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Abstract target task after having learned on the source. Our two mo-
tivations for representation transfer are similar, thopgh

Transfer learning problems are typically framed as levieag haps a bit more subtle

knowledge learned on a source task to improve learning on a

related, but different, target task. Current transferraey

methods are able to successfully transfer knowledge from a

source reinforcement learning task into a target task,aiedu
learning time. However, the complimentary task of transfer
ring knowledge between agents with different internal eepr

sentations has not been well explored The goal in both types
of transfer problems is the same: reduce the time needed to

learn the target with transfer, relative to learning theyear
without transfer. This work definegpresentation transfer
contrasts it with task transfer, and introduces two novel al
gorithms. Additionally, we show representation transfer a
gorithms can also be successfully used for task transfet, pr
viding an empirical connection between the two problems.
These algorithms are fully implemented in a complex multi-
agent domain and experiments demonstrate that trangferrin
the learned knowledge between different representati®ons i
both possible and beneficial.

Introduction

Transfer learning is typically framed as leveraging knowl-

edge learned on source tasko improve learning on a re-

lated, but differenttarget task Past research has demon-
strated the possibility of achieving successful transter b

tweenreinforcement learningRL) (Sutton & Barto 1998)

tasks. In this work we refer to such transfer learning prob-

lems agask transfer

A key component of any reinforcement learning algo-

rithm is the underlyingepresentatiorused by the agent for

One motivation for equipping an agent with the flexibility
to learn with different representations is procedural. -Sup
pose an agent has already been training on a source task
with a certain learning method and function approximator
(FA) but the performance is poor. A different representatio
could allow the agent to achieve higher performance. If ex-
perience is expensive (e.g. wear on the robot, data callecti
time, or cost of poor decisions) it is preferable to leverage
the agent’s existing knowledge to improve learning with the
new representation and minimize sample complexity.

A second motivating factor is learning speed: changing
representations partway through learning may allow agents
to achieve better performance in less time. SOAR (Laird,
Newell, & Rosenbloom 1987) can use multiple descriptions
of planning problems and search problems, generated by a
human user, for just this reason. We will show in this pa-
per that it is advantageous to change internal representati
while learning in some RL tasks, relative to using a fixed
representation, so that higher performance is achieved mor
quickly.

Additionally, this study is inspired in part by human psy-
chological experiments. Agents’ representations are- typi
cally fixed when prototyped, but studies show (Simon 1975)
that humans may change their representation of a problem as
they gain more experience in a particular domain. While our
system does not allow for automatic generation of a learned
representation, this work addresses the necessary fipst ste

learning (e.g. its function approximator or leaming algo- ot heing able to transfer knowledge between two represen-
rithm), and transfer learning approaches generally assume ations.

that the agent will use a similar (or even the same) represen-
tation to learn the target task as it used to learn the source.
However, this assumption may not be necessary or desirable.
This paper considers an orthogonal question: is it possible
and desirable, for agents to use different representations
the target and source? This paper defines and provides algo-
rithms for this new problem afepresentation transfe{RT)
and contrasts it with the more typical task transfer.

The motivation for transferring knowledge between tasks
is clear: it may enable quicker and/or better learning on the

This paper’s main contributions are to introduce represen-
tation transfer, to provide two algorithms for RT, and to em-
pirically demonstrate the efficacy of these algorithms in a
complex multiagent RL domain. In order to test RT, we train
on the same tasks with different learning algorithms, func-
tions approximators, and parameterizations of theseifumct
approximators, and then demonstrate that transferring the
learned knowledge among the representations is both possi-
ble and beneficial. We introduce two representation transfe
algorithms and implement them in the RL benchmark do-
main of robot soccer Keepaway (Stogteal. 2006). Lastly,
we show that the algorithms can be used for successful task
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transfer, underscoring the relatedness of representatidn rather than a learned one, the agent uses the source represen
task transfer. tation to set the weight. Using this process, a single weight
RT Algorithms from the source representation can be used to set multiple

In this work, we consider transfer in reinforcement learn- weights in the target representation.

ing domains. Following standard notation (Sutton & Barto
1998), we say that an agent exists in an environment and
at any given time is in some state € S, beginning at
sinitial- AN agent’s knowledge of the current state of its

