
Transferring Instances for Model-Based Reinforcement
Learning

Matthew E. Taylor, Nicholas K. Jong, and Peter Stone
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188
{mtaylor, nkj, pstone}@cs.utexas.edu

ABSTRACT
Reinforcement learningagents typically require a significant amount
of data before performing well on complex tasks.Transfer learn-
ing methods have made progress reducing sample complexity, but
they have only been applied to model-free learning methods,not
more data-efficient model-based learning methods. This paper in-
troducesTIMBREL, a novel method capable of transferring infor-
mation effectively into a model-based reinforcement learning algo-
rithm. We demonstrate thatTIMBREL can significantly improve the
sample complexity and asymptotic performance of a model-based
algorithm when learning in a continuous state space.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Transfer Learning, Model Transfer, Reinforcement Learning

1. INTRODUCTION
In many situations, an agent must learn to execute a series of

sequential actions, which is typically framed as areinforcement
learning [18] (RL) problem. Although RL approaches have en-
joyed past successes (e.g., TDGammon [22], inverted Helicopter
control [9], and robot locomotion [7]), they frequently take sub-
stantial amounts of data to learn a reasonable control policy. In
many domains, collecting such data may be slow, expensive, or in-
feasible, motivating the need for sample-efficient learning methods.

One recent approach to speeding up RL so that it can be ap-
plied to difficult problems with large, continuous state spaces is
transfer learning(TL). TL is a machine learning paradigm that
reuses knowledge gathered in a previous source task to better learn
a novel, but related, target task. Recent empirical successes in a va-
riety of RL domains [12, 20, 23] have shown that transfer can sig-
nificantly increase an agent’s ability to learn quickly, even if agents
in the two tasks have different available sensors or actions. How-
ever, to the best of our knowledge, TL methods have thus far been
applied only to model-free RL algorithms.

Cite as: Transferring Instances for Model-Based Reinforcement Learning,
Matthew E. Taylor, Nicholas K. Jong, and Peter Stone,Proceedings of
the ALAMAS+ALAG 2008 workshop at AAMAS 2008, May, 12-16.,
2008, Estoril, Portugal.
Copyright© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Model-free algorithms such as Q-Learning [24] and Sarsa [13,
15] learn to predict the utility of each action in different situations,
but they do not learn the effects of actions. In contrast, model-based
(or model-learning) methods, such as PEGASUS [10], R-MAX [3],
and Fitted R-MAX [5], use their experience to learn an internal
model of how the actions affect the agent and its environment,
an approach empirically shown to often be more sample efficient.
Such a model can be used in conjunction withdynamic program-
ming [2] to perform off-line planning, often enabling superior ac-
tion selection without requiring additional environmental samples.
Building these models may be computationally intensive, but us-
ing CPU cycles to reduce data collection time is a highly favorable
tradeoff in many domains (such as physically embodied agents). In
order to further reduce sample complexity and ultimately allow RL
to be applicable in more complex domains, this paper introduces
Transferring Instances for Model-Based REinforcement Learning
(TIMBREL), a novel approach to combining TL with model-based
RL.

The key insight behindTIMBREL is that data may be reused be-
tween different tasks. Data is first recorded in a source task, trans-
formed so that it applies to a target task, and then used by thetarget
task learner as it builds its model. In this paper we utilize Fitted R-
MAX , an instance based model-learning algorithm, and show how
TIMBREL can help construct a target task model by using source
task data.TIMBREL combines the benefits of transfer with those
of model-based learning to reduce sample complexity. It works in
continuous state spaces and is applicable when the source and target
tasks have different state variables and action spaces. We fully im-
plement and test our method in a set of Mountain Car tasks, demon-
strating that transfer can significantly reduce the sample complexity
of learning.

The rest of this paper is organized as follows. Section 2 provides
a brief background of RL and Fitted R-MAX , as well as discussing
a selection of related TL methods. The experimental domain is de-
tailed in Section 3. Section 4 introducesTIMBREL and discusses
its implementation when using Fitted R-MAX . Experimental re-
sults are presented in Section 5. Section 6 discusses possible future
directions and concludes.

