
In The Autonomous Agents and Multi-Agent Systems Conference (AAMAS-07),
Estoril, Portugal, May 2008.

Autonomous Transfer for Reinforcement Learning

Matthew E. Taylor, Gregory Kuhlmann, and Peter Stone
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188
{mtaylor, kuhlmann, pstone}@cs.utexas.edu

ABSTRACT

Recent work in transfer learning has succeeded in making rein-

forcement learning algorithms more efficient by incorporating knowl-

edge from previous tasks. However, such methods typically must

be provided either a full model of the tasks or an explicit relation

mapping one task into the other. An autonomous agent may not

have access to such high-level information, but would be able to

analyze its experience to find similarities between tasks. In this

paper we introduce Modeling Approximate State Transitions by Ex-

ploiting Regression (MASTER), a method for automatically learning

a mapping from one task to another through an agent’s experience.

We empirically demonstrate that such learned relationships can sig-

nificantly improve the speed of a reinforcement learning algorithm

in a series of Mountain Car tasks. Additionally, we demonstrate

that our method may also assist with the difficult problem of task

selection for transfer.

Keywords
Transfer Learning, Reinforcement Learning

1. INTRODUCTION
Agents deployed in an environment often need to learn how to

execute sequential actions. A common way of framing such prob-

lems is to use the framework of reinforcement learning [17] (RL).

While RL algorithms have had many empirical success and have

some theoretical guarantees, for RL to be widely applicable on

real-world tasks, it is important for learning to occur with as lit-

tle training experience as possible. If RL algorithms can learn new

tasks from limited experience, agents may be able to learn reliably

on-line in the real world. One approach to enabling such learning

is to employ transfer learning (TL) to reuse knowledge gathered in

previous tasks to learn a novel task better or faster.

A number of recent empirical successes (e.g., [4, 11, 20, 22])

in a variety of RL domains have shown that transfer between RL

tasks is feasible. Such successes are not entirely surprising due to

the intuitive appeal of transfer. If a learning agent experiences two

or more similar tasks, we would expect it to be possible for the

agent to leverage past knowledge; we have such an existence proof

in human learning.

Current TL algorithms are able to successfully transfer knowl-

edge from one or more source tasks into a novel target task. How-

ever, as discussed in the next section, existing algorithms typically

need the relationship between the source and target tasks to be spec-

Cite as: Autonomous Transfer for Reinforcement Learning, M. E. Taylor,
G. Kuhlmann, and P. Stone, Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham, Parkes,
Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ified by a human. While effective in some situations, TL meth-

ods that rely on being provided such information will be unable to

transfer knowledge autonomously.

If TL methods are able to automatically learn task relationships,

transfer may be possible in domains where humans are unable to

intuit accurate inter-task mappings. In order to enable transfer in

such an autonomous transfer learning agent, a TL algorithm must:

1. Select an appropriate source task from which to transfer, given

a target task.

2. Learn how the source task and target task are related.

3. Effectively transfer knowledge from the source task to the

target task.

While significant progress has recently been made on step three,

relatively little attention has been paid to the first two. This pa-

per introduces Modeling Approximate State Transitions by Exploit-

ing Regression (MASTER). To the best of our knowledge, MASTER

is the first TL method able to autonomously learn a relationship

between two tasks by using experience gathered from task envi-

ronments, rather than from human-provided environmental mod-

els. We empirically verify our method by learning mappings be-

tween different tasks in the Mountain Car domain and demonstrate

a significant improvement in training, relative to learning without

transfer.

2. BACKGROUND AND RELATED WORK
In this section we discuss related work to emphasize how MAS-

TER is situated in the current literature. We first briefly discuss the

Markov decision process (MDP) framework that is commonly used

to describe RL tasks. An agent observes the world through some

sensors and describes its current state s ∈ S that can be decom-

posed into a sequence of state variables, s = 〈x1, x2, . . . , xk〉.
The agent begins in sinitial and, if the task is episodic, the task

terminates if the agent reaches sfinal (or, in general, any state in a

set of final states). The agent may execute an action a ∈ A, that

is possibly state-dependent. The next state the agent arrives at is

governed by a transition function, T : S × A 7→ S, which may

be stochastic. Upon arriving at a new state, the agent receives an

immediate reward R : S 7→ R. The goal of an agent is to learn

a policy π : S 7→ A such that the expected long-term reward is

maximized. A value function learner estimates the value function

V : S 7→ R or the action-value function Q : S × A 7→ R from

experience, rather than learning the policy directly.

Many existing method have recently been developed that allow

transfer between pairs of RL tasks. For instance, Torrey et al. [22]

use advice learned in a source task to speed up learning in a target

task. Taylor, Stone, and Liu [20] leverage a learned action-value

function to learn a target task faster. Both of these methods assume

a hand-coded inter-task mapping, which defines how the state vari-

ables in both tasks are related, and how actions in both tasks are

related. Many current TL methods differ primarily in the type of

knowledge saved in the source task, the form of the inter-task map-

ping, and the way the inter-task mapping is used to make the saved

source task knowledge useful in the target task.

Most closely related to this work are approaches for transfer

learning in RL domains that are able to learn an inter-task map-

ping for pairs of tasks. Liu and Stone [7] assume that the agent

is provided a complete and correct transition model for both the

source task and the target task. They are then able to use a graph-

matching algorithm that finds similarities between state variables in

the two tasks, and actions in the two tasks. Kuhlmann and Stone [6]

approach a similar problem in the General Game Playing [5] do-

main. They construct rule graphs based on the provided transition

and reward functions for the source and target tasks, and then find

a match between games based on graph similarity.

A different set of work has attempted to reduce the amount of

information needed for the agent to learn a mapping from a source

to target task. Soni and Singh [15] treat the different possible state

variable mappings as options (multi-step actions) in the target task

and use them to learn the target task faster. However, this work

assumes that the action mapping is provided to the agent and that

the state variables can be grouped into task-independent groups.

