent storage, may restore this resource.since this activity possessesthe slot that

Non-depletableresourcesare used to model
resources which have a limit to the usagarst
one time, but are resat the end of the activity
that consumes the resource. Similar to
depletable resources, nondepletables are
assignedh maximum capacity. Resourcedike
power are modeled with nondepletable
resources.

requires the TDRSS resource to be present.

Amount slots come in two varieties: amount
and reset-amount.Amount slots reduce a
depletable or nondepletable resource, l@set-
amount slots increase a depletable or
nondepletableesource.Amount slots do not
have to be associated with a resource,
however. In DCAPSwe have amamountslot
called Rate, which is how we model the

Simple resources are used to model devices thdifferent bit transfer rates in activities thmbve

can only beused byone activity at atime. For
instance, each of the instrumentson board
DATA-CHASER, FARUS, SXEE, and
LASIT, are capable of taking only omaageat
a time and are modeledwith simpleresources.
Simpleresourcesare essentiallynondepletable
resources with an capacity of one.

Slots—Slots are parametersof activities that
allow them to affect resources.They are
defined separately but referendadide activity
definitions along with a value assignmentfor
eachslot. In the slot definition, the modeler
must specify which resourceit affects. The
main types of slots are: info slo@mpleslots,
availability slots, choice slots, amount slots,
and state slots.

Info slots are for embedding text informatiion
activities. They arenerely placeholderanddo
not have any effect on scheduling.

Simple slots are included in activity type
definitions in ordetto modelusageof a simple
resource.For instance,there is a slot called
FARUS, which is included in activity
definitions of activitieswhich usethe FARUS
instrument.This info slot modelsthe usageof
the FARUS instrument.

Availability slots are the slots that allow
activities to provide or require the presentea
concurrency resource. There is a slot in
DCAPS called TDRSS-coverageand a slot
called TDRSS-coverage-neededdoth affect

data, such as downlinks orDAT readsand
writes. To find the amountof dataan activity
transfers,we multiply the rate by the duration
of the activity.

There are also two types of stateslots: state-
users and state-changers.State-user slots
require thepresenceof a certainstatein a state
resource,and state-changesslots changethe
state of a stateresource.The modeler must
define the set of possible states.In DCAPS,
thereis a stateresourcethat modelsthe shuttle
orientation, which can be solar, eatimar, or
deep-spaceSolar scienceactivities require the
shuttle orientation state to be solar, while
shuttle maneuver activities change the
orientation state.

DependenciesPlan-It Il provides the ability to
set up links that allow one object to affect
another object. These links are called
dependencies.There are several types of
dependenciebasedon the typesof objectsit
relates: slot-to-resource,slot-to-slot, slot-to-
activity start or duration, activity start or
duration-to-slot, and resource-to-resource
dependencies.

Slot-to-resourcedependenciesire the default
dependenciesn the Plan-It Il system. They
allow a slot to affect a resource, aze created
automaticallywhen a slot is defined with the
same name as a resource.

Slot-to-slot dependenciesllow the value of
one slot toaffect the value of anotherslot. For
instance, in théAT-transferactivity, thereare
two slots, onethat modelsthe removalof data
from the RAM, and one that models the
addition of datato the DAT (digital tape). In
DCAPS, a dependencyhas been defined that
setsthe value of one of the slots equalto the
value of the other slot (so that the amount
subtractedrom RAM is never different than
the data added to the DAT).

Activity start time or duration-to-slot
dependencieand slot-to-activity start time or
duration dependencies facilitate the modebifig
convenient relationships among Plan-It |l
objects.For instance,the DAT-transferhas a
slot called Rate, which ithe rate at which data
canbe movedfrom the RAM to the DAT. We
have a dependency thegtsthe amountof data
that is removed from the RAMqualto the rate
multiplied by the duration. An exampleof a
dependency that goes frastot to durationis a

dependency which links the selected target for

scienceimageto the lengthof time it takesfor
the instrument to scan. The duration of a
FARUS scan varies depending on its uséef

shuttle orientation state (solar, earth, or lunar)

Resource-to-resourcéependenciesllow one
resourceto affect another resource directly.
This is very convenientfor modeling power
usage, since pow@&onsumptioncanbe tied to
activities or states. For instance, power
consumptiorby the heatercanbe linked to an
activity (e.g., the activation of the heatej,to
a state of the heater (e.gthenthe stateof the
heater is “on,” more power is used).