2. BACKGROUND AND RELATED WORK
In this paper we use the notation ofMarkov decision processes

(MDPs). At every time step the agent observes its states ∈ S as
a vector of kstate variablessuch thats = 〈x1, x2, . . . , xk〉. In
episodic tasks there is a starting statesinitial and often a goal state
sgoal, which terminates the episode if reached by the agent. The
agent selects an action from the set of available actionsA at every
time step. The start and goal states may be generalized to sets of
states. A task also defines the reward functionR : S×A 7→ R, and

the transition functionT : S×A 7→ S fully describes the dynamics
of the system. The agent will attempt to maximize the long-term
reward determined by the (initially unknown) reward function R
and the (initially unknown) transition functionT .

A learner chooses which action to take in a state via a policy,
π : S 7→ A. π is modified by the learner over time to improve
performance, which is defined as the expected total reward. Instead
of learningπ directly, many RL algorithms instead approximate the
action-value function,Q : S × A 7→ R, which maps state-action
pairs to the expected real-valued return. If the agent has learned the
optimal action-value function, it can select the optimal action from
any state by executing the action with the highest action-value.

In this paper, we introduce and utilizeTIMBREL to improve the
performance of Fitted R-MAX [5], an algorithm that approximates
the action-value functionQ for large or infinite state spaces by con-
structing an MDP over a small (finite) sample of statesX ⊂ S. For
each sample statex ∈ X and actiona ∈ A, Fitted R-MAX esti-
mates the dynamicsT (x, a) using all the available data for action
a and for statess nearx.1 Some generalization from nearby states
is necessary because we cannot expect the agent to be able to visit
x enough times to try every action. As a result of this generaliza-
tion process, Fitted R-MAX first approximatesT (x, a) as a prob-
ability distribution over predicted successor states inS. A value
approximation step then approximates this distribution ofstates in
S with a distribution of states inX. The result is a stochastic MDP
over a finite state spaceX, with transition and reward functions
derived from data inS. Applying dynamic programming to this
MDP yields an action-value function overX × A that can be used
to approximate the desired action-value functionQ. For the origi-
nal 2D Mountain Car task, Fitted R-MAX learns policies using less
data than many existing model-free algorithms [5].

Approaches that transfer between model-free RL algorithmsare
most closely related toTIMBREL. Torrey et al. [23] show how to
automatically extractadvicefrom a source task by identifying ac-
tions which have higher Q-values than other available actions; this
advice is then mapped by a human to the target task as initial pref-
erences given to the target task learner. In our previous work [20],
we learn an action-value function for a source task, translate the
function into a target task via a hand-codedinter-task mapping, and
then use the transferred function to initialize the target task agent.
Other work [12] shows that inrelational reinforcement learning,
object-specific action-value functions can be used for initialization
when the number of objects change between the source and target
tasks. In all three cases the transferred knowledge is effectively
used to improve learning in the target task, but only using model-
free learning methods that inherently require more data than model-
based learning.

3. GENERALIZED MOUNTAIN CAR
This section introduces our experimental domain, a generalized

version of the standard RL benchmark Mountain Car task [15].
Mountain Car is an appropriate testbed forTIMBREL with Fitted
R-MAX because it is among the simplest continuous domains that
can benefit from model-based learning, and it is easily generaliz-
able to enable TL experiments.

In Mountain Car, the agent must generalize across continuous
state variables in order to drive an underpowered car up a Mountain
to a goal state. We also introduce 3D Mountain Car as extension

1Fitted R-MAX is an instance-based learning method; our imple-
mentation currently retains all observed data to compute the model.
In the future we plan to enhance the algorithm so that instances can
be discarded without significantly decreasing model accuracy.

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

m
ou

nt
ai

n
he

ig
ht

x

2D Mountain Car

Start

Goal

Figure 1: In the standard 2D Mountain Car the agent must
travel along a curve (Mountain).

of the 2D task, retaining much of the structure of the 2D problem.
In both tasks the transition and reward functions are initially un-
known. The agent begins at rest at the bottom of the hill.2 The
reward for each time step is−1. The episode ends, and the agent
is reset to the start state, after 500 time steps or if reachesthe goal
state.