This assumption allows the source and target tasks to have a dif-

ferent number of objects in the different tasks because each object

can be described by the same number of state variables. Talvite

and Singh [18] again assume an action mapping and state vari-

able grouping and use an experts algorithm to select between the

different possible state variable mappings. Taylor, Whiteson, and

Stone [21] relax the requirements somewhat by learning both the

state variable mapping and the action mapping by using classifica-

tion, but they also leverage the assumption that the agent is pro-

vided state variable groupings.

Other work attempts to bypass the need for an inter-task map-

ping altogether. If the problem is formulated in the relational re-

inforcement learning [3] (RRL) framework, source task policies

can be directly reused if the number of objects change in subse-

quent tasks. For instance, transfer can be quite effective [11] in the

Blocksworld domain when source and target tasks have different

numbers of blocks. However, not all tasks can easily be formulated

as relational problems, which includes the tasks we use in this work

(see Section 4).

Lastly, there has been some work in effectively selecting a source

task from which to transfer, given a target task. Fernandez and

Veloso [4] first construct a library of learned policies. When a

novel task is experienced, the agent can learn to probabilistically

exploit the policies in the library. While no explicit inter-task map-

ping is needed, some time must be spent in the target task trying

to determine which policy to use, and the amount of experience re-

quired to select the best mapping will increase with the library size.

Additional constraints include restricting the reward function to a

single goal state and the transition function to remain unchanged

in the different tasks. Ultimately, it is likely that a case based

reasoning [1] (CBR) approach may be successfully used to find

task similarities between a target task and previously learned tasks.

While there have been initial attempts at using CBR to assist with

transfer [13], we are not aware of a robust, a domain-independent

similarity metric for MDPs.

3. THE MASTER METHOD
As discussed previously, many TL methods rely on a mapping

between the source task and target task to enable transfer. Such a

mapping is typically provided to the learner by an oracle or can be

determined by analyzing models provided for both tasks. In this

section we introduce MASTER, our method for learning an inter-

task mapping from environmental data. We can learn both the ac-

tion mapping, χA, and the state variable mapping, χX , from data

collected in the source and target tasks. χA and χX fully define an

inter-task mapping, which maps each target task action into one or

more source task actions, and maps each target task state variable

into one or more source task state variables. Implementation-level

details will be specified later in the context of specific transfer ex-

periments.

Method 1 MASTER

1: while training in the source task do

2: Agent(s) record observed (s, a, s′) tuples in Dsource

3: Save learned knowledge
4: for small number of episodes in the target task do
5: Agent(s) record observed (s, a, s′) tuples in Dtarget

6: Learn a one-step transition model, Mtarget(s, a) 7→ s′, that tries to
minimize

P

Dtarget
(Mtarget(s, a) − s′)2

7: for every possible 1-to-1 mapping from source task state variables to
target task state variables, δX do

8: for every possible 1-to-1 mapping from source task actions to target
task actions, δA do

9: Use δX and δA to transform Dsource into D′

source

10: for every tuple (s, a, s′) ∈ D′

source do

11: Calculate the error: (s′ −Mtarget(s, a))2

12: MSE(δX ,δA) ← average error

13: Use the recorded MSE values to construct χ
A and χ

X from some δ−1
A

and δ−1
X

Our domain-independent method for constructing inter-task map-

pings is summarized in Method 1. We consider five distinct phases:
1. Lines 1–3 represent training in the source task. Any learn-

ing method can be used that is capable of utilizing inter-task

mappings for transfer (e.g., KBKR [8], Sarsa [12, 14], or

NEAT [16]). The type of knowledge saved in the data struc-

ture Dsource will depend on which RL algorithm is used for

source task learning.

2. Lines 4–5 show the agent(s) exploring in the target task with-

out learning. We have found in practice that only a relatively

small amount of data is needed (see Section 5.3).

3. A one-step transition model, Mtarget, for the target task is

learned on line 6. As discussed in Section 5, our experi-

ments utilize neural network function approximation in the

Weka [23] machine learning package, but we expect other

prediction methods to also perform well. Note that the er-

ror calculation (Mtarget(s, a)−s′) is a vector operation and

is computed per state variable. Such an error definition im-

plicitly assumes that the state variables can be scaled so that

they are weighted equally, and that a Euclidean metric is an

appropriate measure of state similarity (for both discrete and

continuous state variables).

4. Lines 7–12 examine different ways of mapping the source

task data into the target task using inter-task mappings (δX

and δA). When considering target tasks that have more state

variables and/or actions than the source task, this is typically

a one-to-many mapping. Each possible mapping is tested and

its appropriateness is determined by how well it matches the

learned model.

5. Lastly, the agent constructs the inter-task mapping from the

tested mappings (line 13). Note that the inter-task mapping

maps target task data to source task data, while the agent

had been testing different mappings from source task data

into the target task. Details of this step will be discussed

in Section 5, but the intuition is that if a there is a single

best mapping, it should be used. If there are a number of

candidate mappings that have very similar MSEs, they can

be combined in a mixture weighted by their inverse errors.

After MASTER has determined the inter-task mappings, they can

be leveraged in conjunction with the saved knowledge (Line 3) to

speed up learning in the target task using one of the existing TL

methods for RL tasks.

The key insight of this method is that it is able to propose all

possible methods and then score them by analyzing them off-line

(i.e., without requiring more samples from the environments). Such

analysis, lines 7–12, is exponential in the number of state variables

and actions. While such testing is relatively fast, if this method

is scaled to tasks with a large number of state variables or ac-

tions, some type of heuristic will need to be used. For instance,

rather than an exhaustive search, a hill-climbing method could be

used to find a good mapping (for instance, a variant on Powell’s

Method [10]). Additionally, it is worth emphasizing that this search

affects only computational complexity. In this work we attempt to

learn an inter-task mapping so that the sample complexity of the

target task is reduced – reducing the computational complexity is

not our primary concern, as CPU cycles are generally cheap when

compared to collecting data from a fielded agent.