Algorithm 1 Complexification

1: Train with a source representation and save the learned
FASOU/I‘CC
2: while target agent trains on a task wilA4,ge: dO

environment,s € S is a vector ofk state variablesso that 3: if Q(s,a) needs to use at least one uninitialized weight in
s = x1,x9,...,TE. The agent selects an action from avail- F Avarge: then

able actionsq € A. The agent then moves to a new state 4. Find the set of weight®’ that would be used to calculate
based on the transition functi@n: S x A — S and is given Q(s,a) with F Agource

a real-valued reward for reaching the new stateS — R. 5: Set any remaining uninitialized weight(s) fA¢arget
Over time the agent learns a poliey; S — A, to maximize needed to calculat@(s, a) to the average o’

the expected total reward. Common ways of learning the

policy are temporal difference (TD) (Sutton & Barto 1998) Note that this algorithm makes the most sense when used
meth%c_is and _dlrect policy search. laorithms for add . for FAs that exhibifocality: step 5 would execute once and

In this section we present two algorithms for addressing jniialize all weights when using a fully connected neural
RT problems, where the source and target representations, anvork. Thus we employ Algorithm 1 when using a FA
differ. We define an agentiepresentatioras the Iearn!ng which has many weights but only a subset are used to cal-
method used, the FA used, and the FA's parameterization. As . j|ate eactl)(s, a) (e.9. a CMAC, as discussed later in this
an example, suppose an agent in the source uses Q-Learnin aper) ’ e '
with a neural network FA that has 20 hidden nodes. The first ™\, Will utilize this algorithm on a task which requires a

algorithm, Complexn‘u?atmn, is used to: o conjunctive representation for optimal performance. This
1. Transfer between different parameterizations (e.1géa  provides an existence proof that Complexification can be
to 30 hidden nodes) effective at reducing both the target representation itrgin
The second, Offline RT, may be used for: time and the total training time.
2. Transfer between different FAs (e.g. change to a radial .
basis function FA) Offline RT
3. Transfer between different learning methods (e.g. cang The key insight foOffline RT(ORT) is that an agent using a
to policy search) source representation can record some information atsout it

4. Transfer between tasks with different actions and state experience ysing the learned policy. The agent may record
variables s, the perceived state;, the action taken;;, the immediate
We refer to scenarios 1 and 2 adra-policy-class trans- reward; and/o€)(s, a), the_ Io_ng-t_erm expt_act(_ad return. Then
fer b th i tati policy fant. S the agent can learn to mimic this behavior in the target rep-
ne;rioege}gzet eepcgnlfgrreglriﬁs?cr;aiéot?z;r?gggr? ngZZr?:rib “®resentation without the use of on-line training (i.e. witho
yP policy more interactions with the environment). The agent is then

4 s task transfer. able able to learn better performance faster than if it had
C lexificati learned the target representation without transfer. We con
omplexihcation sider three distinct scenarios where ORT algorithms could

Complexifications a type of representation transfer where be utilized: ) _
the function approximator is changed over time to allow for 1. Intra-policy-class RT (Algorithm 2a): The represeruati

more representational power. Consider, for instance, ¢he d differs b){ function approximator.
cision of whether to represent state variables conjunigtive 2. Inter-policy-class RT (Algorithms 2b & 2c): The repre-
or independently. A linear interpolation of different stat sentation changes from a value function learner to a policy

variables may be faster to learn, but a conjunctive represen  search learner, or vice versa.
tation has more descriptive power. Using Complexification, 3. Task transfer (Algorithm 2d): The representation remain
the agent can learn with a simple representation initiaily a constant but the tasks differ.
then switch to a more complex representation later. Thus Note that this is not an exhaustive list; it contains only
the agent can reap the benefits of fast initial training witho  the variants which we have implemented. (For instance,
suffering decreased asymptotic performance. intra-policy-class RT for policy learners is similar to Alg
Algorithm 1 describes the process for transferring be- rithm 2a, and task transfer combined with inter-policyssla
tween value function representations with different pagam  transfer is likewise a straightforward extension of the ORT
terizations of state variables, e.g. FAs with different éim method.) The ORT algorithms presented are necessarily de-
sionalities. The weights (parameters) of a learned FA are pendant on the details of the representation used. Thus they
used as needed when the agent learns a target value funcinay be appropriately thought of as meta-algorithms and we
tion representation. If the target representation mustueal  will show in later sections how they may be instantiated for
late Q(s, a) using a weight which is set to the default value specific learning methods and specific FAs.