3.1 Two Dimensional Mountain Car
In the two dimensional Mountain Car task, two continuous vari-

ables fully describe the agent’s state. The horizontal position (x)
and velocity (̇x) are restricted to the ranges[−1.2, 0.6] and[−0.07,
0.07] respectively. The agent may select one of three actions on ev-
ery timestep; {Left, Neutral, Right} change the velocity by
-0.001, 0, and 0.001 respectively. Additionally,−0.025(cos(3x))
is added toẋ on every timestep to account for the force of gravity
on the car. The start state is (x = −π/6, ẋ = 0), and the goal
states are those wherex ≥ 0.5 (see Figure 1). We use the publicly
available3 version of this code for our experiments.

3.2 Three Dimensional Mountain Car
To create a three dimensional task, we extend the Mountain’s

curve into a surface (see Figure 2). The state is composed of four
continuous state variables:x, ẋ, y, ẏ. The positions and veloc-
ities have ranges of[−1.2, 0.6] and [−0.07, 0.07], respectively.
The agent selects from five actions at each timestep: {Neutral,
West, East, South, North}. West and East modifẏx by -
0.001 and +0.001 respectively, while South and North modifyẏ
by -0.001 and +0.001 respectively.4 The force of gravity adds
−0.025(cos(3x)) and −0.025(cos(3y)) on each time step tȯx
and ẏ, respectively. The goal state region is defined byx ≥ 0.5
andy ≥ 0.5.

This task is more difficult than the 2D task because of the in-
creased state space size and additional actions. Furthermore, since
the agent can affect its acceleration in only one of the two spacial
dimensions at any given time, one cannot simply “factor” this prob-
lem into the simpler 2D task. While data gathered from the 2D task

2Both Mountain Car tasks are deterministic, as is Fitted R-MAX . To
introduce randomness and allow multiple learning trials, when each
domain is initialized,x (andy in 3D) in the start state is perturbed
by a random number in[−0.005, 0.005].
3Available at http://rlai.cs.ualberta.ca/RLR/
MountainCarBestSeller.html
4Although we call the agent’s vehicle a “car,” it does not turnbut
simply accelerates in the four cardinal directions.

-2
-1.5
-1
-0.5
 0
 0.5
 1
 1.5
 2

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-1.2
-1

-0.8
-0.6

-0.4
-0.2

 0
 0.2

 0.4
 0.6

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

3D Mountain Car

x

y

Start

3D Mountain Car
Goal

M
ou

nt
ai

n
H

ei
gh

t

0.6 −1.2

Figure 2: In 3D Mountain Car the 2D curve becomes a 3D sur-
face. The agent starts at the bottom of the hill with no kinetic
energy and attempts to reach the goal area in the Northeast
corner.

should be able to help an agent learn the 3D task, we do expect that
some amount of learning will be required after transfer.

3.3 Learning Mountain Car
Our experiments used Fitted R-MAX to learn policies in the Moun-

tain Car tasks. We began by replicating the methods and result of
applying Fitted R-MAX to 2D Mountain Car task as reported in the
literature [5]. To apply Fitted R-MAX to 3D Mountain Car, we first
scaled the state space so that each dimension ranges over theunit
interval, effectively scaling the state space to a unit hypercube. We
sampled a finite state space from this hypercube by applying agrid
where each position state variable can be one of 8 values, andeach
velocity state variable can be one of 9 values. The 3D versionof
Mountain Car has 2 of each type of state variable; we obtaineda
sampleX of 82 × 92 = 5184 states that approximated the original
state space stateS. For any statex ∈ X and actiona ∈ A, Fit-
ted R-MAX estimatesT (x, a) using a probability distribution over
observerd(si, a, ri, s

′

i) instances in the data available for actiona.
Each instancei is given a weightwi depending on the Euclidean
distance fromx to si and on themodel breadthparameterb, ac-
cording to the following formula:

wi ∝ e
−

“

|x−si|
b

”

2

.

Intuitively, b controls the degree of generalization used to estimate
T (x, a) from nearby data. In 3D Mountain Car experiments, we
used a parameter ofb = 0.1. In theory, all instances that share the
actiona could be used to help approximatex, where each instance
i’s contribution is modified bywi (i.e., a Gaussian weighting that
exponentially penalizes distance fromx). To reduce the computa-
tional cost of the algorithm, for a given statex we computed the
weights for the nearest instances first. Once an instance’s weight
failed to increase the cumulative weight by at least 40%, we ig-
nored the remaining instances’ contribution as negligible. Finally,
when the accumulated weight failed to reach a threshold of 1.0, we
used Fitted R-MAX ’s exploration strategy of assuming an optimistic
transition to a maximum-reward absorbing state.