Hierarchy

The modeler can createan activity hierarchy
whendefining the activities. All this meansis

that activities can have subactivitieswhich can
also have subactivities,and so on. Only the
activity at the top of the hierarchy can be
instantiated in the schedule. Whenaativity is

created, all of its subactivities are created
automatically. Therefore, the schedulermust
schedulethe entire hierarchy if it wants to

schedule one of the components.

In modeling the DATA-CHASER shuttle
payload, decisions had to be mad®utwhere

to put activities in the activity hierarchy. We

decidedto modelthoseactivities that could be

scheduledarbitrarily (and had no subactivities)
as eventsnot in a hierarchy. Some activities
that were modeled as events were TDRSS
contacts, shuttle venting, and very simple
activities that could occur independently like

relay activations and HMDA operations
(opening and closing).

If one eventalways occurredin some fixed
temporal relationship to another, then we
modeledit as an activity in a hierarchy. For
instance,a SXEE data-take consists of a
number of calibrations, a door opening activity,
severalscans,a door closing activity, then a
datatransferto the RAM buffer. We modeled
all of theseactivities as stepsin an activity
called SXEE-Data-Take.

Common Strategies

There were a number of strategiesthat we
mployedin the modeling processthat made
odeling the DATA-CHASER payload

simpler.

Onestrategythat we employedwas to reduce
‘the numberof statesthat statevariablescould
have through discretization. For instance,
spacecraforientationis best modeledwith a
real valued 3 dimensional vector. But for
modeling purposes, weducedthe numberof
possibleorientationsto a discreteset of four:
solar, lunar, earth, and deep space.

Another strategy that we employedmodeling
DATA-CHASER was to separate one
componentinto several. For instance, there
was really only one memory buffer that was
used forstoring severaltypes of data,but we
modeled it aghoughit werethreebuffers: one
for sciencedata,onefor engineeringdata,and
one for storing data to l#ownlinked.We also
did this with power. Therearereally only two
power sources,DATA power and CHASER
power, but we modeledthem as though there
were different powerresourcegor eachof the
scienceinstrumentsand severalof the other
subsystemsThis allowed us to track power
usage more conveniently.

5. Automated BANNER/SCHEDULER

The DATA-CHASER Automated Planner /

Schedulemproducesa complete valid schedule
of payload operatiocommanddrom a model,
initial state, and setof high-level goals. In

addition, it can input intermediate, invalid

schedules(resulting from user changes)and

producea similar, but valid schedule. Finally,
the schedulercantake severalvalid schedules,
score them, and select the most optimal

schedule.

The planner/scheduleconsists of twomain
parts,the Plan-IT Il (PI2) sequencingool [4]
andthe schedulereasoner(seeFigure 2). PI2
was written by William C. Eggemeyerand
originally designedas an “expert assistant
sequencingtool.” PI2 includes a GUI that
allows for easymanipulationof the schedule.
In addition, it serves asan activity/resource
databasehat suppliesvaluableinformation to
the schedulereasoner.P12 supportscomplex
monitoring and reasoningabout activities and

Schedule Reasoner

Schedule Schedule Schedule
Generator Repairer Optimizer
4 L
/ N\

// Plan-IT Il \

GUI Schedule DB
>

/» ‘M\(;del

Figure 2: DCAPS architecture

the various constraints between them. The
schedulereasoneruses Artificial Intelligence
(Al) techniguesto automaticallygeneratenew
schedules, repair existing faukbghedulesand
optimize valid schedules. PI2 provides
information about resource availability and
conflicts; the scheduler must decide which
activities to use to resolve the conflicts and
where to place the activities temporally. The

two components work togeth&y provide easy
and fast sequencing of mission activities.

Schedule Data-Base

In the DCAPS system, PI2 is uspdmarily as
a “scheduledatabase’and resourceconstraint
checker. It was originally developed as a
graphical sequencing tool. Activities and
resourcesaredisplayedon a graphicaloutput.
An activity representsomemissioneventthat
occurs ovela period of time and usessomeof
the missionresourcesA resourcegepresents
somelimited availablematerialwhoseusageis
modeled as discrete blocks over time.

