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Abstract

The ability to learn from off-policy data – data generated
from past interaction with the environment – is essential
to data efficient reinforcement learning. Recent work has
shown that the use of off-policy data not only allows
the re-use of data but can even improve performance in
comparison to on-policy reinforcement learning. In this
work we investigate if a recently proposed method for
learning a better data generation policy, commonly called
a behavior policy, can also increase the data efficiency
of policy gradient reinforcement learning. Empirical re-
sults demonstrate that with an appropriately selected be-
havior policy we can estimate the policy gradient more
accurately. The results also motivate further work into
developing methods for adapting the behavior policy as
the policy we are learning changes.

Introduction
Off-policy RL is necessary for data efficient rein-
forcement learning. The standard way to incorporate
off-policy data into reinforcement learning is to use
importance sampling. Unfortunately, policy improve-
ment with importance sampling may exhibit instabil-
ity due to increased variance (Levine and Koltun 2013;
Thomas, Theocharous, and Ghavamzadeh 2015). Recent
work has shown that importance sampling can actually
lead to more data efficient policy evaluation (Hanna et al.
2017). This work introduced a method called behavior
policy gradient (BPG) and demonstrated it can find data
generation policies that give low variance importance
sampling evaluations. Here we investigate the problem
of policy improvement with a data generation policy that
has been learned with BPG. Specifically, we investigate
whether a behavior policy that gives low variance evalu-
ation of an initial policy can also be used to effectively
estimate the direction of the policy gradient and if this
same policy can be used for multiple policy gradient
updates. Empirical results show that 1) off-policy policy
gradient estimates with such a behavior policy lead to
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larger performance gains with a single update and 2) that
this improvement can be realized for a limited number of
policy improvement steps before off-policy gradient esti-
mates lead to worse performance than on-policy gradient
estimates.

Preliminaries

We assume the environment is represented as a finite
horizon, episodic MDP. The agent interacts with the en-
vironment in a series of episodes by selecting actions
from a policy π. Each episode can be described as a tra-
jectory, H , that consists of a sequence of states, actions,
and rewards: H = S0, A0, R0, ...SL, AL, RL. The re-
turn of a trajectory, denoted g(h), is the sum of rewards
along the trajectory: g(H) =

∑L
t=0Rt. We assume π is

a parameterized, stochastic policy with parameter vector
θ and write H ∼ π to denote sampling a trajectory by
following policy π for one episode. The expected value
of a policy, π, is J(π) = E[g(H)|H ∼ π].

In reinforcement learning, policy improvement is the
iterative process of updating a policy towards a policy
with higher expected return. Denote the initial policy as
πθ0

. At step i a policy improvement method updates θi

to θi+1 such that J(πθi+1) > J(πθi). Policy improve-
ment can continue for a fixed number of iterations or
until there is no longer an increase in the expected return.

Naturally, policy improvement requires interaction
with the environment. We will refer to the policy that
generates the trajectories for a step of policy improve-
ment as the behavior policy. The policy being updated
is the target policy. Methods where the target policy is
also the behavior policy are termed on-policy; otherwise,
they are off-policy.

Policy Gradient Reinforcement Learning Policy
gradient methods are a popular class of reinforce-
ment learning algorithms used for policy improvement
(Deisenroth et al. 2013). Policy gradient methods attempt
to maximize the expected return of a policy πθ with re-
spect to the policy parameters θ. This gradient can be



derived as:

∂

∂θ
J(πθ) = E

[
g(H)

L∑
t=0

∂

∂θ
log πθ(At|St)

]
(1)

where H ∼ πθ. The simplest policy gradient method
is the REINFORCE algorithm which adapts the policy
with unbiased estimates of Eq. 1 (Williams 1992). In this
form, estimates of the policy gradient often suffer from
high variance. Extensive work has gone in to reducing
this variance in order to scale policy gradient methods
to complex problems (e.g., (Peters, Mülling, and Altun
2010; Greensmith et al. 2001; Schulman et al. 2015;
2016; Gu et al. 2017)). As a result, policy gradient meth-
ods are a widely applied class of RL algorithms.