Changing the learning parameters for Fitted R-MAX outlined above
affect three primary aspects of learning:

• How accurately the optimal policy can be approximated.

• How many samples are needed to accurately approximate the
best policy, given the representation.

• How much computation is required when performing dy-
namic programming.

For this work, it was most important to find settings which al-
lowed the agent to learn a reasonably good policy in relatively few
episodes so that we could demonstrate the effectiveness ofTIM -
BREL on sample complexity. We do not argue that the above pa-
rameters are optimal. They could be tuned to emphasize any ofthe
above goals, such as achieving higher performance in the limit. In
preliminary results (not shown), we compared using Fitted R-MAX

and to using model-freeǫ-greedy Sarsa(λ). 5 Fitted R-MAX learned
to consistently find the goal state with roughly two orders ofmag-
nitude less data than Sarsa, although learning with Fitted R-MAX

takes substantially more computational resources than Sarsa.

4. MODEL TRANSFER
Model-based algorithms learn to estimate the transition model

of an MDP, predicting the effects of actions. The goal of transfer
for model-based RL algorithms is to allow the agent to build such
a model from data gathered both in a previous task, as well as in
the current task. To help frame the exposition, we note that transfer
methods must typically perform the following three steps:

I Use the source task agent to record some information during,
after, or about, learning. Successful TL approaches include
recording learned action-value functions or higher-levelad-
vice about high-value policies.

II Transform the saved source task information so that it applies
to the target task. This step is most often necessary if the
states and actions in the two tasks are different, as considered
in this paper.

III Utilize the transformed information in the target task.Suc-
cessful approaches include using source task information to
initialize the learner’s action-value function, giving advice
about actions, and suggesting potentially useful sequences
of actions (i.e.,options).

Section 4.1 introducesTIMBREL, a novel transfer method, which
accomplishes these steps. Section 4.2 gives an overview of the
method details howTIMBREL is used in the Mountain Car domain
with Fitted R-MAX , our chosen model-based RL algorithm.

4.1 Instance-Based Model Transfer
This section provides an overview ofTIMBREL. In order to

transfer a model, our method takes the novel approach of trans-
ferring observed instances from the source task. The tuples, in the
form (s, a, r, s′), describe experience the source task agent gath-
ered while interacting with its environment (Step I). One advantage
of this approach as compared to transferring an action-value func-
tion or a full environmental model (e.g., the transition function)
is that the source task agent is not tied to a particular learning al-
gorithm or representation: whatever RL algorithm that learns will
necessarily have to interact with the task and collect experience.
This flexibility allows a source task algorithm to be selected based
on characteristics of the task, rather than on demands of thetransfer
algorithm.

To translate a source task tuple into an appropriate target task tu-
ple (Step II) we utilizeinter-task mappings[20], which have been

5Specifically, we used a CMAC [1] function approximator with 14
4-dimensional linear tilings, which is analogous to how Singh and
Sutton [15] used 14 2-d dimensional linear tile codings for their 2D
task.

Algorithm 1 TIMBREL Overview

1: Learn in the source task, recording(s, a, r, s′) transitions.
2: Provide recorded transitions to the target task agent.
3: while training in the target taskdo
4: if the model-based RL algorithm is unable to accurately es-

timate someT (x, a) or R(x, a) then
5: while T (x, a) or R(x, a) does not have sufficient datado
6: Locate one or more saved instances that, according to

the inter-task mappings, are near the currentx, a to be
estimated.

7: if no such unused source task instances existthen
8: exit the while starting on line 5
9: Usex, a, the saved source task instance, and the map-

pings to translate the saved instance into one appropri-
ate to the target task.

10: Add the transformed instance to the current model for
x, a.

successfully used in past transfer learning research to specify how
pairs of tasks are related via an action mapping and a state vari-
able mapping. This pair of mappings identifies source task actions
which have similar effects as target task actions, and allows a map-
ping of target task state variables into source task state variables.