Algorithm 2a describes intra-policy-class transfer for

Algorithm 2c ORT: Policies to Value Functions

value function methods with different FAs. The agent saves "1: Train with a source representation

n (state, action, Q-value) tuples and then trains offline with

2: Recordn (s, a, r) tuples while the agent acts

the target representation to predict those saved Q-values, 3: for all n tuplesdo

given the corresponding state. Here offline training still u

4:  Use history to calculate the retuip, from s;

lizes a TD update, but the target Q-values are set by the Train offline with target representation, learning todice

recorded experience.

Algorithm 2a ORT: Value Functions

: Train with a source representation

. Recordn (s, a, ¢(ss, a;)) tuples while the agent acts

: for all n tuplesdo

Train offline with target representation, learning todice
thget(si, CLZ') = q(Si7 CLZ') foralla € A

: Train on-line using the target representation

AWNR

ol

When considering inter-policy-class transfer between a
value function and a policy search method, the primary chal-
lenge to overcome is that the learned FAs represent differ-

ent concepts: a value function by definition contains more

information because it represents not only the best action,
but also its expected value. However, the method described

above for intra-policy-class transfer also generalizésttr-
policy-class transfer.

Inter-policy-class transfer between a value function and a

policy search learner (Algorithm 2b) first recordd(s, a)

tuples and then trains a direct policy search learner offline

so thatm,rge: Can behave similarly to the source learner.
Here offline training simply means using the base learning
algorithm to learn a policy that will take the same action
from a given state as was taken in the saved experience.

Algorithm 2b ORT: Value Functions to Policies

1: Train with a source representation

2. Recordn (s, a) tuples while the agent acts

3: for all n tuplesdo

4: Train offline with target representation, learning
Wtar'get(si) = a4

5: Train on-line using the target representation

Inter-policy-class transfer from a policy to a value func-
tion (Algorithm 2c¢) works by recording. (s, a, r) and
then training a TD learner offline by (in effect) replaying
the learned agent’s experience, similar to Algorithm 2a.
Step 4 uses the history to calculate In the undiscounted
episodic case, the optimal predicted return from tigey;,

IS Y 4 <t<tryisonenna 't @Nd can thus be found by summing

recorded rewards until the end of the episode is reached.

Similarly, the discounted non-episodic case would sum re-
wards, multiplied by a discount factor. Steps 6 & 7 are
used to generate some initial Q-values for actions not taken
If an action was not taken, we know that its Q-value was

lower, but cannot know its exact value since the source pol-

icy learner does not estimate Q-values.
Lastly, we present an algorithm for inter-task transfer us-
ing a value function approximator (Algorithm 2d). Specifi-

cally, we assume that we have a pair of tasks that have dif-

ferent action and state variable spaces, but are relateddy t

ta'rget(si7 ai) = Qi
6: foralla; € As.t.aj # a; do
7: Train to predicQ:arget(a;) < gi
8: Train on-line using the target representation

between state variablegix (z; target) = Zj,source, and a
second defines the relationship between actions in the two
tasks: pa(aitarget) = @jsource- ThiS @assumption is the
same as used in past task transfer work (Maetial. 2005;
Soni & Singh 2006; Taylor, Stone, & Liu 2005) for transfer
between tasks with different state and action spaces.

Algorithm 2d ORT: Task Transfer for Value Functions

1: Train on a source task

2: Recordn (s, a, q(ss, a;)) tuples while the agent acts

3: for all n tuplesdo

4:  Construct’ in the target task so that every state variable,
is set by the corresponding source task state variales;:
px(j) =k

5. Train offine in target task, learning to predict
Qtarget(s’,a’) = q(s', pa(a;)) forall a’ € Avarger

6: Train on-line using the target task

Keepaway
To test the efficacy
of RT we con-
sider the RoboCup
simulated  soccer
Keepaway domain,
a multiagent domain
with. We use setups
similar to past re-
search (Stone, Sut-
ton, & Kuhlmann
2005) and agents
based on ver-
sion 0.6 of the

benchmark play- ) ]
ers distributed by g'%”rke L iEeeper,S ptla%/ against
UT-Austin  (Stone akers. eeper’s state is com-

. posed of 11 distances to players and
ggg:bnzog:t)aiilsﬂlﬁe the center of the field as well as 2

. angles along passing lanes.
Keepaway domain

and the RL methods used in our experiments.