For eachtype of activity and resource,PI12
displays a timeline, which representsthe
behaviorof that activity/resourcetype over a

period of time. When activities are created, they

areplacedat a specifiedtime on the timeline.
Resourcesised bythat activity are updatedto
reflect the additional usage. In addition to
schedulevisualization, P12 provides an easy-
to-use input interface for modifying the
schedule Moving activitiesis as simple as a
click-and-drag with a mouse.

P12 helps easethe burdenon sequencerdy

continually monitoring all activities in the

sequence. As activities are added or moties,
change in resource usage is automatically
updated, and the new resourceprofiles are

displayed.With this information available,the

user can immediately see the effects of a

schedule change dhe missionresourcesFor

eachresourcePI2 alsomonitorsany conflicts

that are occurring on the resource.

Conflicts are time intervals where the

limitations of the resourckave beerexceeded.
These conflict intervals are highlighted in ited
flag their existence for easy identification.

Finally, P12 monitors any dependencieghat

have beendefined between activities and

resources. The values gipecific parametersf

activities and resourcesmay be functionally

dependenbn valuesof other parametersPI2

automatically keeps these parameter values
consistent.

P12 also helps out by serving as activity and
resource database, producing/accepting
information to/from a sequencer. The

functional interface to PI2 has beextendedo
better assistan automatedsequencerA basic
set of “fetch” functions haveeendevelopedo
quickly retrieve information aboutonflicts and
the resourcesand activities involved in the
conflict. For example, an interfadenction has
beenwritten to fetch the legal times where an
activity canoccurin the scheduleHere, “legal

parameterized scheduling functions. Each
function implements a goal. Fexample there
is a “Place-Power” function that schedules
power switching activities imppropriateplaces
based on some engineering parameters.
Parametersmay include such things as a
minimum time betweenswitching, or a power
on during a particular stateof a different

times” refers to positions where no conflicts argesource.

causedby any of the resourcesused bythe
given activity.

In addition to fetching information about the
current state of the schedutbe userwill need
to be able tachangethe currentstatein attempt
to fix or optimize the schedule.Some basic
primitive functions are provided by PI2 to
allow an external systemto add andmove
activities, changetheir duration, etc.These
primitives make up the set of actionsthat a
scheduler can take when trying to resolve
conflicts.

Schedule Reasoner

The second major componesit DCAPS s the
automatedschedulereasoner.This is the next
step in automating and simplifying the

spacecraft command sequencing process. Th

are three parts to the schedule reasoner:a

schedulegeneratora schedulerepairer,and a

schedule optimizer. First, the schedule
generatomwill transforma set of user-defined,
high-levelgoalsinto a valid sequenceof low-

level commands. Secontthe schedulerepairer
will automatically restore the consistenafythe

sequenceafter arbitrary user interaction by

rescheduling using repair actions. The

scheduler repairer iteratively attemptsésolve
eachconflict, which involves making choices
on what to repaiand how to repairit. Finally,

the scheduleoptimizer can optimize a valid

schedule to increase the scientific return.

Schedule Generator—Fhe first step in
sequencing spacecraft commands isdmeup

with an initial schedule of events for each phas

of the mission. This process habeenpatrtially
automated in DCAPS with the schedule
generator. Expressing schedulesand partial
schedules to bgenerateds donethroughuser
defined goals. Thereare two ways in which
user goals arbandledin DCAPS. First, initial
science and engineerimggalsare handledwith

Second,sciencegoals can also be expressed
throughdata-takerequestswhich do not have
to be a part of the initial schedulegeneration.
For example, a scientist can request ten
additional scans froma particularinstrumentto
occur any time during some phase of the
mission. This type of generalrequestdoesnot
include specific locations or necessary
supporting activities. The scheduler valmply
placethemat randompositionsand allow any
conflicts to be resolved by the automated
repairer.

Schedule Repairer—¥he generated initial
schedule may still violate some of the
spacecraftonstraintsAlso, the scientistsand
engineeramight feel that their goals were not

mpletelysatisfied,and may needto interact

ith and modify the generatedschedule. By
modifying the schedule, neweonflicts may be
introduced.Therefore,we needsomeway of
automatically resolving any existing conflidgts
the schedulewhile disruptingthe currentstate
of the schedule as littlas possible.Having the
processautomatedallows the user to be less
careful, and thereforespend lesdime on the
details of sequencingthe activities. When
generalrequestsor changeshave beemmade,
all conflicts can be resolvedby executingone
simple command to invoke the schedule
repairer.