When learning in the target task,TIMBREL specifies when to use
source task instances to help construct a model of the targettask
(Step III). Briefly, when insufficient target task data exists to esti-
mate the effect of a particular (x, a) pair, instances from the source
task are transformed via an action-dependant inter-task mapping,
and are then treated as a previously observed transition in the target
task model. TheTIMBREL method is summarized in Algorithm 1.

Notice thatTIMBREL performs the translation of data from the
source task to the target task (line 10) on-line while learning the tar-
get task. While the translation step of transfer algorithmsis more
commonly performed off-line before training in the target task, this
just-in-time approach is appropriate because of how the mappings
are utilized. In the following section, we detail how the current state
x that is being approximated will affect how the source task sam-
ple is translated. By only transferring instances that willbe imme-
diately used in the target task, the amount of computation needed
is limited. Furthermore, this method will minimize the number of
source instances that must be reasoned over in the target task model
by only transferring necessary source task data.

4.2 TIMBREL Implementation
In this section we detail howTIMBREL is used to transfer be-

tween tasks in the Mountain Car domain when using Fitted R-MAX

as the underlying RL algorithm. AlthoughTIMBREL is a domain-
independent transfer method which is designed to be compatible
with multiple model-learning RL algorithms, we will groundour
exposition in the context of Fitted R-MAX and Mountain Car. Through-
out this section we use the subscriptS to denote actions, states, and
state variables in the source task, and the subscriptT for the target
task.

The core result of this paper is to demonstrate transfer between
the standard 2D Mountain Car task and the 3D Mountain Car task.
After learning the 2D task,TIMBREL must be provided an inter-
task mapping between the two tasks. The action mapping,χA,
maps a target task action into a source task action:χA(aT) = aS,
and χS maps a target task state variable into a source task state
variable: χS(s(i,T)) = s(j,S). In this work we assume that the
inter-task mapping in Table 1 is provided to the agent, but other
work [19] has demonstrated that the same mapping may be learned

Inter-task Mapping for Mountain Car
Action Mapping State Variable Mapping

χA(Neutral) = Neutral χS(x) = x
χA(North) = Right χS(ẋ) = ẋ
χA(East) = Right or
χA(South) = Left χS(y) = x
χA(West) = Left χS(ẏ) = ẋ

Table 1: This table describes the mapping used byTIMBREL to
construct target task instances from source task data.

autonomously in this domain with relatively little overhead. Note
that the state variable mapping is defined so that either the target
task state variables (x and ẋ) or (y and ẏ) are mapped into the
source task. As we will discuss, the unmapped target task state
variables will be set by the state variables’ values in the statex that
we wish to approximate.

As discussed in Section 2, Fitted R-MAX approximates transi-
tions from a set of sample statesx ∈ X for all actions. When the
agent initially encounters the target task, no target task instances are
available to approximateT . Without transfer, Fitted R-MAX would
be unable to approximateT (xT, aT) for anyx and would set the
value ofQ(sT, aT) to an optimistic value (Rmax) to encourage ex-
ploration. Instead,TIMBREL is used to generate target instances to
help approximateT (xT, aT).

TIMBREL provides a set of source task instances, as well as the
inter-task mappings, and must construct one or more target task
tuples, (sT, aT, r, s′T), to help approximateT (xT, aT). The goal
of transfer is to find some source task tuple (sS, aS, r, s

′

S) where
aS = χA(aT) andsS is “near” sT (line 6). Once we identify such
a source task tuple, we can then useχ−1 to convert the tuple into a
transition appropriate for the target task (line 10), and use it to help
approximateT (line 11).

As an illustrative example, consider the case when the agent
wants to approximateT (xT, aT), wherexT = 〈xT, yT, ẋT, ẏT〉 =
〈−0.6,−0.2, 0, 0.1〉 andaT = East. TIMBREL considers source
task transitions that contain the action Right.χS is defined so
that either thex or y state variables can be mapped from the tar-
get task to the source task, which means that we should consider
two transitions selected from the source task instances. The first
tuple is selected to minimize the Euclidean distancesD(xT, xS)
andD(ẋT, ẋS), where each distance is scaled by the range of the
state variable. The second tuple is chosen to minimizeD(yT, xS)
andD(ẏT, ẋS).

Continuing the example, suppose that the first source task tuple
selected was

(〈−0.61, 0.01〉, Right,−1, 〈−0.59, 0.02〉).