This multiagent domain has noisy sensors and actuators,
and enforces a hidden state so that agents can perceive only
a partial world view at any time. liKeepaway one team
of keepersattempt to possess a ball on a field, while an-
other team otakersattempt to steal the ball or force it out
of bounds. Keepers that make better decisions about their
actions are able to maintain possession of the ball longer. |
3 vs. 2 Keepaway, three keepers are initially placed in three

inter-task mappings. One mapping defines the relationship corners of a 20mx 20m field with a ball near one of the



keepers. Two takers are located in the fourth corner. The
keeper’s world state is defined by 13 variables, as shown in
Figure 1. The keepers receive a +1 reward for every time
step the ball remains in play.

Keepers chose from the high level macro actions: Hold
Ball, Get Open, Receive, and Pass. A keeperin 3 vs. 2
Keepaway with the ball may either hold the ball or pass it
to a teammateA = {hold, passToTeammateftassToTeam-

mateZ. Otherwise, keepers execute Receive to chase loose

balls and get open for passes. Takers follow a hand-
coded policy. Full details for Keepaway can be found else-
where (Stone, Sutton, & Kuhlmann 2005).

XOR Keepaway

4 vs. 3 Keepaway

4 vs. 3 Keepaway has been used in the past for task trans-
fer (Soni & Singh 2006; Taylor, Stone, & Liu 2005) be-
cause adding more players changes the state representation
and available actions. In 4 vs. 3 Keepaway,= {hold,
passToTeammatel, passToTeammate2, passToTeanymate3
and the state is composed of 19 state variables due to added
players.

4 vs. 3 is more difficult for keepers to learn due to the
extra players and asymptotic performance is lowered. The
addition of an extra taker and keeper to the 3 vs. 2 task also
results in a qualitative change because of the taker behavio
In 3 vs. 2, both takers must charge the ball, but in 4 vs. 3
one taker is free to roam the field and attempts to intercept

This section describes a modification to the 3 vs. 2 Keep- passes.
away task so that the agent’s representation must be capable

of learning an “exclusive or” to achieve top performance.

This is one instance of a task where a linear representa-

tion can learn quickly but is eventually outperformed by a

Learning with Sarsa
To learn Keepaway, we use setups similar to past research

more complex representation and is thus a prime candidate " this domain (Stone, Sutton, & Kuhlmann 2005), and

for Complexification.

In XOR Keepaway, the 3 vs. 2 Keepaway task is modified
to change the effect of agents’ actiof&ood passexecutes
the pass action and additionally disables the takers foc2 se
onds. Bad passcauses the keeper’s pass to travel directly
to the closest taker. These effects are triggered basedeon th
agent’s chosen pass action and 4 state variables: theahistan
to the closest taker](K1,T1), the distance from the clos-
est teammate to a takef( K>, T'), the passing angle to the
closest teammateyng(K>), and the distance to the closest
teammated(K, K>). Thus agents which lack the represen-

in particular use Sarsa (Rummery & Niranjan 1994; Singh
& Sutton 1996), a well understood TD method. Because
Keepaway is continuous, some sort of function approxima-
tion is necessary. Cerebellar model articulation corgrsll
(CMACs), Radial basis functions (RBFs), and neural net-
works have been used successfully for TD function approx-
imation in the Keepaway domain (Stoatal. 2006).

CMACs (Albus 1981) use multiple linear tilings to ap-
proximate a continuous value function. There can either be
a separate CMAC for each state feature so that each is in-
dependent, or the CMACs can tile multiple state features

tational power to express an XOR can learn but are unable to together conjunctively, as will be done in XOR Keepaway.

achieve optimal performance. This modification to the task

RBFs generalize tile coding so that instead of linearly sum-

changes the effects of the agents’ decisions but leaves the Ming tile weights, each “tile” is represented by a continsiou

rest of the task unchanged. Details appear in Figure 2.

if Keeper attempts pass to closest teamrteta
if (dm < d(K1,T1) < 6m) XOR 9Om < d(K»2,T) <
12m) then
Executegood pass
else
Executebad pass
else ifKeeper attempts pass to furthest teamntia¢a
if (9m < d(K1,K2) < 12m) OR (@5° < ang(K2) <
90°) then
Executegood pass
else
Executebad pass
else
if Keeper would have executepbod passf it had decided
to pasghen
Executebad pass
else
Executehold ball

Figure 2. XOR Keepaway changes the effects of agent’s actions
but leave the rest of the task unchanged from 3 vs. 2.