There are a number of model-learning methods for RL tasks

(e.g., KBRL [9]), but such methods do not generally scale to large

tasks with continuous state variables, which are of particular inter-

est to agents acting in real-world tasks. Such methods generally

attempt to model a task in order to perform dynamic programming

offline. In MASTER, we instead only need to learn an approximate

model that allows us to find similarities between state variables and

actions in two tasks. Since we typically would expect relatively

large differences in the transition model of an MDP when state vari-

ables and actions are changed, the error due to poor modeling is less

critical then when a model is used for dynamic programming. Fur-

thermore, existing model-learning methods generally do not scale

well to large, continuous state spaces. This relaxed requirement al-

lows us to use a simple regression method, which may be used on

tasks with continuous state variables, and which requires relatively

little data for model learning. 1

4. GENERALIZED MOUNTAIN CAR
In this section we introduce our experimental domain, a gener-

alized version of Mountain Car [14], and summarize how tasks in

this domain are learned without the aid of transfer. 2D Mountain

Car is one of the canonical RL tasks which requires generalization

across a continuous state space where an agent must drive an under-

powered car up a mountain to reach a goal state. We then extend

the problem to three dimensions. This extension retains much of

the structure of the 2D problem so that transfer from 2D to 3D may

be beneficial, but the 3D task forces the agent to act in a state space

with four continuous state variables instead of only two. Addition-

ally, we later allow the agent to execute a new action (engage the

hand brake). By adding this action we are able to experiment on

a total of four related tasks, each with different state variables and

actions. After we have introduced the tasks, Section 5 discusses

how MASTER is able to learn inter-task mappings for these tasks

and demonstrates their benefit by using an existing TL algorithm.

In all the mountain car tasks, the shape of the mountain and the

goal location are initially unknown. The agent begins at rest at the

bottom of the hill. The reward is −1 for each time step until the

goal is reached, at which point the episode ends. The episode also

ends, and the agent is reset to the start state, if the agent fails to find

the goal within 5000 time steps.

1If a significant amount of data from the target task were needed
to learn a transition model, relative to the amount of data needed to
learn the target task, the time spent gathering data to learn an inter-
task mapping could easily outweigh any savings gained by transfer.

4.1 Two Dimensional Mountain Car
In the standard two dimensional version of Mountain Car, the

agent’s state is described by two continuous state variables: hor-

izontal position (x) and velocity (ẋ), which are restricted to the

ranges [−1.2, 0.6] and [−0.07, 0.07] respectively. The agent has

three actions: {Left, Neutral, Right}, which change the ve-

locity by -0.001, 0, and 0.001 respectively. On each time step the

term −0.025(cos(3x)) is added to ẋ to account for gravity. The

goal state is x = 0.5, without regard to the current velocity. We

use a released version of this code for our simulations. 2

Our agent uses Sarsa(λ) [12] with CMAC [2] (tile coding) func-

tion approximation. The CMAC is two-dimensional and has 14

tilings (repeating the setup detailed in Singh and Sutton [14]). Sarsa

has learning rate of α = 0.5, an ǫ-greedy exploration rate of ǫ =
0.1, an eligibility trace decay rate λ of 0.95, and we multiply the

exploration rate by 0.99 at the end of each learning episode to assist

convergence. The learning rate is not decayed. These settings were

selected because they were included in the released Mountain Car

package as the best found to date for Sarsa(λ) on this task.

4.2 Three Dimensional Mountain Car
In this novel modification to the standard Mountain Car domain,

the mountain’s curve is extended to a 3D surface (see Figure 1).

The state now has four continuous state variables: x, ẋ, y, ẏ. The

positions have a range of [−1.2, 0.6] and the velocities are con-

strained to [−0.07, 0.07]. The agent now selects from five actions:

{Neutral, West, East, South, North}. West and East mod-

ify ẋ by -0.001 and +0.001 respectively, while South and North

modify ẏ by -0.001 and +0.001 respectively.3 On each time step ẋ

is updated by −0.025(cos(3x)) and ẏ is updated by −0.025(cos(3y))
due to gravity. The goal state is x ≥ 0.5, y ≥ 0.5. When learning

this task without transfer we use a four-dimensional CMAC with

14 tilings, and again set λ = 0.95. After initial experiments with

roughly 100 different parameter settings, we selected α = 0.2,

ǫ = 0.5, and an ǫ-decay of 0.99.

2Available at http://rlai.cs.ualberta.ca/RLR/
MountainCarBestSeller.html.
3Note that we call the agent’s vehicle a “car,” although it does not
turn, to emphasize the similarities with the stand two dimensional
mountain car task.

-2
-1.5
-1
-0.5
 0
 0.5
 1
 1.5
 2

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6-1.2
-1

-0.8
-0.6

-0.4
-0.2

 0
 0.2

 0.4
 0.6

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

3D Mountain Car

x

y

Start

3D Mountain Car
Goal

M
o
u
n
ta

in
 H

ei
g
h
t

0.6 −1.2

Figure 1: In 3D Mountain Car, the 2D curve becomes a 3D surface.

4.3 Hand Brake Mountain Car
We add a variant to the two- and three-dimensional mountain car

tasks by adding an extra action: hand brake. While the other

actions in the mountain car tasks are all executed for a single time

step, the hand brake action is a macro-action that executes for five

simulator time steps. The effect of the action, in both the two- and

three-dimensional versions of the task, is to immediately set the

velocity of the car to zero. All other aspects of the tasks remain

unchanged from the non-hand brake versions.

When learning the two-dimensional hand brake mountain car

we used parameters identical to the two-dimensional mountain car.