If the inter-task mapping were defined so that both thex andy state
variables simultaneously, the inverse inter-task mappingcould be
used to convert the tuple into

(〈−0.61,−0.61, 0.01, 0.01〉, East,−1,

〈−0.59,−0.59, 0.02, 0.02〉).

However, this point is not near the currentxT we wish to approx-
imate. Instead, we recognize that this sample was selected from
the source task to be near toxT and ẋT, and transform the tuple,
assuming thatyT and ẏT are kept constant. With this assumption,
we form the target task tuple

(〈−0.61, yT, 0.01, ẏT〉, East,−1, 〈−0.59, yT, 0.2, ẏT〉) =

(〈−0.61,−0.2, 0.01, 0〉, East,−1, 〈−0.59,−0.2, 0.02, 0〉).

The analogous step is then performed for the second selectedsource
task tuple; we transform the source task tuple withχ while assum-
ing thatxT andẋT are held constant. Finally, both transferred in-
stances are added to the approximation ofT (x, a).

TIMBREL thus transfers pairs of source task instances to help
approximate the transition function. Other model-learning methods
may need constructed trajectories instead of individual instances,
but TIMBREL is able to generate trajectories as well. Over time, the
learner will approximateT (xT, aT) for different values of (x, a) in
order to construct a model for the target task environment. Any
model produced via this transfer may be incorrect, depending on
how representative the saved source task instances are of the target
task (as modified byχ). However, our experiments demonstrate
that using transferred data may allow a model learner to produce a
model that is more accurate than if the source data were ignored.

As discussed in Section 3.3, Fitted R-MAX uses the distance be-
tween instances andx to calculate instance weights. When an in-
stance is used to approximatex, that instance’s weight is added to
the total weight of the approximation. If the total weight for an ap-
proximation does not reach a threshold value of 1.0, an optimistic
value (Rmax) is used because not enough data exists for an accu-
rate approximation. When usingTIMBREL, the same calculation is
performed, but now instances from both the source task and target
task can be used.

As the agent interacts with the target task, more transitions are
recorded and the approximations of the transition functionat differ-
ent (x, a) pairs need to be recalculated based on the new informa-
tion. Each time an approximation needs to be recomputed, Fitted
R-MAX first attempts to use only target task data. If the number of
instances available (where instances are weighted by theirdistance
fromx) does not exceed the total weight threshold, source task data
is transferred to allow an approximation ofT (xT, aT). This pro-
cess is equivalent to removing transferred source task datafrom the
model as more target task data is observed and therefore allows the
model’s accuracy to improve over time. Again, if the total weight
from source task and target tasks instances for an approximatedx
does not reach 1.0,Rmax is assigned to the model forx.

As a final implementation note, consider what happens when
somex maps to ansS that is not near any experienced source task
data. If there are no source task transitions nearsS, it is possible
that using all available source task data will not produce anaccu-
rate approximation (recall that instance weights are proportional to
the square of the distance from the instance tox). To avoid a sig-
nificant reduction in performance with limited improvementin ap-
proximatingT , we imposed a limit of 20 source task tuples when
approximating a particular point (line 5). This threshold serves a
similar purpose as the 10% cumulative weight threshold discussed
in Section 3.3.

5. TRANSFER EXPERIMENTS
In order to test the efficacy of transfer, we conducted an experi-

ment to measure the learning speed of Fitted R-MAX in the Moun-
tain Car domain both with and withoutTIMBREL. To transfer from
2D Mountain Car into the more complex 3D Mountain Car, we first
allow Fitted R-MAX to train for 100 episodes in the 2D task while
recording all observed〈s, a, r, s′〉 transitions. The agent’s learn-
ing parameters were set so that the agent thoroughly explored the
source task state space and only discovered the goal near theend of
learning.6

6We experimented with 5 different parameter settings for Fitted R-
MAX in the 2D Task. Recall that every episode lasts 500 time steps
if the goal is not found. When learning 2D Mountain Car, the agent
experienced 48,669 source task transitions during 100 episodes.