Note that policy gradient methods are typically on-
policy methods in that we estimate the gradient at π with
trajectories sampled from π. In practice this means that
at step i of learning, policy πi is used to collect a dataset
of trajectories, Di, Di is used to estimate (1), a gradient
step is taken on θi, and then Di is discarded and the
process repeats with policy πi+1.

Behavior Policy Search This section describes a re-
cently proposed off-policy method for policy evaluation
that uses importance sampling to lower the variance of
policy evaluation. In the next section we will adapt this
idea to the policy gradient setting.

Consider the policy evaluation setting where our goal
is to evaluate a target policy, π. The simplest approach is
to execute π for multiple episodes and average the result-
ing returns. Unfortunately, this Monte Carlo estimator
may have high variance when the target policy rarely
experiences trajectories with high-magnitude return.

Instead of running π, we can instead run a different
behavior policy, πb and weight the resulting returns ac-
cording to the likelihood of seeing them under π instead
of πb. This approach allows us to over-sample these rare,
high-magnitude returns and then weight them accord-
ing to their true likelihood. Importance sampling is an
unbiased method for computing the re-weighting. The
importance sampled return of a trajectory H is:

IS(H,πb) =

L∏
t=0

π(At|St

πb(At|St)
· g(H)

Given a dataset of trajectories, D, generated by πb the
importance sampling estimator is the mean of IS(H,πb)
over all H ∈ D.

Recent work by Hanna et al. demonstrated that it is
possible to find a behavior policy that leads to lower
variance policy evaluation compared to Monte Carlo
policy evaluation (Hanna et al. 2017). Their behavior
policy gradient (BPG) method used gradient descent on
the variance of the importance sampling estimator to
adapt a parameterized behavior policy towards a locally
optimal behavior policy. The result of running BPG for
a particular target policy π is a behavior policy, πb, that
generates data for low variance importance sampling

evaluation of a π. This low variance evaluation is only
guaranteed for a static target policy.

Off-Policy Policy Gradient
This section discusses how we can apply behavior policy
search to policy gradient methods. While there have been
many important contributions since Williams’ original
REINFORCE work, we will primarily discuss REIN-
FORCE and note that other approaches (e.g., optimal
baselines (Greensmith et al. 2001; Peters and Schaal
2008), trust-regions (Peters, Mülling, and Altun 2010;
Schulman et al. 2015), etc.) could be combined with the
presented approach in future work.

The REINFORCE method can be adapted to an
off-policy variant by using unbiased estimates of an
importance-sampled version of Equation 1

∂

∂θ
J(πθ) = E

[
IS(H,πb)

L∑
t=0

∂

∂θ
log πθ(At|St)

]
(2)

where H ∼ πb. As in policy evaluation, if πb is cho-
sen arbitrarily gradient estimates are likely to have high
variance. On the other hand, if we can select πb appropri-
ately then our gradient estimate may have less variance
than the on-policy version.

We will select πb to be a behavior policy that mini-
mizes the variance of an importance sampling evalua-
tion of the current policy. This approach allows us to
directly apply BPG to learn πb. In contrast, previous
work has considered the trace of the gradient covariance
matrix as the measure of gradient variance (Peters and
Schaal 2008; Gu et al. 2017; Ciosek and Whiteson 2017;
Bouchard et al. 2016). Minimizing this variance mea-
sure is equivalent to minimizing the variance of each
component of the gradient. This measure has been
used in previous work on adaptive importance sampling
for stochastic gradient descent (Bouchard et al. 2016;
Ciosek and Whiteson 2017). One downside of this mea-
sure is that it may be sensitive to the scale of the policy
parameterization. Minimizing the variance of policy eval-
uation is scale-invariant although it is not guaranteed to
lower policy gradient variance.

The other challenge with developing an off-policy RE-
INFORCE method is the need to track the current policy.
If we start with πb that gives low variance policy gradi-
ent estimates for the initial policy it may not give low
variance estimates after the initial policy has changed.
One of our experiments attempts to evaluate the scale of
this problem.