In informal experiments, Complexification did not improve 3
vs. 2 Keepaway performance, likely because it can be leamedid
when all state variables are considered independentiynéStut-
ton, & Kuhlmann 2005).

bias function which weights the tile’s contribution by the
distance of a state from the center of the tile. The neural
network FA allows a learner to calculate a value from a set
of continuous, real-valued state variables. Each inputéo t
neural network is set to the value of a state variable and each
output corresponds to an action. Activations of the output
nodes correspond to Q values. We define our representa-
tion as a feedforward network with a single hidden layer of
20 units, again consistent with past research in this domain
CMAC and RBF FAs have their weights initially set to zero
and neural networks are initialized so that weights are near
zero. In all cases, a Sarsa update is used to change weights
over time to approximate an action-value function.

Learning with NEAT

Policy search methods have had significant empirical suc-
cess learning policies to solve RL tasks. NeuroEvolution of
Augmenting Topologies (NEAT) (Stanley & Miikkulainen
2002) is one such method that evolves populations of neu-
ral networks. NEAT is an appropriate choice for this paper
due to past empirical successes on difficult RL tasks such as
double pole balancing (Stanley & Miikkulainen 2002) and 3
vs. 2 Keepaway (Taylor, Whiteson, & Stone 2006).

NEAT evolves network topology by combining the search
for network weights with evolution of network structure.



NEAT starts with a population of networks without any hid-
den nodes: inputs are connected directly to outputs. Two
mutation operators introduce new structure incremenisily
adding hidden nodes or adding links to a network. Structural
mutations that improve performance tend to survive evolu-
tion, and NEAT generally searches through lower weight di-
mensions before exploring more complex topologies. NEAT
is a general purpose optimization technique, but when ap-
plied to RL problems, it typically evolves action selectors
Inputs describe the agent’s current state and there is dne ou
put for each action. The agent executes whichever action has
the highest activation.

Results
In this section we present empirical results showing that
Complexification and the four variations of ORT can suc-
cessfully transfer knowledge. Specifically, we test:
1. Complexification in XOR Keepaway with a Sarsa learner
utilizing a CMAC FA
ORT for Value Functions in 3 vs. 2 Keepaway between
RBF and neural network Sarsa learners
ORT for Value Functions in 3 vs. 2 Keepaway between
neural network and RBF Sarsa learners
. ORT for Policies to Value Functions in 3 vs. 2 Keepaway
between NEAT and Sarsa learners
. ORT for Value Functions to Policies in 3 vs. 2 Keepaway
between Sarsa and NEAT learners
. ORT for Task Transfer with Value Functions between 3
vs. 2 and 4 vs. 3 Keepaway

We consider two related goals for both representation and
task transfer problems. This section shows that all of the
methods presented can reduce the training time in the tar-
get. Additionally, experiments 1, 5, and 6 show that theltota
training time may also be reduced, a significantly more dif-
ficult goal. For RT, that means that an agent can improve
performance on a single task by switching internal represen
tations partway through learning, rather than using a sing|
representation for an equivalent amount of time.

2.

3.

Intra-Policy Transfer: Complexification

Complexification
F-

ed

Individually Til

! Conjunctively Tiled

Episode Duration (seconds)

20 40 60

Training Time (simulator hours)

80 100

Figure 3: Learning with Complexification outperforms learning
with individually tiled CMACs without transfer and partiglcon-
junctive CMACs without transfer.

the weights in their CMAC FAs. To get a small performance
improvement, we set all zero weights to the average weight
value, a method previously shown to improve CMAC per-
formance (Taylor, Stone, & Liu 2005). We then train con-
junctively tiled CMAC players, using the previously leadne
weights as needed as per Algorithm 1.

Agents learn best when the four relevant state features
are conjunctively tiled: Figure 3 shows that players leagni
with conjunctive FAs outperform the players using indepen-
dently tiled FAs. However, initially, agents using indepen
dently tiled state features are able to learn faster. Agents
trained with independent CMACs for 20 hours can then
transfer to a conjunctive representation via Algorithmid; s
nificantly outperforming players that only use the indepen-
dent representation. A Student’s t-test confirms that this
performance increase is statistically different from féag
without transfer with independently tiled CMACs after 40
of total training time.

Additionally, the total training time required is decredse

Learning curves presented in the section each average tenby Complexification relative to learning only the conjunc-

independent trials. The x-axis shows the number of Soccer
Server simulator hours, where wall clock time is roughly
half of the simulator time. The y-axis shows the average

tive tiling. Even when source agent training time is also
taken into account, Complexification significantly outper-
forms learning without transfer with the conjunctive repre

performance of the keepers by showing the average episodesentation until 55 hours of training time has elapsed. Exam-

length in simulator seconds. Error bars show one standard
deviation. (Note that we only show error bars on alternating
curves for readability.) All parameters chosen in thisisect
were selected via experimentation with a small set of ihitia
test experiments.