-500

-450

-400

-350

-300

-250

 0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 R
ew

ar
d

(s
te

ps
)

Training Time (Episodes)

-500

-450

-400

-350

-300

-250

 0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 R
ew

ar
d

(s
te

ps
)

Training Time (Episodes)

-500

-450

-400

-350

-300

-250

 0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 R
ew

ar
d

(s
te

ps
)

Training Time (Episodes)

-500

-450

-400

-350

-300

-250

 0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 R
ew

ar
d

(s
te

ps
)

Training Time (Episodes)

Transfer
No Transfer

3D Mountain Car

Figure 3: This figure shows that TIMBREL significantly im-
proves the speed of Fitted R-MAX on the 3D Mountain Car.
The average performance is plotted every 10 episodes, along
with the standard error.

Roughly 100 preliminary experiments were run on the 3D task,
each lasting a few hundred episodes, in order to select Fitted R-
MAX settings for the non-transfer learner, which were discussed in
Section 3.3. We ran 10 trials of Fitted R-MAX without transfer and
10 trials with transfer, each of for 1,500 episodes. After learning,
we averaged each set of 10 independent learning curves, but due
to the low number of trials, the learning curves were quite noisy.
To improve the clarity of our results, we also smoothed the two
summary learning curves by averaging over groups of 10 episodes.
Figure 3 shows the summary of our two sets of experiments, along
with the standard error at each point. We ran paired t-tests on the
151 graphed points and found that every difference was statistically
significant (p < 1.7×10−4), which confirms that utilizing transfer
between our pair of Mountain Car tasks yield a significant advan-
tage for Fitted R-MAX .

Our algorithm and implementation have been designed to mini-
mize the sample complexity. However, it is worth noting thatthere
is a significant difference in the computational complexityof the
transfer and non-transfer methods. Every time the transferagent
needs to use source task data to estimateT , it must locate the most
relevant data and then insert it into the model. Additionally, the
transfer agent has much more data available initially, and thus its
dynamic programming step is significantly slower than the non-
transfer agent. These factors cause the transfer learning trials to
take roughly twice as much wall clock time as the non-transfer tri-
als. While our code could be better optimized, using the additional
transferred data will always slow down the agent, relative to an
agent that is not using transfer, but is running for the same number
of episodes. However, in many domains a tradeoff between compu-
tational and sample complexity is highly advantageous, andis one
of the benefits inherent to model-based reinforcement learning.

Also note that the transfer and non-transfer learning curves do
not end at the same performance. We do not claim that transfer
has produced a superior asymptotic performance, however, because
neither learning curve has fully converged. We expect that the non-
transfer Fitted R-MAX agents would reach the same, or perhaps
superior, performance. However, these results do demonstrate that
transfer can provide a significant speed advantage.

6. CONCLUSION AND FUTURE WORK

In this paper we have introducedTIMBREL, which we believe
to be the first transfer method compatible with model-based rein-
forcement learning. We demonstrate that when learning 3D Moun-
tain Car with Fitted R-MAX , TIMBREL can significantly reduce the
sample complexity and demonstrated how transfer is affected by
changes to the source task’s reward and transfer functions.

There are a number of research directions suggested by this work.
When learning the 2D source task in this paper, we explicitlyset
the parameters to maximize exploration. It would be informative
to study how transfer efficacy changes when the amount of explo-
ration is decreased in the source task. This is an issue related to,
but distinct from, discovering how the target task performance is
affected when the number of source task episodes changes. A final
question left for future work is whether one could determineif col-
lecting additional samples in the source task would help learn the
target, which could help reduce the total amount of data required to
learn both tasks.

We predict thatTIMBREL will work, possibly with minor mod-
ifications, in other model-based RL algorithms. In the future we
would like to experiment with other model-based RL algorithms,
such as R-MAX , to see if transfer is as effective as in Fitted R-
MAX , and see if our methods need to be modified to accommodate
the different model representation. Additionally, we intend to ap-
ply TIMBREL to more complex domains that have continuous state
variables; we expect that transfer will provide even more benefit as
task difficulty increases.

Acknowledgments
We would like to thank the anonymous reviewers for helpful com-
ments and suggestions. This research was supported in part by
DARPA grant HR0011-04-1-0035, NSF CAREER award IIS-0237699,
and NSF award EIA-0303609.