Empirical Results
We present two experiments using the Cartpole domain
implented in OpenAI gym (Brockman et al. 2016). The
policy is a softmax distribution over actions where the
logits come from a linear combination of state variables.
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Method Average Return (std.)
Random πb 54.92 (8.27)
On-policy 55.081 (1.31)

Optimized πb 68.656 (15.7)
Table 1: Comparison of one-step improvement in average
return when estimating the policy gradient with off-policy
and on-policy policy REINFORCE. For each behavior policy
we sample 200 trajectories and estimate the policy gradient
direction with (2). The gradient step size is computed with a
line search. Results are averaged over 50 independent runs.

The initial behavior policy is trained with BPG to mini-
mize the variance of an importance sampling evaluation
of the initial policy.

We design experiments to answer the questions 1)
does a behavior policy selected with BPG lead to better
estimation of the policy gradient direction and 2) can a
behavior policy selected with BPG be used for multiple
policy gradient updates?

Policy Improvement Step Quality
Our first experiment compares the quality of the up-
date direction computed with an off-policy REINFORCE
method to the quality of the update direction computed
with standard REINFORCE. In order to make this com-
parison, we sample a batch of trajectories with the ini-
tial policy and another batch with πb. We estimate the
on-policy REINFORCE gradient, the off-policy RE-
INFORCE gradient estimated with a behavior policy
trained with BPG to evaluate the initial policy, and the
off-policy REINFORCE gradient estimated with a ran-
domly initialized behavior policy. For each method we
select the optimal step-size for each method with a line
search on (π). We use a line search to avoid conflating
gradient direction with gradient magnitude.

Table 1 shows that the average gradient direction com-
puted with off-policy REINFORCE leads to a much
larger increase in expected return. However, we also
point out that the variance of the performance improve-
ment is also higher. While in most cases expected per-
formance increases above the increase obtained by on-
policy REINFORCE or random policy off-policy REIN-
FORCE, the fact that the variance of the improvement
has increased may suggest that lowering the variance of
policy evaluation does not necessarily lead to a lower
variance policy gradient estimate.

Multi-step Policy Improvement
Our second experiment investigates if a behavior pol-
icy trained to evaluate the initial policy can be used to
estimate the policy gradient at other policies. For this
experiment, we collect a single set of 100 trajectories
with the behavior policy and adapt the target policy with
off-policy REINFORCE for 10 iterations.

Figure 1: Comparison of multi-
step improvement in average re-
turn when estimating the policy
gradient with off-policy and on-
policy REINFORCE.

Figure 1 demon-
strate that an im-
proved πb for
importance sampling
evaluation can lead to
faster learning com-
pared to on-policy
REINFORCE – even
without re-sampling
new trajectories. How-
ever, the improvement
is relegated to the
first few iterations of
policy improvement
before the target
policy has changed
significantly.

Discussion and Open Questions
Our empirical results have shown that off-policy policy
gradient estimates can give a more accurate estimate of
the direction of the policy gradient better than on-policy
policy gradient estimates. Our results also show that
off-policy REINFORCE with a behavior policy trained
with BPG can lead to faster initial learning but that perfor-
mance degrades once the current policy has been adapted
away from the initial policy. In order to develop a com-
plete, low variance off-policy REINFORCE method it
will be important to address the question of how to adapt
the behavior policy so that it continues to lower variance
as the current policy changes.

An alternative to adapting the behavior policy to track
the current policy is to start with a behavior policy that
generalizes to other policies along the trajectory of learn-
ing. One approach towards finding such a policy would
be to regularize BPG so that it does not overfit to the
policy it is trained to evaluate or to use meta-learning
techniques to learn a behavior policy that can be quickly
adapted to estimate the policy gradient for a new target
policy (Finn, Abbeel, and Levine 2017).

Conclusion
We have presented preliminary steps towards a policy
gradient algorithm that uses off-policy data for more
efficient updates. We have described how a recently pro-
posed behavior policy search method could be adapted
to the policy improvement setting. We then presented ex-
periments showing that a carefully selected behavior pol-
icy can improve the step direction of the REINFORCE
method and that this same behavior policy can be used
for multiple updates before it performs worse than an
on-policy update. These results indicate that research
into how to adapt the behavior policy as the policy being
learned changes has the potential to further improve the
data efficiency of policy gradient reinforcement learning.
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