
Reinforcement Learning from Simultaneous Human and
MDP Reward

W. Bradley Knox and Peter Stone
Deptartment of Computer Science
The University of Texas at Austin

{bradknox,pstone}@cs.utexas.edu

ABSTRACT
As computational agents are increasingly used beyond re-
search labs, their success will depend on their ability to
learn new skills and adapt to their dynamic, complex en-
vironments. If human users—without programming skills—
can transfer their task knowledge to agents, learning can
accelerate dramatically, reducing costly trials. The tamer
framework guides the design of agents whose behavior can
be shaped through signals of approval and disapproval, a
natural form of human feedback. More recently, tamer+rl
was introduced to enable human feedback to augment a tra-
ditional reinforcement learning (RL) agent that learns from
a Markov decision process’s (MDP) reward signal. We ad-
dress limitations of prior work on tamer and tamer+rl,
contributing in two critical directions. First, the four suc-
cessful techniques for combining human reward with RL
from prior tamer+rl work are tested on a second task,
and these techniques’ sensitivities to parameter changes are
analyzed. Together, these examinations yield more general
and prescriptive conclusions to guide others who wish to
incorporate human knowledge into an RL algorithm. Sec-
ond, tamer+rl has thus far been limited to a sequential
setting, in which training occurs before learning from MDP
reward. In this paper, we introduce a novel algorithm that
shares the same spirit as tamer+rl but learns simultane-
ously from both reward sources, enabling the human feed-
back to come at any time during the reinforcement learning
process. We call this algorithm simultaneous tamer+rl.
To enable simultaneous learning, we introduce a new tech-
nique that appropriately determines the magnitude of the
human model’s influence on the RL algorithm throughout
time and state-action space.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Human Factors, Performance

Keywords
reinforcement learning, human-agent interaction, interactive
learning, human teachers, shaping

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1. INTRODUCTION
Computational agents may soon be prevalent in society,

and many of their end users will want these agents to learn
to perform new tasks. For many of these tasks, the human
user will already have significant task knowledge. Conse-
quently, we seek to enable non-technical users to transfer
their knowledge to the agent, reducing the cost of learning
without hurting the agent’s final, asymptotic performance.

In this vein, the tamer framework guides the design of
agents that learn by shaping—using signals of approval and
disapproval to teach an agent a desired behavior [7]. As orig-
inally formulated, tamer was limited to learn exclusively
from the human feedback. More recently, tamer+rl was in-
troduced to improve traditional reinforcement learning (RL)
algorithms, which learn from an MDP reward signal, with
human feedback [8]. However, tamer+rl has previously
only been tested on a single domain, and it has been lim-
ited to the case where the learning from human feedback
happens only prior to RL: sequential tamer+rl. We ad-
dress these limitations by improving upon prior work in two
crucial directions.

First, in Section 3, we provide a thorough empirical anal-
ysis of the sequential tamer+rl approach, testing the four
tamer+rl techniques that were previously found to be suc-
cessful. We test on two tasks—one identical to the single
prior tamer+rl task and a new task. We also provide a
much-needed examination of each technique’s performance
at a range of parameter values to determine the ease of
setting each parameter effectively, a critical aspect of us-
ing tamer+rl algorithms in practice that has been previ-
ously sidestepped. Together, these analyses yield stronger,
more prescriptive conclusions than were possible from prior
work. Two similar combination techniques, for the first
time, clearly stand out as the most effective, and we con-
sistently observe that manipulating action selection is more
effective than altering the RL update.

Second, in Section 4 we introduce a novel algorithm that
is inspired by prior work on tamer+rl but learns from
both human and MDP reward simultaneously. The princi-
pal benefit of simultaneous learning is its flexibility; it gives
a trainer the important ability to step in as desired to alter
the course of reinforcement learning while it is in progress.
We demonstrate the success of the two best-performing tech-
niques from our sequential experiments, action biasing and
control sharing, in this simultaneous setting. To meet de-
mands introduced by the simultaneous setting, we develop a
method to moderate the influence of the model of human re-
ward on the RL algorithm. Using this method, simultaneous

tamer+rl increases the human model’s influence in areas
of the state-action space that have recently received train-
ing and slowly decreases influence in the absence of training,
leaving the original MDP reward and base RL agent to learn
autonomously in the limit. Without this improvement, the
sequential techniques would be too brittle for simultaneous
learning.

2. PRELIMINARIES
In this section, we briefly introduce reinforcement learning

and the tamer Framework.

2.1 Reinforcement Learning
We assume that the task environment is a Markov decision

process (MDP) specified by the tuple (S, A, T , γ, D, R). S
and A are respectively the sets of possible states and actions.
T is a transition function, T : S×A×S → R, which gives the
probability, given a state st and an action at, of transitioning
to state st+1. γ, the discount factor, exponentially decreases
the value of a future reward. D is the distribution of start
states. R is a reward function, R : S × A × S → R, where
the reward is a function of st, at, and st+1. We will also
consider reward that is a function of only st and at.