When learning the three-dimensional hand brake mountain car with-

out transfer we tested roughly 70 different parameter settings and

selected α = 0.4, ǫ = 0.3, and an ǫ-decay of 0.99.

5. EXPERIMENTAL VERIFICATION
In this section we show how MASTER can learn an inter-task

mapping from 2D Mountain Car to 3D Mountain Car. We then

discuss a number of experiments that illustrate how our method is

able to achieve a significant speed-up in the target task with limited

source task data and compare the results of our algorithm with an

existing learning approach. Lastly, we demonstrate how MASTER

can evaluate mappings between multiple source tasks and help to

select an appropriate source task for transfer.

5.1 Using MASTER in Mountain Car
In order to use MASTER to learn an inter-task mapping between

2D Mountain Car and 3D Mountain Car, the agent first trained in

2D Mountain Car for 100 episodes using Sarsa(λ) while saving the

observed (ss, as, s
′

s) transitions (see Method 1, lines 1–3). The

agent then executed actions randomly in 3D Mountain Car for 50

episodes, recording the observed (st, at, s
′

t) transitions.

To learn the one-step transition model (Method 1, line 6), we

used the Weka package (version 3.4.6) to train multi-layer per-

ceptrons (i.e., artificial neural networks). While we experimented

primarily with neural networks for building the 1-step model, we

expect that other non-linear function approximators could work

equally well. After trying 4 different parameter settings in informal

experiments, we used Weka’s default settings, except for setting the

number of hidden nodes to eight and the number of training epochs

to 5000. For each 3D Mountain Car trail, we trained a separate

neural network for each (action, state variable) pair, resulting in a

total of 20 trained neural networks. Each network modeling the tar-

get task data for 3D Mountain car had 4 inputs, one for each state

variable, eight hidden nodes, and a single output that would predict

a single state variable’s next value.

The trained target task models are only approximate because of

the small amount of target task data. For instance, when we com-

pare trajectories in the target task with trajectories produced by our

model (see Figure 2), it is clear that the models are not very accu-

rate, but that the relative effects of actions are preserved.

Once the models are learned, the agent next iterates over all pos-

sible state variable and action mappings. For instance, it would

sequentially try mapping x in the source task to each of {x, y, ẋ,

ẏ} in the target task. Likewise, the source action Left would be

mapped to the target actions {Neutral, West, East, South, North}.

The agent then transforms the recorded 2D Mountain Car data us-

ing each of these 240 mappings (16 state variable mappings × 15

action mappings). For instance, consider a recorded source task tu-

ple (x, ẋ, Left), the state variable mapping xs 7→ {xt, yt}, ẋs 7→
{ẋt, ẏt}, and the action mapping Lefts 7→ Westt, Rights 7→ {Neutralt,

Eastt, Southt, Northt}. Using these mappings, the tuple will be

transformed into (x, x, ẋ, ẋ, West). Each transformed tuple is used

as input to the neural networks for the relevant target task action. In

-0.58

-0.54

-0.5

-0.46

-0.42

-0.58 -0.54 -0.5 -0.46 -0.42

y
-p

o
s
it
io

n

x-position

Trajectory when executing a single action for 10 timesteps

Actual West
Actual East

Actual South
Actual North

Predicted West
Predicted East

Predicted South
Predicted North

Figure 2: Trajectories in the 3D Mountain Car task (10 “Actual” ac-

tions are taken in a row), and trajectories generated by neural networks

trained on 50 target task episodes (10 “Predicted” actions are taken in

a row), shows how the trained neural network may produce skewed

predictions, but that the relative effect of the actions is preserved.

our example, we would use the set of four neural networks trained

on the target task action West to predict the next state that the agent

observes. The output from each neural network is compared with

the true next state the agent observed in the source task, and the

error over all the transformed source task data is used to calculate

the MSE for the mapping.

Table 1 summarizes results of a representative trial when evaluat-

ing the 240 mappings. For this domain, one state variable mapping

is significantly better than all others, both when averaged across all

action mappings, or when the best action mapping is considered for

each possible state variable mapping. This state variable mapping

is fairly intuitive: the position state variable in the 2D Mountain

Car maps to both position variables in 3D Mountain Car, and the

velocity state variable in the 2D Mountain Car maps to both veloc-

ity state variables in the 3D Mountain Car.

In Table 2 we focus on the best state variable mapping and show

the MSE for each of the different possible action mappings. With

the exception of Neutral, each task action has two source task ac-

tions with very similar error. This effect is caused by the doubling

of state variables and actions when using 2D Mountain Car data as

input to a 3D Mountain Car model. When using the state variable

mapping described above, ẋs is mapped to both ẋt and ẏt. Con-

sider saved source task data for the action Right. Right in the source

task will cause ẋs to increase. East in the target task will likewise

cause ẋt to increase, but it will not affect ẏt. Because ẋs has been

mapped to both of these state variables, one will be modified as the

target task model expects for the action East, but the other will not.

Intuitively, an appropriate action mapping would map both Right

and Neutral from the source task to the action East in the target

task. Because there is no clear single best 1-1 mapping, we choose

to weight the different action mappings by the inverse of their mea-

sured MSE. Such a method will allow us to map multiple actions

from the source task into the target task, weighted by their relative

errors on our model.