Complexification in XOR Keepaway

To master the XOR Keepaway task we use Sarsa to learn
with CMAC FAs, with both independently and conjunc-
tively tiled parameterizations. The independently tiléalyp

ined differently, learning without transfer with a conijtive
tiling takes 55 hours to reach a 6.0 second hold time, while
an agent using both source and target representations take a
total of only 45 hours, an 18% reduction in learning time.

Thus, in the XOR Keepaway task, using Complexification
to transfer knowledge between two different represeniatio
outperforms using either representation alone for thevequi
alent amount of time.

Offline RT in 3 vs. 2 Keepaway

ers use 13 separate CMACSs, one for each state feature. TheWhen learning 3 vs. 2 Keepaway, ORT algorithms may be

conjunctively tiled players use 10 separate CMACs, 9 of
which independently tile state features. The last CMAC

is a conjunctive tiling of the remaining 4 state features:

d(Kth), d(KQ,T), ang(Kg), andd(Kl,Kg). We train

the independently tiled players for 20 hours and then save

used to transfer knowledge between different FAs and be-
tween different policy representations. The next section
presents two experiments to show that if a source represen-
tation has been learned and a target representation stiize
different FA, ORT can successfully reduce the target'sitrai



Intra-Policy Transfer: RBFs Intra-Policy Transfer: Neural Networks Inter-Policy Transfer: TD
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Figure 4: a) RBF players utilize ORT from neural networks to outperfdRBF players without transfer. b) Neural network playetitze
ORT from RBF players to outperform neural network playershaiit transfer. ¢) RBF players using ORT from NEAT playergpedorm
RBF players without transfer.

ing time.  The subsequent section shows two experiments agent, we set a target vakuef Q(s;, a’) = 0.9 x Q(s;, a;).
where the source and target differ both by FA and by type The offline training, as described previously, takes roughl
of learning method. In one experiment the target’s training 4 minutes of wall clock time.
time is reduced while the second experiment shows transfer  Figure 4c shows that the RBF players using RT from
benefit in both learning scenarios: both the target's trgini  learned NEAT representations initially have a much higher
time and the total training time are reduced. performance. Training causes an initial drop in perfor-

. . . mance as the Q-values, and therefore the current policy, are
Intra-policy ORT  To demonstrate intra-policy transfer,  changed to more accurately describe the task. However,

we first train Sarsa players using a neural network on 3 vs. 2 ; : o
. performance of the players using RT is statistically better
Keepaway for 20 simulator hours and then record 20,000 tu- {4 those learning without transfer until 7 simulator fsour

ples, which took roughly 1.0 simulator hour. TD-RBF play- ¢ raining has occurred. After 7 simulator hours, the per-
ers are then trained offline by iterating over all tuples ®8m ¢, mance difference between using RT and learning with-
and updating)(s;, a), wherea € A, via Sarsawithaleamn- ot ransfer is not significant. This shows that if one has
ing rate of 0.001 (set after trying 4 different common param- 1ained policies, it is advantageous to use them to ingali
eter values). Thus the agent is able to learn in the new repre- 1t 4gents, particularly if the training time is short or ith
sentation by replaying data gathered when training with the 4 _jine reward is critical.
old represer_ltation. Using Algor!thm 2"?" this process takes — pq reyerse experiment trains 3 vs. 2 Keepaway using the
roughly 8 minutes of wall clock time. Figure 4a shows that ,o/e function RBE players for 20 simulator hours. After
RT from neural network players outperforms RBF players o41ning one of the keepers saves 1,000 tuples, and we use
leam'ng W.'thOUt trapsfer. Differences graphed are dtatis inter-policy RT to initialize a population of 100 policie$-o
cally significant for times less than 11 simulator hours. fline for 100 generatioris After the target keepers have fin-
ished learning, we evaluate the champion from each genera-
tion for 1,000 episodes to more accurately graph the learned
policy performances. Figure 5 shows that NEAT players uti-
lizing RT outperform NEAT players learning without trans-
fer. This result is particularly dramatic because TD-RBF
players initially train much faster than NEAT players. The
20 hours of simulator time spent training the RBF players
and the roughly 0.1 simulator hours to collect the 1,000 tu-
ples are not reflected in this graph.