Reinforcement learning algorithms (see Sutton and Barto
[15]), seek to learn policies (π : S → A) for an MDP that
maximize return from each state-action pair, where return
is

∑T
t=0E[γtR(st, at, st+1)]. In this paper, we focus on us-

ing a value-function-based RL method, namely SARSA(λ)
[15], augmented by the tamer-based learning that can be
done directly from a human’s reward signal. Though more
sophisticated RL methods exist, we use SARSA(λ) for its
popularity and representativeness, and because we are not
concerned with finding the best overall algorithm for our
experimental tasks but rather with determining how various
techniques for including a human model change the base RL
algorithm’s performance.

2.2 The TAMER Framework for Interactive
Shaping

The tamer Framework [7] is an approach to the problem
of how an agent should learn from numerically mapped re-
ward signals given by a human trainer. Specifically, these
feedback signals are delivered by an observing human trainer
as the agent attempts to perform a task.1 tamer is moti-
vated by two insights about human reward. First, human
reward is trivially delayed, slowed only by the time it takes
the trainer to assess behavior and deliver feedback. Second,
the trainer observes the agent’s behavior with a model of
that behavior’s long-term effects, so the human reward sig-
nal is assumed to be fully informative about the quality of
recent behavior. Human reward is more similar to an action
value (sometimes called a Q-value), albeit a noisy and triv-
ially delayed one, than MDP reward. Consequently, tamer
assumes human reward to be fully informative about the
quality of an action given the current state, and it models
a hypothetical human reward function, H : S × A → R,
as Ĥ in real time by regression. In the simplest form of
credit assignment, each human reward signal creates a la-

1In our experiments, the trainer has a button for positive reward
and one for negative. Multiple button presses are roughly inter-
preted as more intense feedback.

bel for the last state-action pair.2 The output of the resul-
tant Ĥ function—changing as the agent gains experience—
determines the relative quality of potential actions, so that
the exploitative action is a = argmaxa[Ĥ(s, a)].

3. SEQUENTIAL TAMER+RL
Observing that tamer agents typically learn faster than

agents learning from MDP reward but to a lower perfor-
mance plateau, we combined tamer and SARSA(λ) in the
original publication on tamer+rl [8]. The aim was to
complement tamer’s fast learning with RL’s ability to of-
ten learn better policies in the long run. These conjoined
tamer+rl algorithms address a scenario in which a human
trains an agent, leaving a model Ĥ of human reward, and
then Ĥ is used to influence the base RL algorithm somehow.
We call this scenario and the algorithms that address it se-
quential tamer+rl. For all tamer+rl approaches, only
MDP reward is considered to specify optimal behavior. Ĥ
provides guidance but not an objective. In this section, we
reproduce and then extend prior investigations of sequential
tamer+rl, yielding more prescriptive and general conclu-
sions than prior work allowed.

3.1 Combination techniques
Eight tamer+rl techniques were previously tested [8];

each uses Ĥ to affect the RL algorithm in a different way.
Four were largely effective when compared to the SARSA(λ)-
only and tamer-only agents3 on both mean reward over a
run and performance at the end of the run. We focus on
those four techniques, which can be used on any RL al-
gorithm that uses an action-value function. Below, we list
them with names we have created.4 In our notation, a prime
(e.g., Q′) after a function means the function replaces its
non-prime counterpart in the base RL algorithm.

• Reward shaping: R′(s, a) = R(s, a) + (β ∗ Ĥ(s, a))

• Q augmentation: Q′(s, a) = Q(s, a) + (β ∗ Ĥ(s, a))

• Action biasing: Q′(s, a) = Q(s, a)+(β∗Ĥ(s, a)) only
during action selection
• Control sharing: P (a=argmaxa[Ĥ(s, a)]) = min(β, 1).

Otherwise use base RL agent’s action selection mech-
anism.

In the descriptions above, β is a predefined combination
parameter. In our sequential tamer+rl experiments, β is
annealed by a predefined factor after each episode for all
techniques other than Q augmentation.

We now briefly discuss these techniques and situate them
within related work. In the RL literature, reward shaping
adds the output of a shaping function to the original MDP
reward, creating a new reward to learn from instead [3, 10].
As we confirm in the coming paragraph on Q augmentation,
the reward shaping technique used in this paper is not the
only way to do reward shaping, though it is the most direct
use of Ĥ for reward shaping.

2The trivial delay is dealt with using a credit assignment tech-
nique described previously [7].
3A tamer-only agent simply uses Ĥ to choose actions, ignoring

MDP reward. In sequential tamer+rl, Ĥ is constant, and thus
so is the agent’s policy.
4These four techniques are numbered 1, 4, 6, and 7 in past
work [8]. We altered action biasing to generalize it, but the ε-
greedy policies we use in our experiments are not affected.

If Ĥ is considered a heuristic function, action biasing is
the same action selection method used in Bianchi et al.’s
Heuristically Accelerated Q-Learning (HAQL) algorithm [1].
Control sharing is equivalent to Fernández and Veloso’s π-
reuse exploration strategy [4]. Note that both control sharing
and action biasing only affect action selection and can be
interpreted as directly guiding exploration toward human-
favored state-action pairs.