Once the agent learns the mappings δX and δA (one-to-many

for the state variable mapping and many-to-many for the actions),

we construct the inter-task mappings χX and χA by taking the in-

verse of these mappings. We then use a transfer method which

is very similar to that of Q-Value Reuse [20] (see Method 2). In

this transfer method, the agent saves the 2D CMAC after train-

ing on the source task. In the target task, the agent modifies the

State Variable Mappings Evaluated
x y ẋ ẏ Avg. MSE Best MSE
x x x x 0.0384 0.0348
x x x ẋ 0.0246 0.0228
x x ẋ x 0.0246 0.0227
x x ẋ ẋ 0.0107 0.0090
x ẋ x x 0.0451 0.0406
x ẋ x ẋ 0.0385 0.0350
x ẋ ẋ x 0.0312 0.0289
x ẋ ẋ ẋ 0.0245 0.0225
ẋ x x x 0.0451 0.0406
ẋ x x ẋ 0.0312 0.0290
ẋ x ẋ x 0.0384 0.0350
ẋ x ẋ ẋ 0.0245 0.0226
ẋ ẋ x x 0.0516 0.0463
ẋ ẋ x ẋ 0.0450 0.0407
ẋ ẋ ẋ x 0.0450 0.0407
ẋ ẋ ẋ ẋ 0.0383 0.0350

Table 1: This table shows the resulting MSE when using different

state variable mappings. Each row shows a different mapping where

the source task variables in the row are mapped to the target task vari-

ables at the head of the column (i.e., x, x, ẋ, ẋ maps variable xs to xt,

xs to yt, ẋs to ẋt, and ẋs to ẏt). The Avg. MSE column shows the MSE

averaged over all possible action mappings for each row’s state vari-

able mapping. The Best MSE column shows the MSE for each row’s

state variable mapping when using the action mapping with the low-

est MSE. Both metrics show that the state variable mapping in bold is

significantly better than all other possible state variable mappings.

Action Mappings Evaluated
Target Task Action Source Task Action MSE

Neutral Left 0.0118
Neutral Neutral 0.0079
Neutral Right 0.0103

West Left 0.0095
West Neutral 0.0088
West Right 0.0127
East Left 0.0144
East Neutral 0.0095
East Right 0.0089

South Left 0.0099
South Neutral 0.0093
South Right 0.0135
North Left 0.0136
North Neutral 0.0100
North Right 0.0100

Table 2: This table shows the MSE found when a source task action is

mapped into a target task action. All experiments in this table use the

same state variable mapping.

weights in a 4D CMAC when learning. However, when computing

the action-value for a s, a pair, the agent also uses the saved 2D

CMAC to evaluate the current position. Conceptually, Q(st, at) =
Q4DCMAC(st, at) + Q2DCMAC(χX(st), χA(sa)). However, as

mentioned above, our action mapping is not one-to-one. Thus we

iterate over all source task actions, multiply each by the inverse

of the action mapping’s recorded MSE, and then renormalize (see

Method 2). The action mappings with the lowest error have the

most influence on the value contributed by the source task CMAC.

While learning, the target task CMAC’s weights are modified by

Sarsa(λ) and will allow for an accurate approximation of the action-

value function, even though the transferred source CMAC (which

remains unchanged) will not be optimal in the target task.

5.2 Transfer from 2D to 3D Mountain Car
Figure 3 shows learning curves in 3D Mountain car, each aver-

aged over 25 independent trails. For each trial, after each episode

we evaluate the policy off-line without exploration. To graph the

learning curve we average all 25 learning curves for the previous

10 episodes and plot the mean. First, consider the lines “Without

Method 2 Q-Value Reuse in 3D Mountain Car

1: x, y, ẋ, ẏ ← agent’s current state
2: at ← action to evaluate
3: for each source task action as do

4: SUM += 1/MSEat,as

5: for each source task action as do

6: Q(s, at) += Q2dCMAC (x, ẋ, as)× 1/SUM× 1/(MSEat,as)
7: Q(s, at) += Q2dCMAC (y, ẏ, as)× 1/SUM× 1/(MSEat,as)
8: Q(s, at) += Q4dCMAC(x, y, ẋ, ẏ, at)

transfer” and “Average Both.” Average Both transfers by averag-

ing over all action mappings and all state variable mappings. Such

a method can be considered a type of blind transfer – no time or

samples are spent learning an inter-task mapping, but the result-

ing learning curve is much worse than learning without transfer.

Evidently, transferring without any consideration to the state and

action variable mappings may be quite harmful to learning. How-

ever, as is shown by the other transfer experiments, using MASTER

to learn these mappings can enable transfer that is quite beneficial.

The line “Transfer: 1/MSE” is generated by transferring from

100 episodes of 2D Mountain Car where the action mapping is

weighted by the inverse of its observed MSE in the target task

model. Using paired t-tests we find that the 1/MSE transfer curve

is statistically significantly better, at the 95% level, than learning

without transfer for episodes 2–473.4 Also included in the graph

are three other transfer mappings for comparison. “Hand Coded”

uses hand-coded state variable and action mappings based on our

knowledge of the domains as humans. We believe that this learn-

ing curve represents the upper bound on transfer for 100 episodes

of 2D Mountain Car. It is encouraging that the 1/MSE learning

curve quickly converges to the same asymptotic value as the hand

coded transfer learner. “Average Actions” performs transfer with

the learned state variable mapping but simply averages over all ac-

tions. This would be equivalent to all the possible action mappings

having the same error, and indicates how important using an ac-

tion mapping is for efficient transfer. Figure 4 shows a magnified

version of the graph to better see differences between the different

transfer methods.

We also tested a final method for weighting the different action

mappings. Rather than using all action mappings and weighting

by the inverse of the MSE, we selected only the best or two best

actions. The learning curve resulting from this method was quali-

tatively similar to the 1/MSE learning curve and is not shown.

5.3 Reducing the Total Sample Complexity
The results in Figure 3 show that learned source task knowledge

can be effectively used with a learned mapping. Thus, if an agent

has already trained on 2D Mountain Car and wants to learn 3D

Mountain Car, it likely makes sense to use its past knowledge rather

than to learn without it. However, consider a situation where the

agent has not trained on 2D Mountain Car and is faced with the

3D Mountain Car task. Should it first train on the 2D task, learn a

mapping, and then transfer? Or should it directly tackle the more

difficult 3D task?