7. REFERENCES
[1] J. S. Albus.Brains, Behavior, and Robotics. Byte Books,

Peterborough, NH, 1981.
[2] R. E. Bellman.Dynamic Programming. Princeton University

Press, 1957.
[3] R. I. Brafman and M. Tennenholtz. R-Max – a general

polynomial time algorithm for near-optimal reinforcement
learning.Journal of Machine Learning Research, 3:213–231,
2002.

[4] R. H. Crites and A. G. Barto. Improving elevator
performance using reinforcement learning. In D. S.
Touretzky, M. C. Mozer, and M. E. Hasselmo, editors,
Advances in Neural Information Processing Systems 8, pages
1017–1023, Cambridge, MA, 1996. MIT Press.

[5] N. K. Jong and P. Stone. Model-based exploration in
continuous state spaces. InThe Seventh Symposium on
Abstraction, Reformulation, and Approximation, July 2007.

[6] M. Kearns and S. Singh. Near-optimal reinforcement
learning in polynomial time. InProc. 15th International
Conf. on Machine Learning, pages 260–268. Morgan
Kaufmann, San Francisco, CA, 1998.

[7] N. Kohl and P. Stone. Machine learning for fast quadrupedal
locomotion. InThe Nineteenth National Conference on
Artificial Intelligence, pages 611–616, July 2004.

[8] Y. Liu and P. Stone. Value-function-based transfer for
reinforcement learning using structure mapping. InProc. of

the 21st National Conf. on Artificial Intelligence, July 2006.
[9] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte,

B. Tse, E. Berger, and E. Liang. Inverted autonomous
helicopter flight via reinforcement learning. InInternational
Symposium on Experimental Robotics, 2004.

[10] A. Y. Ng and M. Jordan. PEGASUS: A policy search method
for large MDPs and POMDPs. InProceedings of the 16th
Conference on Uncertainty in Artificial Intelligence, 2000.

[11] M. L. Puterman.Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
1994.

[12] J. Ramon, K. Driessens, and T. Croonenborghs. Transfer
learning in reinforcement learning problems through partial
policy recycling. InProc. of The 18th European Conf. on
Machine Learning, 2007.

[13] G. Rummery and M. Niranjan. On-line Q-learning using
connectionist systems. Technical Report
CUED/F-INFENG-RT 116, Engineering Department,
Cambridge University, 1994.

[14] M. Saggar, T. D’Silva, N. Kohl, and P. Stone. Autonomous
learning of stable quadruped locomotion. In G. Lakemeyer,
E. Sklar, D. Sorenti, and T. Takahashi, editors,
RoboCup-2006: Robot Soccer World Cup X, volume 4434,
pages 98–109. Springer Verlag, Berlin, 2007.

[15] S. Singh and R. S. Sutton. Reinforcement learning with
replacing eligibility traces.Machine Learning, 22:123–158,
1996.

[16] V. Soni and S. Singh. Using homomorphisms to transfer
options across continuous reinforcement learning domains.
In Proc. of the Twenty First National Conf. on Artificial
Intelligence, July 2006.

[17] P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement
learning for RoboCup-soccer keepaway.Adaptive Behavior,
13(3):165–188, 2005.

[18] R. S. Sutton and A. G. Barto.Introduction to Reinforcement
Learning. MIT Press, 1998.

[19] M. E. Taylor, G. Kuhlmann, and P. Stone. Autonomous
transfer for reinforcement learning. InThe Seventh
International Joint Conference on Autonomous Agents and
Multiagent Systems, May 2008.

[20] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via
inter-task mappings for temporal difference learning.Journal
of Machine Learning Research, 8(1):2125–2167, 2007.

[21] M. E. Taylor, S. Whiteson, and P. Stone. Transfer via
inter-task mappings in policy search reinforcement learning.
In The Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems, May 2007.

[22] G. Tesauro. TD-Gammon, a self-teaching backgammon
program, achieves master-level play.Neural Computation,
6(2):215–219, 1994.

[23] L. Torrey, T. Walker, J. Shavlik, and R. Maclin. Using advice
to transfer knowledge acquired in one reinforcement learning
task to another. InProceedings of the Sixteenth European
Conference on Machine Learning, 2005.

[24] C. J. C. H. Watkins.Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, UK, 1989.

[25] W. Zhang and T. G. Dietterich. A reinforcement learning
approach to job-shop scheduling. InProceedings of the
International Joint Conference on Artificial Intelligence,
1995.