Q augmentation is action biasing with additional use of
Ĥ during the Q-function’s update. Wiewiora et al.’s re-
lated look-ahead advice [20] uses a discounted change in the
output of a state-action potential function, γφ(st+1, at+1)−
φ(st, at), for reward shaping and to augment action values
during action selection. Interestingly, look-ahead advice is
equivalent to Q augmentation when Ĥ is used for φ, the
state and action space are finite, and the policy is invariant
to adding a constant to all action values in the current state
(e.g., ε-greedy and soft-max).

3.2 Sequential learning experiments
We now describe our sequential tamer+rl experiments.

We first reproduce results on the single task on which the
techniques were previously tested.5 We then evaluate the
algorithms’ effectiveness on a different task. Additionally,
we analyze our results at a range of combination parameter
values (β values) to identify challenges to setting β’s value
without prior testing.

Using the original Ĥ representation (linear model of RBF
features), task settings, SARSA(λ) parameters, and training
records,6 we repeat past experiments on the mountain-car
task, using all four combination techniques found to be suc-
cessful in those experiments and a range of β combination
parameters. We then test these tamer+rl techniques on
a second task, cart pole, using an Ĥ model trained by an
author. We again use SARSA(λ), choosing parameters that
perform well but sacrifice some performance for episode-to-
episode stability and the ability to evaluate policies that
might otherwise balance the pole for too long to finish a run.
Both tasks are adapted from RL-Library [16]. In mountain
car, the goal is to quickly move the car up a hill to the
goal. The agent receives -1 reward for all transitions to non-
absorbing states. In cart pole, the goal is to move a cart so
that an attached, upright pole maintains balance as long as
possible. The agent receives +1 reward for all transitions
that keep the pole within a specified range of vertical. The
Ĥ for cart pole was learned by k-Nearest Neighbor. For
both tasks, SARSA(λ) uses a linear model with Gaussian
RBF features and initializes Q pessimistically, as was found
effective previously [8]. In these and later experiments, Ĥ
outputs are typically in the range [-2, 2].

We evaluate each combination technique on four criteria;

5The experiments described in this paper use a different imple-
mentation of tamer than was used in previous work [7]. This ver-
sion has minor algorithmic differences and one significant change
in the credit assignment technique, which we we will not fully
describe here for space considerations. Briefly, for each human
reward signal received, past tamer algorithms created a learning
sample for every time step within a window of recent experience,
resulting in many samples per human reward signal in fast do-
mains. We instead create one sample per time step, using all
crediting rewards to create one label.
6The models we create—Ĥ1 and Ĥ2—from the original training
trajectories perform a bit better than those from previous exper-
iments [8], which points to small implementation differences.

!""#$
!""%$
!"%#$
!"%%$
!&#$

'()*(+,-!./01$23456!./01$ 678()9$
*:(;</=$

>$(?=$ 3@A./$
B<(*</=$

C./D).0$
*:()</=$!

"#
$%
&"
'
#&
(%
)*
+
"%
,-
%

.-
#/
0%1

"&
%"
12
3-
("

%

45//6&5$%3"75"$*#/%89!:;<;=%-$%!-5$,#2$%>#&%

E"$

EF$

!"%F$
!"%%$
!&G$
!&H$
!&I$

'()*(+,-!./01$23456!./01$ 678()9$
*:(;</=$

>$(?=$ 3@A./$
B<(*</=$

C./D).0$
*:()</=$!

"#
$%
&"
'
#&
(%
)*
+
"%
,-
%

.-
#/
0%1

"&
%"
12
3-
("

%

:$(6&5$%3"75"$*#/%89!:;<;=%-$%!-5$,#2$%>#&%

E"$
EF$

!"I%$

!"J%$

!"F%$

!""%$

!"%%$

!&%$

"$ F$ J$ I$ #$ H$ K$ G$ &$ "%$ ""$ "F$ "J$ "I$ "#$!
"#
$%
&"
'
#&
(%
)*
+
"%
,-
%.
-#

/0%
1"

&%"
12
3-
("

%

?6"123-("%2$,"&@#/3%

:#&/A%&5$%3"75"$*#/%89!:;<;=%-$%!-5$,#2$%>#&%532$.%BC%

'()*(+,-$

23456!./01$

678()9$*:(;</=$

>$(?=$

3@A./$B<(*</=$

C./D).0$*:()</=$

!"I%$

!"J%$

!"F%$

!""%$

!"%%$

!&%$

"$ F$ J$ I$ #$ H$ K$ G$ &$ "%$ ""$ "F$ "J$ "I$ "#$

!
"#
$%
&"
'
#&
(%
)*
+
"%
,-
%.
-#

/0%
1"

&%"
12
3-
("

%

?6"123-("%2$,"&@#/3%

:#&/A%&5$%3"75"$*#/%89!:;<;=%-$%!-5$,#2$%>#&%532$.%BD%

'()*(+,-$

23456!./01$

678()9$*:(;</=$

>$(?=$

3@A./$B<(*</=$

C./D).0$*:()</=$

Figure 1: Comparison of TAMER+RL techniques with

SARSA(λ) and the TAMER-only policy on mountain car

over 40 or more runs of 500 episodes. Ĥ1 and Ĥ2 are

models from two different human trainers. The top chart

considers reward over the entire run, and the second

chart evaluates reward over the final 10 episodes. Error

bars show standard error. The third and fourth charts

display mean performance using Ĥ1 and Ĥ2 early in the

run, during the first 75 episodes.

full success requires outperforming the corresponding Ĥ’s
tamer-only policy and SARSA(λ)-only both in end-run per-
formance and cumulative reward (or mean reward across full
runs, equivalently).