To help answer this question, we varied the amount of data used

in the source and target task to learn a mapping, as well as how

many episodes in the source task used to learn the 2D CMAC’s

weights. Earlier experiments showed transfer after learning for 100

episodes in the source task, spending 50 episodes collecting data

4On the first episode, the agent with transferred knowledge has an
average reward of -4640 while the agent learning without transfer
has an average reward of -5000, which is not different at the 95%
confidence level.

-5000

-4000

-3000

-2000

-1000

 0

 0 500 1000 1500 2000

A
v
e

ra
g

e
 O

ff
-L

in
e

 R
e

w
a

rd

Episodes

3D Mountain Car

Transfer: Hand-Coded
Transfer: 1/MSE

Transfer: Average Actions
No Transfer

Transfer: Average Both

Figure 3: This graph compares learning without transfer to: transfer

with learned state variable and action mappings, transfer with hand-

coded mappings, transfer with mappings that average over all possible

mappings, and transfer with a learned state variable mapping. Figure 4

zooms in on the beginning of the same curves. Each learning curve

averages 25 independent trials.

in the target task, and then using MASTER with transfer to learn

the target task. We tried using 100, 50, 25, and 10 episodes of

source task training, as well as 50, 25, and 10 episodes of target

task training. We found that only when we reduce the number of

source task episodes to 10 does performance degrade.

Figure 5 compares learning 3D Mountain Car without transfer

to using transfer. The agent trains for 25 episodes in the source

task, collects data for 10 episodes in the target task, uses MASTER

to learn the inter-task mappings, weights the action mappings by

1/MSE, and then learns in the target task. Note that the transfer

learning curve has been shifted by 35 episodes (the first graphed

point is at episode 45, instead of at episode 10) to explicitly ac-

count for the episodes spent before learning in the target task. A

series of paired t-tests show that the difference between learning

without transfer and learning with transfer while accounting for all

episodes used is statistically significantly different at the 95% level

from learning without transfer from episodes 36–474. We therefore

conclude that for some tasks, it may be in an agent’s interest to train

first on a simple source task, learn a mapping, and then learn on a

target task, rather than learn on the target task directly. 5

5.4 Comparison to Previous Work
We would like to compare our method with previous methods

for learning a mapping using data from the environments (i.e. [15,

18, 21]) but the 2D and 3D Mountain Car tasks do not easily sub-

divide into groups of state variables. For instance, our previous

work [21] presents an example from a logistic domain that divides

the world into two object types, trucks and locations, and supposes

that the source and target tasks can have different numbers of these

objects. However, in Mountain Car there is no clear division of

“object types.” To enable a comparison, we will decide to group

state variables into (position, velocity) tuples. Our source task will

thus have one object, (x, ẋ), and the target task will have two ob-

jects, (x, ẋ) and (y, ẏ). Note that a significant amount of informa-

tion about the relationship between the two tasks has already been

encoded in this formulation.

5The learning parameters for the 3D Mountain Car task were tuned
for learning without transfer. In a different series of experiments,
not shown, the transfer learning curves were improved by re-tuning
the learning parameters.

-5000

-4000

-3000

-2000

-1000

 0

 0 50 100 150 200 250 300

A
v
e
ra

g
e
 O

ff
-L

in
e
 R

e
w

a
rd

Episodes

3D Mountain Car

Transfer: 1/MSE
Transfer: Hand-Coded

Transfer: 1/MSE
Transfer: Average Actions

No Transfer

Figure 4: This graph shows the same curves as in Figure 3. The hand-

coded mapping performs slightly better than the fully learned map-

ping, which in turn is better than using only the state variable mapping.

To help visualize the magnitude of the evaluation noise, the learned

mapping transfer curve shows error bars at ± 1 standard deviation.

Each learning curve averages 25 independent trials.

-5000

-4000

-3000

-2000

-1000

 0

 0 500 1000 1500 2000

A
v
e

ra
g

e
 O

ff
-L

in
e

 R
e

w
a

rd

Episodes

3D Mountain Car

Transfer: 1/MSE, total episodes
No Transfer

Figure 5: This graph compares learning without transfer to transfer

using learned mappings. The transfer learning curve does not start at 0

episodes as it now reflects the total number of episodes used to learn the

mappings in the source and target task. This result shows that the total

time to learn a source task, an inter-task mapping, and then learn in a

target task may less than learning a target task directly. Each learning

curve averages 25 independent trials.

We follow the procedure of Taylor, Whiteson, and Stone. In

the source task, we collect experience while learning in the form

(xs, ẋs, as, r, x′

s, ẋ
′

s), where the s subscript denotes the source

task. After learning, we use the data to train an action classifier:

Caction(xs, ẋs, r, x
′

s, ẋs
′) 7→ as. Then, in the target task, we

collect data in the form (xt, ẋt, yt, ẏt,at, r, x′

t, ẋ
′

t, y′

t, ẏt
′). Af-

ter collecting the target task data, we use the action classifier to

predict which similar source task action was used for an observed

target task tuple. For instance, the output from the action classifier

Caction(xt, ẋt, r, x
′

t, ẋt
′) would give some source task action. The

returned source task action is counted as a vote that the target task

action associated with this tuple, at, is the same as the action re-

turned by the classifier, as. Note that no state variable classifier is

needed, as there is only one object type. Thus, (xt, ẋt) and (yt, ẏt)

both get mapped to (xs, ẋs) because of the knowledge we implic-

itly gave the agent in how we chose the state variable grouping.
χX has been provided by human knowledge, but the classifier is

responsible for learning χA.

We collected 50 episodes of data in 2D Mountain Car and trained

a neural network action classifier with 5 inputs (four state variables

and the current reward) to predict the source task action that was

taken. The neural network was unable to learn to correctly clas-

sify the data until we changed the agent’s policy so that the car

took each action for 5 successive time steps. By grouping succes-

sive states together (i.e., instead of using the state at times t and

t+1, we used the state at times t and t+5), the effects of actions

outweighed the effects of gravity and we were able to learn to ac-

curately classify source task actions. The action mapping learned

is similar to the results of our method, as expected (see Table 3).