The difference between learning with and without trans-
fer is statistically significant for all points graphed (ept
for 490 simulator hours) and the total training time needed
to reach a pre-determined performance threshold in the tar-

The reverse experiment trains RBF players for 20 simula-
tor hours and then saves 20,000 tuples. We train the neural
network players offline by iterating over all tuples five tisne
We found that updatin@(s, a;) for a; # a was not as ef-
ficient as updating only the Q-value for the action selected
in a state. This is likely because of the non-locality effect
of neural networks where changing a single weight may af-
fect all output values. Figure 4b shows how RT helps im-
prove the performance of the neural network players. The
differences are statistically significant for times lesart!t8
simulator hours and the offline RT training took less than 1
minute of wall clock time.

2Recall that the only information we have regarding the value

Inter-policy ORT  To demonstrate value function to direct of non-chosen actions are that they should be lower valuad th

palicy search transfer, we first train NEAT keepers for 500 than selected actions. However, setting those values tooriay
imulator hours in the 3 vs. 2 Keepaway task and then use ; y ’ :
simu disrupt the FA so that it does not generalize well to unseatest

RT to initialize RBF players via offline Sarsa training. We .9 was chosen after informally testing three differenpzater
found that the value-function learners needed to learn @ mor y4)yes.

complex representation and thus used 50,000 tuples (which  3NEAT trains offline with a fitness function that sums the num-

takes roughly 2.6 simulator hours to record)fs;, a’) > ber of times the action predicted by NEAT from a given state
Q(s;,a;), wherea’ was an action not chosen by the source matches that action that had been recorded.



Inter-Policy Transfer: Policy Search

18

w

= ORT .

§ 16 -7 [ N B [

o s » A

g Wy B

2 T 7 1

s 12+t - l l i AT TR A

> |

Q ol }}

2 } Without Transfer

3 8t

La_ " " " " )
0 100 200 300 400 500

Training Time (simulator hours)

Figure 5: ORT can initialize NEAT players from RBF players to
significantly outperforms learning without transfer.

get task has been reduced. For instance, if the goal is to

train a set of agents to hold the ball in 3 vs. 2 Keepaway
for 14.0 seconds via NEAT, it takes approximately 700 sim-
ulator hours to learn without transfer (not shown). The to-

tal simulator time needed to reach the same threshold using

ORT is less than 100 simulator hours. Additionally, the best

learned average performance of 15.0 seconds is better than

the best performance achieved by NEAT learning without
transfer in 1000 simulator hours (Taylor, Whiteson, & Stone
2006).

4 vs. 3 Keepaway

ORT

o ”'Wit“hout Transfer

Episode Duration (seconds)
[=2]

10 15 20 25 30 35 40
Training Time (simulator hours)

0 5

Figure 6: ORT successfully reduces training time for task transfer
between 3 vs. 2 and 4 vs. 3 Keepaway.

the 5 hours of training in 3 vs. 2. In this case, the ORT
agents statistically outperform agents training withoams-

fer during hours 10 — 25. Put another way, it will take agents
learning without transfer an average of 26 simulator hawrs t
reach a hold time of 7.0 seconds, but agents using ORT will
use a total time of only 17 simulator hours to reach the same
performance level.

Related Work

Using multiple representations to solve a problem is not a
new idea. For instance, SOAR (Laird, Newell, & Rosen-

This paper focuses on sample complexity, assuming that bloom 1987) uses multiple descriptions of planning prob-

agents operating in a physical world are most affected by
slow sample gathering. If computational complexity were
taken into account, RT would still show significant improve-
ment. Although we did not optimize for it, the wall clock
time for RT's offline training was only 4.3 hours per trial.
Therefore, RT would still successfully improve performanc

if our goal had been to minimize wall clock time.

Offline RT for Task Transfer

lems to help with search and learning. Kaplan's pro-
duction system (1989) was able to simulate the represen-
tation shift that humans often undergo when solving the
mutilated checkerboar@McCarthy 1964) problem. Other
work (Fink 1999) used libraries of problem solving and
“problem description improvement” algorithms to automat-
ically change representations in planning probleimglicit
imitation (Price & Boutilier 2003) allows an RL agent to
train while watching a mentor with similar actions, but this

ORT is able to meet both transfer scenario goals when the method does not directly address internal representatfion d
source and target are 3 vs. 2 and 4 vs. 3 Keepaway, successferences. Additionally, all training is done on-line; agen

fully performing task transfer. This result suggests bb#t t
ORT is a general algorithm that may be applied to both RT
and task transfer and that other RT algorithms may work for
both types of transfer.