3.3 Sequential learning results and discussion
Figures 1 and 2 show the results of our experiments for

sequential tamer+rl. For now, we only show results for
the β combination parameters that accrue the highest cu-
mulative reward for their corresponding technique. Figure 2
additionally shows learning curves for the first 30 episodes
of the cart pole run.

Qualitatively, our mountain car results are consistent with
previous work. Action biasing and control sharing succeed
on all four criteria and significantly outperform other tech-
niques in cumulative reward. Reward shaping and Q aug-
mentation also improve over SARSA(λ)-only by both met-
rics and over the tamer-only policies in end-run reward.

On cart pole, action biasing and control sharing again suc-

!"
#$!!"
$!!!"
%$!!"

&!!!!"

'()*(+,-./012"34567./012" 789():"
*;(<=0>"

?"(@>" 4AB/0"
C=(*=0>"

D/0E)/1"
*;()=0>"

!
"#
$%
&"
'
#&
(%
)*
+
"%

,-
&./

01
2%-

"&
%"
-.
34
("

% 5$(6&,$%3"7,"$*#8%9:!5;<;=%4$%>#&1%?48"%

!"

$!!"

&!!!"

&$!!"

'()*(+,-./012"34567./012" 789():"
*;(<=0>"

?"(@>" 4AB/0"
C=(*=0>"

D/0E)/1"
*;()=0>"

!
"#
$%
&"
'
#&
(%
)*
+
"%

,-
&./

01
2%-

"&
%"
-.
34
("

% @,886&,$%3"7,"$*#8%9:!5;<;=%4$%>#&1%?48"%

!"

&!!"

#!!"

F!!"

G!!"

&" #" F" G" $" H" %" I" J" &!" &&" &#" &F" &G" &$"

!
"#
$%
&"
'
#&
(%
)*
+
"%

,-
&./

01
2%-

"&
%"
-.
34
("

%

A6"-.34("%.$1"&B#83%

5#&8C%&,$%3"7,"$*#8%9:!5;<;=%4$%>#&1%?48"%
'()*(+,-"

34567./012"

789():"*;(<=0>"

?"(@>"

4AB/0"C=(*=0>"

D/0E)/1"*;()=0>"

Figure 2: The same TAMER comparisons as in Figure 1,

except on cart pole over runs of 150 episodes. A single

Ĥ was used. End-run performance for cart pole is the

mean reward during the last 5 episodes.

ceed fully. This time, Q augmentation also meets the four
criteria for success, though it performs significantly worse
than action biasing and control sharing. Most interestingly,
reward shaping, at its best tested parameter, does not sig-
nificantly alter SARSA(λ)’s performance on either metric.

By choosing the best β parameter value for each tech-
nique, prior tamer+rl experiments sidestep the issue of
using an effective value without first testing a range of val-
ues. With experiments in two tasks, we can begin to address
this problem by examining each technique’s sensitivity to β
parameter changes and whether certain ranges of β are ef-
fective across different tasks. In Figure 3, we show the mean
performance of each combination technique as β varies. Ex-
amining the charts, we consider several criteria:

• performance at worst β value,
• range of beneficial β values,
• and existence of β values that are effective across tasks.

Evaluating the techniques on these three criteria creates a
consistent story that fits with our analysis of the techniques
at their best β parameter values (in Figures 1 and 2). The
two combination methods that only affect action selection—
action biasing and control sharing—emerge as the most ef-
fective techniques without a clear leader between them, and
they are followed by Q augmentation and then shaping re-
wards.

From an RL perspective, the weakness of reward shaping
may be counterintuitive. When researchers discuss combin-
ing human reward with RL in the literature, reward shaping
is predominantly suggested [19, 5], possibly because human
“reward” is seen as an analog to MDP reward that should be
used similarly. However, though reward shaping is generally
cast as a guide for exploration, it only affects exploration

indirectly through precariously tampering with the reward
signal. Action biasing and control sharing affect exploration
directly, without manipulating reward. Thus, they achieve
the stated goal of reward shaping while leaving the agent
to learn accurate values from its experience. Following this
line of thought, Q augmentation is identical to action bias-
ing during action selection, boosting each action’s Q-value
by the weighted prediction of human reward. In addition
to this direct guidance on exploration, Q augmentation also
changes the Q-value during the SARSA(λ) update’s calcula-
tion of temporal difference error. As discussed in Section 3.1,
Q augmentation is nearly equivalent to a form of reward
shaping called look-ahead advice [20]. In short, we observe
that the more a technique directly affects action selection,
the better it does, and the more it affects the update to
the Q function for each transition experience, the worse it
does. Q augmentation does both and performs between the
techniques that do only one.