If we use this action mapping to learn in 3D Mountain Car (not

shown), weighting the different actions by the number of “votes”

each mapping received, we find that the target task learning is very

similar to our 1/MSE method using both the learned state variable

and action mappings described above. The main significance of

this result is that it confirms that MASTER is able to find an action

mapping similar to that found by an existing learning method, even

though significantly less human knowledge is required.

Action Mappings via Classification
Left Neutral Right

Neutral 679 18910 154
West 8518 10554 184
East 285 10046 9177

South 8773 10730 186
North 375 10093 9540

Table 3: This table shows the confusion matrix when evaluating 3D

Mountain Car data on an action classifier trained using 2D Mountain

Car data. Each value in the matrix is the number of times a target

action (row) was classified as a source action (column), and each data

can be considered a vote for the action mapping.

5.5 Transfer in Hand Brake Mountain Car
In this section we examine transfer into the 3D Hand Brake Moun-

tain Car task. First, consider an agent that has previously trained

for 500 episodes of 2D Hand Brake Mountain Car. Figure 6 com-

pares learning without transfer, learning after transferring only the

state variable mapping, and learning after transferring both the state

variable and action mapping. This result confirms that MASTER can

learn a useful inter-task mapping in this variant of Mountain Car.

Consider an agent that has previously trained on 2D Mountain

Car, both with and without a hand brake action. If the agent is

now tasked with 3D Hand Brake Mountain Car, it should be able

to learn mappings for both tasks and use the learned mappings to

intelligently transfer from the source tasks. One option would be

to select the source task with learned mappings that had the lowest

MSE, which in this case would be 2D Mountain Car with a hand

brake action (see Table 4 for a partial summary). A second option

would be to weight the mappings from both tasks by the inverse of

their recorded MSEs. Figure 7 shows both of these methods out-

perform transferring only from the 2D Mountain Car without hand

brake, as well as outperforming learning the 3D hand brake task

without transfer. Interestingly, transferring from both source task

appears better than transferring from a single source task (although

the differences are not statistically significant at the 95% level due

to high variance).

This experiment shows that it is possible to leverage MASTER’s

evaluation of different inter-task mappings to help determine how

similar tasks are. It is possible that such a method could also be

used to learn when an action or state variable in the target has no

analog in any source task, but we leave this enhancement to future

work. In our experiment, the transition function of the two hand

brake tasks was more similar than the 3D hand brake task and the

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0 200 400 600 800 1000

A
v
e

ra
g

e
 O

ff
-L

in
e

 R
e

w
a

rd

Episodes

3D Hand-Brake Mountain Car

Transfer: 1/MSE
Transfer: Average Actions

No Transfer

Figure 6: This graph shows that transfer using both learned mappings

outperforms both learning without transfer and using only the learned

state variable mappings. Each learning curve averages 25 independent

trials.
Action Mappings for 2 Source Tasks

Target Task Source Task MSE for 2D MSE for 2D Hand
Action Action as Source Task Brake as Source Task
Neutral Left 0.0196 0.0140
Neutral Neutral 0.0188 0.0113
Neutral Right 0.0244 0.0162
Neutral Hand Brake 0.0665

West Left 0.0180 0.0111
West Neutral 0.0226 0.0143
West Right 0.0320 0.0219
West Hand Brake 0.0678

. . .
Hand Brake Left 0.1673 0.1284
Hand Brake Neutral 0.1706 0.1285
Hand Brake Right 0.1985 0.1360
Hand Brake Hand Brake 0.0097

Table 4: This table shows some of the MSEs found when a source task

actions from 2D Mountain Car (with and without a hand brake action)

are mapped into a a 3D Hand Brake Mountain Car action. Note that

the errors for the 2D hand brake task are less than the standard 2D

task and that no source task action from the standard 2D task maps

well to the 3D hand brake action.

2D non-hand brake task. While encouraging, such a metric only

accounts for the similarity of two tasks’ transition functions. If, for

instance, the target task’s goal state were moved from (0.5, 0.5) to

(−1.2,−1.2), it is unlikely that transferring from either 2D Moun-

tain Car task would improve learning. In fact, when transferring

from such mismatched tasks, it is possible that transfer would hurt

the learner’s performance, relative to learning without transfer. In-

sulating an agent from the effects of such negative transfer is a

difficult problem that we leave to future work, along with refining

this proposed task similarity metric to account for differences in

source and target tasks’ reward functions.

6. FUTURE WORK
In this work we have focused on reducing the sample complexity

of learning by showing that MASTER can increase performance in a

target task with effective reuse of past knowledge, as well as show-

ing that the total number of episodes can be effectively reduced

with an automatically learned mapping. We do so under the as-

sumption that for many fielded agents, sample complexity is much

more of a bottleneck than computational complexity. In the future

we would also like to examine reducing computational complexity.

The first area for improvement would be tackling the inner loop

of MASTER which is exponential in the number of state variables

-5000

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0 200 400 600 800 1000

A
v
e

ra
g

e
 O

ff
-L

in
e

 R
e

w
a

rd

Episodes

3D Hand-Brake Mountain Car

Transfer: 1/MSE from 2D and 2D Hand-Brake
Transfer: 1/MSE from 2D Hand-Brake

Transfer: 1/MSE from 2D
No Transfer

Figure 7: This graph compares learning the 3D Hand Brake Moun-

tain Car task without transfer, with transfer from the 2D Hand Brake

Mountain Car, with transfer from the 2D Mountain Car, and with

transfer from both versions of the 2D task (weighted by the inverse

of their respective mapping errors). Each learning curve averages 25

independent trials.

and actions. As suggested before, if this method is to scale to tasks

with hundreds of state variables or actions, some sort of heuristic

search would be needed, rather than an enumeration of all possible

mappings. However, we reiterate that the main insight of MASTER

is that the different possible mappings can be evaluated off-line,

and that utilizing more powerful search techniques for discovering

an optimal mapping is left to future work.