Before describing the schedulerepairer, we
must present a few definitions. A “hard
conflict,” or just “conflict,” is a violation of one
gf the resourceconstraints.A conflict occurs
ver a certain time period andis causedby
activities called “culprits.” For example,if the
power capacity is exceeded fraime t, to time
t,, then a conflicexistsfrom time t, to time t,,
and the culprits are any activities that use power
during this time (see Figure 3). A “soft
conflict” is a violation of one othe user'shigh
level goals. “Hard conflicts” are violations of

| | Culprits

Conflict

Capacity

t t
Figure 3: Conflicts

legal constraints, while “soft conflicts” are

violations ofuserpreferences Choice points”

areplacesin the schedulingalgorithm when a
decision must be made. For example, when

there are many conflicts to resolve, the

scheduler must decide which confliotresolve
first. A “hard choice,” or just “choice,” is a

decisionmadesolely on the basis ofpossible
hard conflicts. It maye decided for example,
not to place an activity & certaintime because
new conflictswill be addedas a result of that

placementA “soft choice”is a decisionmade
on the basis of usepreferencesr heuristics
with the hopes ofgeneratinga more optimal

schedule. An examplef a userpreferencas a

priority scheme on certain activities. One

heuristic may be to move lowest-priority

culprits to the nearest legal position.

There are three possible actions to take in

attemptto resolve a conflict: move, add, or

deletean activity. The “move” action involves
moving one of the culprits of the conflict to a
positionsthatwill eitherresolvethe conflict or

at least ensurethat the moved activity is no
longer a culprit. Some conflicts can tesolved
by adding a new activity. These activities
usually provide some resource that was
previously not availableé=inally, a conflict can

resolving a state conflict include moving the
culprits to anotherinterval where the required
stateis presentor adding an activity thatwill
change thestateof the resourceto the required
state.

A concurrencyconflict is when an activity
requiresthe presencef the resourceduring a
time for which it is absent.The culpritsin this
type of conflict are all of the activities that
require the presence of the resourcerdsmlve
a concurrency conflicthe schedulercanmove
the culprits toan interval wherethe resourceas
presentor add an activity that provides the
presence of the resource.

A depletable conflict means that thetivities of
the schedule have used too much of the
resourceln this type of conflict, the culprit is
the activity that caused the resourceverflow
during the time that it first overflows. Some
depletableresourceshave “resetter” activities
and this sort of conflict can be resolved by
adding an activity that “resets” the available
resource. For example, a downlink actiwiyl
free up spacein the downlink buffer. A
nondepletable conflict is when activities
overusea resourceduring a particular time
interval. The culprits in thigype of conflict are
all of the activitiesthat usethe resourceduring
the conflict interval. This sort of conflidanbe
resolvedby moving or deletingculprits. There
areno activitiesin the DATA-CHASER model
that can add to a nondepletable resource.

Simple conflicts occur when two or more
activities use the sameresourceat the same
time. This type of conflict cannly be resolved
by moving culprits.

also be resolved by simply deleting the culpritsFor any type of initial schedule the schedule

This is obviously not a preferred methaddis
only used as a last resort.

The resolutiorof a conflict greatly dependson
the type of resourcethatis in violation. There
are five different types of conflicts
corresponding to the five typed resourcesA
stateconflict occurswhen an activity requires
the resource to be in a state whiclsihot. The
culprits in this type of conflict are all of the
activities thatrequirethe incorrectstateandthe
activity that changed the resource to the
incorrect state. Several possibilities for

repairer must find the correct activities to move,

add, or deleteand positionthem temporally in
such a way that no conflicts remain. The
schedulemakesdecisionsrandomly exceptat
certain choice points whefheeuristicsare used.
The scheduler relies on some interface
functionsto P12 that describethe conflicts in
the current scheduleescribethe activities that
could resolve a conflict, and manipulate the
schedule. We first describe the random
scheduler, followed by the heuristic
enhancementthat facilitate schedulingwithin

the DATA-CHASER domain. The ultimate task