Taken altogether, these experiments validate the conclu-
sions of past tamer+rl work and yield new, firmer con-
clusions about the relative effectiveness of each technique,
endorsing action biasing and control sharing over the two
other previously successful techniques. And more generally,
these results endorse manipulating action selection and leav-
ing the action-value model’s update unmolested.

4. SIMULTANEOUS TAMER+RL
To this point, similarly to all prior work on tamer, we

have assumed that the human training was finished prior
to any reinforcement learning. This “sequential” learning
is sometimes appropriate; for instance, when a difficult-to-
simulate reward function is tied to potentially costly learning
trials and the agent can train in simulation without signifi-
cant cost. However, in other scenarios this assumption can
be limiting. In this section, we investigate how to modify
sequential tamer+rl algorithms to allow a trainer to step
in as desired to alter the course of reinforcement learning
while it is in progress. We call this scenario and the algo-
rithms that address it “simultaneous” tamer+rl. Specifi-
cally, the agent should learn simultaneously from two feed-
back modalities—human reward and MDP reward—as one
fully integrated system. As in the sequential tamer+rl
approaches, we examine techniques that use only Ĥ from
tamer in the RL algorithm, otherwise leaving the two algo-
rithms as separate modules.

Since tamer empirically compares most favorably against
RL algorithms in early learning [7], we expect the greatest
gains to come from training near the beginning of learning.
However, training at any suboptimal point along the learn-
ing curve should benefit the agent, and we hope to do little
harm if the agent is already performing optimally and the
trainer’s feedback cannot help.

Some desirable characteristics for simultaneous learning
are:

1. steady behavior: When the agent’s behavior changes
frequently, giving quality feedback becomes more dif-
ficult.

2. responsiveness to the trainer: The agent should quickly
and obviously demonstrate that it is learning from hu-
man reward to maintain interactivity. Additionally,
quick responses aid a trainer’s own process of learning
how to teach effectively.

!"

#!!"

$!!!"

$#!!"
!"#"$%&%#'(%)(*+,*&-'./#'0'"12$%)&"+/)'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

!"

)!!"

*!!"

+!!"
!"#"$%&%#'(%)(*+,*&-'./#'#%7"#8'(9"5*)2'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

!"

#!!"

$!!!"

$#!!"

!"#"$%&%#'(%)(*+,*&-'./#':/)&#/;'(9"#*)2'

,-""."

,-"
/0120345"

%$#!"

%$&!"

%$$!"

%'!"

!()#" !(#" $")" #"
3/$4*)"+/)'5"#"$%&%#'6'

6,".$"

6,".)"

6,"
/0120345"

<
%"
)'
#%
7
"#
8'
5%

#'
%5

*(
/8

%'

!"

#!!"

$!!!"

$#!!"
!"#"$%&%#'(%)(*+,*&-'./#'":+/)'4*"(*)2'

Figure 3: Performance of each technique with each tested Ĥ over ranges of β parameters on two tasks: cart pole (CP)

and mountain car (MC). Note changes in y-axis scaling and that while β ≥ 1 control sharing always chooses by Ĥ.

3. trainer can give feedback to the MDP-only policy: If a
trainer comes in midway through learning, the trainer
should be able to capture the good aspects of what has
already been learned and criticize the negative aspects.

4. trainer’s influence is applied appropriately: Ĥ’s influ-
ence on the RL algorithm’s learning and/or action se-
lection should be larger in more recently trained areas
of the state-action space and smaller in areas trained
less recently.

Simultaneous learning—and its inclusion of RL-based ac-
tion selection during training—presents new challenges for
maintaining behavioral consistency. For instance, control
sharing abruptly shifts between two policies, which can cre-
ate erratic behavior with many different actions (both good
and bad) in a small time period, increasing the difficulty of
giving clear feedback. Also note that the second and third
characteristics are in opposition. Fully responding to the
trainer’s reward requires abandoning the policy learned by
MDP reward. Our module for determining human influ-
ence, described in the following section, strikes a balance by
ramping up the influence of Ĥ with increased human reward,
keeping the RL policy early on.

4.1 Determining the immediate influence of Ĥ
Simultaneous tamer+rl allows humans trainers to in-

sert themselves at any point of the learning process. Conse-
quently, Ĥ’s influence should increase in areas of the state-
action space with recent human training—but not in areas
that have not been targeted with feedback—and decrease in
the absence of training, leaving the set of optimal policies
unchanged in the limit.7 Thus, we must do more than an-
nealing a combination parameter, as is done in sequential
learning.