To transfer between 3 vs. 2 and 4 vs. 3, we pgeand
pa used previously in this pair of tasks (Taylor, Stone, &
Liu 2005). 3 vs. 2 players learning with Sarsa and RBF FAs
are trained for 5 simulator hours. The final 20,000 tuples
are saved at the end of training (taking roughly 2 simula-
tor hours). 4 vs. 3 players, also using Sarsa and RBF FAs,
are initialized by training offline using Algorithm 2d, wheer
the inter-task mappings are used to transform the experienc

using imitation do not initially perform better than leargi
without transfer.

None of these methods directly address the problem of
transferring knowledge between different representation
an RL setting. By using RT methods like Complexification
and ORT, different representations can be leveraged so that
better performance can be more quickly learned, possibly in
conjunction with existing RL speedup methods.

Our work shows the application of ORT to task transfer
between 3 vs. 2 and 4 vs. 3. When the Complexification al-
gorithm is used for task transfer between 3 vs. 2 and 4 vs.
3, it can make use gfx andp4 analogously. However, our

from 3 vs. 2 so that the states and actions are applicable in 4 previous value-function transfer algorithm (Taylor, Stp&

vs. 3. The batch training over all tuples is repeated 5 times.
Figure 6 shows that ORT reduces the target task training
time, meeting the goal of transfer in the first scenario. The
performance of the learners using ORT is better than that of
learning without transfer until a time of 31 simulator haurs
Furthermore, the total time is reduced when accounting for

Liu 2005) is very similar and has been shown to reduce to-
tal training time as well as target task training time. The
main difference is that we perform the weight transfer, via
Complexification, on-line while the agent interacts witle th
target task, while they transferredter learning the source
but beforelearning the target task. Other recent work (Ah-



madi, Taylor, & Stone 2007) uses an algorithm similar to comments and suggestions. This research was supported in

Complexification, but concentrates on adding state vagabl

part by DARPA grant HR0011-04-1-0035, NSF CAREER

over time, rather than shifting between different FA param- award 11S-0237699, and NSF award EIA-0303609.

eterizations.

Work by Maclin et. al. (2005) and Soni and Singh (2006)
address similar transfer learning problems with different
methods. Note that the change in state variables is neces-
sitated by differences in the source and target tasks, lotit su
an internal change could also be considered a type of repre-
sentation transfer.

Future Work
This paper presents algorithms for transfer between differ
ent internal representations. We have presented five differ
ent scenarios in which RT improves agent performance rel-
ative to learning without transfer. Two of these scenarios
show that RT can significantly reduce the total training time
as well. In addition to representation transfer, we show tha
RT algorithms can be directly used to reduce both target and
total training times for task transfer, a related but ditin
problem. We have tested our algorithms in three versions
of robot soccer Keepaway, using Sarsa and NEAT as repre-
sentative learning algorithms and CMAC, RBFs, and neural
networks as representative function approximators.

In the future we would like to test RT in more domains
and with more representations. The experiments presented
in this paper were chosen to be representative of the power
of RT but are not exhaustive. For example, we would like to
show that ORT can be used to transfer between policy search
learners. We would also like to test ORT when the source
and targets diffebothin representation and task. We believe
this will be possible as both Complexification and ORT may
effectively transfer between tasks as well as representati

This paper has introduced three situations where transfer
reduces the total training time, but it would be useful to be
able toa priori know if a given task could be learned faster
by using multiple representations. We have also left open
the questions of how different amounts of saved experience
effect the efficacy of RT and if the initial dip in performance
(e.g. Figure 4c) is caused by overfitting. Lastly, we intend
to further explore the relationship between task and RT by
developing, and analyzing, more methods which are able to
perform both kinds of transfer.

Conclusion
This paper presents algorithms for RT to transfer knowledge
between internal representations. We have presented five
different scenarios in which RT improves agent performance
relative to learning from scratch. Two of these scenarios
show that RT can significantly reduce the total training time
as well. In addition to representation transfer, we show tha
RT algorithms can be directly used to reduce both target and
total training times for task transfer, a related but distin
problem. We have tested our algorithms in three versions
of robot soccer Keepaway, using Sarsa and NEAT as repre-
sentative learning algorithms and CMAC, RBFs, and neural
networks as representative function approximators.
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