It would also be useful to determine if the sample complexity

could be further reduced. One idea would be to explore in the target

task so as to minimize the uncertainty in the target task transition

model, making exploration more efficient. Another possible tact

would be to interleave building the target task transition model and

gathering data in the target task. By examining the learned model,

it may be possible to continue exploring in the target task only as

long as collected data is changing the model significantly.

MASTER relies on being able to explore in the target task quickly

and build an approximate model. However, in some tasks the initial

exploration may not be indicative of the entire MDP and a model

learned with only a little training data would be misleading. While

there is likely no way to guard against this for arbitrary MDPs, it

would be useful to be able to define the type of task for which such

initial exploration is likely to yield a useful model for learning a

mapping.

Lastly, we note that this work focuses on pairs of tasks drawn

from the same domain. While other work has demonstrated that

cross-domain transfer is possible [19], it is likely that autonomously

learning mappings will become more difficult when the source and

target tasks become less similar.

7. CONCLUSION
This paper has introduced MASTER, a method for automatically

learning a mapping between tasks. We have empirically demon-

strated the efficacy of this algorithm on a series of tasks in the

Mountain Car domain. These results show that a learned task map-

pings can effectively increase the speed of learning in a novel target

task so that the sample complexity is reduced using transfer, rela-

tive to learning without transfer. Additionally, we show an initial

approach for leveraging learned inter-task mappings to assist with

the problem of appropriate source task selection.

Acknowledgments

We would like to thank Lilyana Mihalkova and the anonymous re-

viewers for helpful comments and suggestions. This research was

supported in part by DARPA grant HR0011-04-1-0035, NSF CA-

REER award IIS-0237699, and NSF award EIA-0303609.

8. REFERENCES
[1] A. Agnar and P. Enric. Case-based reasoning: Foundational issues,

methodological variations, and system approaches, 1994.

[2] J. S. Albus. Brains, Behavior, and Robotics. Byte Books,
Peterborough, NH, 1981.

[3] S. Dzeroski, L. D. Raedt, and K. Driessens. Relational reinforcement
learning. Machine Learning, 43(1/2):5–52, April 2001.

[4] F. Fernandez and M. Veloso. Probabilistic policy reuse in a
reinforcement learning agent. In Proc. of the 5th International Conf.

on Autonomous Agents and Multiagent Systems, 2006.

[5] M. Genesereth and N. Love. General game playing: Overview of the
AAAI competition. AI Magazine, 26(2), 2005.

[6] G. Kuhlmann and P. Stone. Graph-based domain mapping for
transfer learning in general games. In Proceedings of The Eighteenth

European Conference on Machine Learning, September 2007.

[7] Y. Liu and P. Stone. Value-function-based transfer for reinforcement
learning using structure mapping. In Proc. of the 21st National Conf.
on Artificial Intelligence, July 2006.

[8] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild. Giving
advice about preferred actions to reinforcement learners via
knowledge-based kernel regression. In Proceedings of the 20th
National Conference on Artificial Intelligence, 2005.

[9] D. Ormoneit and S. Sen. Kernel-based reinforcement learning.
Machine Learning, 49(2-3):161–178, 2002.

[10] M. J. D. Powell. An efficient method for finding the minimum of a
function of several variables without calculating derivatives.
Computer Journal, 7:155–162, 1964.

[11] J. Ramon, K. Driessens, and T. Croonenborghs. Transfer learning in
reinforcement learning problems through partial policy recycling. In
Proc. of The 18th European Conf. on Machine Learning, 2007.

[12] G. Rummery and M. Niranjan. On-line Q-learning using
connectionist systems. Technical Report CUED/F-INFENG-RT 116,
Engineering Department, Cambridge University, 1994.

[13] M. Sharma, M. Holmes, J. C. Santamaria, A. Irani, C. Isbell, , and
A. Ram. Transfer learning in real-time strategy games using hybrid
cbr/rl. In Proceedings of the Twentieth International Joint

Conference on Artificial Intelligence, 2007.

[14] S. P. Singh and R. S. Sutton. Reinforcement learning with replacing
eligibility traces. Machine Learning, 22:123–158, 1996.

[15] V. Soni and S. Singh. Using homomorphisms to transfer options
across continuous reinforcement learning domains. In Proc. of the

Twenty First National Conf. on Artificial Intelligence, July 2006.

[16] K. O. Stanley and R. Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary Computation,
10(2):99–127, 2002.

[17] R. S. Sutton and A. G. Barto. Introduction to Reinforcement

Learning. MIT Press, 1998.

[18] E. Talvitie and S. Singh. An experts algorithm for transfer learning.
In Proceedings of the Twentieth International Joint Conference on

Artificial Intelligence, 2007.

[19] M. E. Taylor and P. Stone. Cross-domain transfer for reinforcement
learning. In Proceedings of the Twenty-Fourth International

Conference on Machine Learning, June 2007.

[20] M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via inter-task
mappings for temporal difference learning. Journal of Machine

Learning Research, 8(1):2125–2167, 2007.

[21] M. E. Taylor, S. Whiteson, and P. Stone. Transfer via inter-task
mappings in policy search reinforcement learning. In The Sixth

International Joint AAMAS Conf., May 2007.

[22] L. Torrey, T. Walker, J. W. Shavlik, and R. Maclin. Using advice to
transfer knowledge acquired in one reinforcement learning task to
another. In The 16th European Conf. on Machine Learning, 2005.

[23] I. H. Witten and E. Frank. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, 2005.