We determine Ĥ’s influence through a novel adaptation
of the eligibility traces often used in reinforcement learn-
ing [15]. We will refer to it as the eligibility module. Watch-
ing the demonstration of simultaneous tamer+rl at http:
//cs.utexas.edu/~bradknox/simultamerrl may be helpful
prior to reading the details below. The general idea of this
eligibility module is that we maintain an eligibility trace
for each state-action feature8, normalized between 0 and 1,

7Our approach is designed to have the qualitative characteristics
we see as necessary for simultaneous learning; we doubt any no-
tions of theoretical “correctness” can be assessed without brittle
assumptions about the human
8The feature vector is extracted from the current state-action
pair. We advise using features that generalize across state space
(e.g., Gaussian RBFs). The state-action features need not match

those of either Ĥ or Q.

that represents the recency of training while that feature
was active (i.e., non-zero). Then, the eligibility traces and
a time step’s feature vector together calculate a measure of
the recency of training in similar feature vectors, as shown
in Figure 4. That measure, multiplied by a constant scaling
parameter cs, is used as the β term introduced in Section 3.1.
The implementation follows.

Let e be the vector of traces and fn be the feature vec-
tor normalized such that each element of fn exists within
the range [0, 1]. The eligibility module is designed to make
β a function of e, fn, and cs with range [0, cs]. A guid-
ing design constraint is that when e = 1 (i.e., each element
of e is the maximum allowed), the normalized dot prod-
uct of e and any fn, denoted n(e·fn), should equal 1 (since

it weights the influence of Ĥ). To achieve this, we make
n(e·fn) = e · (fn / ‖ fn ‖1) = (e·fn) / (‖ fn ‖1) = β / cs.
Thus, at any time step with normalized features fn, the in-
fluence of Ĥ is calculated as β = cs(e·fn)/(‖ fn ‖1). This
formula has a desirable mathematical characteristic; for a
given e, β is higher when relatively large feature values cor-
respond to large trace values—indicating the current state-
action pair is similar to the recently trained state-action
pairs—and β is smaller when large feature values correspond
to small trace values.

Using accumulating traces capped at 1, the trace is up-
dated with fn during training: ei := min(1, ei + (fn,i ∗ a)),
where ei and fn,i are the ith elements of e and fn, re-
spectively, and a is a constant factor that moderates the
speed of accumulation. During time steps without training,
e := decayFactor ∗ e.

Though this eligibility module is inspired by eligibility
traces used in TD(λ), it differs from eligibility traces in sev-
eral key ways. This module maintains a vector of traces
similarly to how TD(λ)’s eligibility traces are maintained.
However, unlike eligibility traces, it only increases the traces
during training. In addition, rather using the traces to deter-
mine the extent that each feature’s corresponding Q-value
parameter is updated, we use them to output a measure
that roughly indicates how recently nearby states have been
trained.

4.2 Simultaneous learning experiments
Our experiments test the effectiveness of simultaneous

tamer+rl when training starts either at the beginning of
learning or after some learning has occurred. We again use
mountain car and cart pole, and we focus on the two best-
performing combination techniques, action biasing and con-
trol sharing.

The eligibility module’s features are Gaussian RBFs that

!"

#!!"

$!!!"

$#!!"
!"#"$%&%#'(%)(*+,*&-'./#'0'"12$%)&"+/)'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

!"

)!!"

*!!"

+!!"
!"#"$%&%#'(%)(*+,*&-'./#'#%7"#8'(9"5*)2'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

%$#!"

%$&!"

%$$!"

%'!"

!(!!$" !($" $!" $!!!"
3/$4*)"+/)'5"#"$%&%#'6'

!"

#!!"

$!!!"

$#!!"

!"#"$%&%#'(%)(*+,*&-'./#':/)&#/;'(9"#*)2'

,-""."

,-"
/0120345"

%$#!"

%$&!"

%$$!"

%'!"

!()#" !(#" $")" #"
3/$4*)"+/)'5"#"$%&%#'6'

6,".$"

6,".)"

6,"
/0120345"

<
%"
)'
#%
7
"#
8'
5%

#'
%5

*(
/8

%'

!"

#!!"

$!!!"

$#!!"
!"#"$%&%#'(%)(*+,*&-'./#'":+/)'4*"(*)2'

Figure 3: Performance of each technique with each tested Ĥ over a range of β parameters on two tasks: Cart Pole (CP) and Mountain Car
(MC). Note changes in y-axis scaling.

unchanged in the limit. Thus, we must do more than an-
nealing a combination parameter, as is done in sequential
learning.

We determine Ĥ’s influence through a novel adaptation
of the eligibility traces often used in reinforcement learn-
ing (Sutton and Barto, 1998). We will refer to it as the eli-
gibility module. The general idea of this eligibility module
is that we maintain an eligibility trace for each state-action
feature7, normalized between 0 and 1, that represents the
recency of training while that feature was active (i.e., non-
zero). Then, the eligibility traces and a time step’s feature
vector together calculate a measure of the recency of train-
ing in similar feature vectors. That measure, multiplied by
a constant scaling parameter cs, is used as the β term intro-
duced in Section 3.1. The implementation follows.

Let −→e be the vector of traces and −→
fn be the feature vec-

tor normalized such that each element of −→
fn exists within

the range [0, 1]. The eligibility module is designed to make
β a function of −→e , −→fn, and cs with range [0, cs]. A guiding
design constraint is that when −→e is a unit vector, the normal-
ized dot product of −→e and any −→

fn, denoted n(−→e ·−→fn), should
equal 1 (since it weights the influence of Ĥ). To achieve this,
we make n(−→e ·−→fn) = −→e · (

−→
fn / � −→

fn �1) = (−→e ·−→fn) /

(� −→
fn �1) = β / cs. Thus, at any time step with nor-

malized features −→
fn, the influence of Ĥ is calculated as

β = cs(−→e ·−→fn)/(� −→
fn �1). This formula has a desirable

mathematical characteristic; for a given −→e , β is higher when
relatively large feature values correspond to large trace val-
ues — indicating the current state-action pair is similar to the
recently trained state-action pairs — and β is smaller when
large feature values correspond to small trace values.

Using accumulating traces capped at 1, the trace is up-
dated with −→

fn during training: ei := min(1, ei +(fn,i ∗a)),
where ei and fn,i are the ith elements of −→e and −→

fn, re-
spectively, and a is a constant factor that moderates the
speed of accumulation. During time steps without training,−→e := decayFactor ∗ −→e .

4.2 Simultaneous learning experiments
Our experiments test the effectiveness of simultaneous
TAMER+RL when training starts either at the beginning of

7The feature vector is extracted from the current state-action
pair. We advise using features that generalize across state space
(e.g., Gaussian RBFs). The state-action features need not match
those of either Ĥ or Q.

learning or after some learning has occurred. We again use
Mountain Car and Cart Pole, and we focus on the two best-
performing combination techniques, action biasing and con-
trol sharing. For the eligibility module, the scaling parame-
ter cs for Mountain Car and Cart Pole is respectively 100 and
200 for action biasing and 2 and 1 for control sharing. These
values were chosen to be on the upper end of each method’s
effective β values in Figure 3. The accumulation factor a
for eligibility is 0.2. Training in Mountain Car occurs either
for 16 episodes, starting at episode 1, or for 12 episodes af-
ter 20 episodes of SARSA(λ)-only learning. In Cart Pole,
training at start occurs for 12 episodes, and training after 25
episodes of SARSA(λ)-only learning lasts 8 episodes. The
start times are chosen to represent the beginning of learning
and also a point at which the SARSA(λ) agent has learned
a policy that is much improved but still quite flawed.8 The
number of episodes corresponds to an informal assessment
of how many episodes are needed to satisfactorily train the
agent; training at later start times progresses more quickly.
The trainer has a button that starts and stops training during
the designated training episodes, letting the human observe
without the agent updating Ĥ or the eligibility module.

An added experimental challenge is that the training is in-
extricably bound to one specific run, whereas sequential ex-
periments can reuse the same training session for any num-
ber of parameters and combination techniques, limiting the
depth of analysis that can be done for a set number of trainer-
hours. Mountain Car and Cart Pole training sessions typi-
cally took around 8 minutes and 15 minutes each, respec-
tively. Consequently, each experimental condition was lim-
ited to 3 runs of training for a total of 12 runs on each task.

4.3 Simultaneous learning results and discussion
The results of our simultaneous TAMER+RL experiments
are shown in Figure 4. Though the sample size is too
small to show statistical significance, there is a clear pattern
of both action biasing and control sharing outperforming
SARSA(λ). The condition that is closest to SARSA(λ) in
terms of standard error, control sharing on Cart Pole where
training begins after 25 episodes, still receives almost twice
the reward of SARSA(λ). We also observe that training at
the beginning of learning is more effective than training after
some autonomous learning, as we expected. Seeing this, one

8Note that sequential TAMER+RL differs from simultaneous
TAMER+RL where training occurs at the start because the sequen-
tial algorithm begins with a pre-trained Ĥ . The training episodes
are not counted in sequential TAMER+RL experiments.

−→e
−→
fn

For

For

and

and

0.9

0.05

β := cs
−→e · (

−→
fn / � −→

fn �1)

Figure 4: A simple graphic illustration of the calculation

of e · (fn / ‖ fn ‖1) = (e·fn) / (‖ fn ‖1), which is near

0 when the currently “active” features have not been

active during recent training and is near 1 when these

features have been. Here, consider fn to be a 4 × 4 set

of Gaussian radial basis functions that form a grid over

a 2-dimensional state space. (For simplicity, the action

is not considered here.) In the top scenario, the state is

somewhere in the top left square and the active features

overlap heavily with recently trained state. Thus, the

output is near one, possibly 0.9. In the bottom scenario,

the state is in the bottom-right square where there is

less overlap, resulting in a lower output such as 0.05.

are extracted similarly to the SARSA(λ) features. Also, β’s
application in control sharing cannot be action-specific, so
the eligibility module’s features for control sharing are a sin-
gle grid over the state space (not one grid per action as for
SARSA(λ) and for action biasing’s eligibility module). In
the eligibility module, the scaling parameter cs for mountain
car and cart pole is respectively 100 and 200 for action bias-
ing and 2 and 1 for control sharing. These values were chosen
to be near the upper end of each combination method’s ef-
fective β values in Figure 3. The accumulation factor a for
eligibility is 0.2. Training in mountain car occurs either for
16 episodes, starting at episode 1, or for 12 episodes after
20 episodes of SARSA(λ)-only learning. In cart pole, train-
ing at start occurs for 12 episodes, and training after 25
episodes of SARSA(λ)-only learning lasts 8 episodes. The
start times are chosen to represent the beginning of learning
and also a point at which the SARSA(λ) agent has learned
a policy that is much improved but still quite flawed.9 The
number of episodes corresponds to an informal assessment
of how many episodes are needed to satisfactorily train the
agent; training at later start times progresses more quickly.
The trainer, one of the authors, has a button that starts
and stops training during the designated training episodes,
letting the human observe without the agent updating Ĥ
or increasing any traces within the eligibility module. At
all times, whether training is occurring or not, the agent
continues to learn a Q-function.

An added experimental challenge is that the training is
inextricably bound to one specific run, whereas sequential

9Note that sequential tamer+rl differs from simultaneous
tamer+rl where training occurs at the start because the sequen-

tial algorithm begins with a pre-trained Ĥ. The training episodes
are not counted in sequential tamer+rl experiments.

!"#$%

!""&%

!""$%

!"$&%

!"$$%

!'&%

!'$%

"% #% (%)% &% *% +% ,% '% "$%

!
"#
$%
&"
'
#&
(%
)"

&%"
)*
+,
("

%

-./")*+,("%*$0"&1#2+%

3422/&4$%+*5420#$",4+%67!89:9;%,$%!,4$0#*$%<#&%
-./0.123%

45678%
9:.0:8;<%$%
45678%
9:.0:8;<%#$%
=78>/7?%
0@./:8;<%$%
=78>/7?%
0@./:8;<%#$%

!",$%

!"*$%

!")$%

!"#$%

!"$$%

"% #% (%)% &% *% +% ,% '% "$% ""% "#% "(% ")% "&%!
"#
$%
&"
'
#&
(%
)"

&%"
)*
+,
("

%

=/")*+,("%*$0"&1#2+%

8#&2>%&4$%+*5420#$",4+%67!89:9;%,$%!,4$0#*$%<#&%
-./0.123%

45678%
9:.0:8;<%$%
45678%
9:.0:8;<%#$%
=78>/7?%
0@./:8;<%$%
=78>/7?%
0@./:8;<%#$%

!""&%

!""$%

!"$&%

!"$$%

!'&%

$% #$%!
"#
$%
&"
'
#&
(%
?@
5
"%
0,
%A
,#

2B%
)"

&%"
)*
+,
("

%

8)*+,("+%C"D,&"%0&#*$*$A%

E*5420#$",4+%67!89:9;%,$%!,4$0#*$%<#&%

45678%
9:.0:8;%

=78>/7?%
0@./:8;%

-./0.123%
78?A%

Figure 5: Simultaneous TAMER+RL results on moun-

tain car. Unlike sequential TAMER+RL, performance

during training episodes is counted. In the top graph,

mean reward is calculated over runs of 500 episodes in

mountain car and 150 episodes in cart pole. Standard

error is shown. In the lower two plots, learning curves

are shown at two different scales: the top plot shows

mean performance in the earlier episodes of the run and

the bottom plot shows mean performance over the en-

tire run. The number in each legend entry indicates the

episode number at which training started. A vertical

gray bar is placed at the point where the later training

period started, the 20th episode.

experiments can reuse the same training session for any
number of parameters and combination techniques, limit-
ing the depth of analysis that can be done for a set number
of trainer-hours. Mountain car and cart pole training ses-
sions typically took around 8 minutes and 15 minutes each,
respectively. Consequently, each experimental condition was
limited to 3 runs of training for a total of 12 runs on each
task.

4.3 Simultaneous learning results and discus-
sion

The results of our simultaneous tamer+rl experiments
are shown in Figures 5 and 6. Though the sample size is too
small to show statistical significance, there is a clear pattern
of both action biasing and control sharing outperforming
SARSA(λ). The condition that is closest to SARSA(λ) in
terms of standard error, control sharing on cart pole where

!"

!#"

!##"

!###"

!####"

!" $" %" &" '" (")" *" +" !#" !!" !$" !%" !&" !'"

!
"#
$%
&"
'
#&
"%
("

&%"
()
%

*+,"(-./0"%-$1"&2#3.%

4533,&5$%.-6531#$"/5.%78!9:;:<%/$%=#&1%>/3"%
,-./-012"

34567"
89-/97:;"#"
34567"
89-/97:;"$'"
<67=.6>"
/?-.97:;"#"
<67=.6>"
/?-.97:;"$'"

!"

!#"

!##"

!###"

!####"

!" $" %" &" '" (")" *" +" !#" !!" !$" !%" !&" !'"

!
"#
$%
&"
'
#&
0%
("

&%"
()
%

?,"(-./0"%-$1"&2#3.%

9#&3@%&5$%.-6531#$"/5.%78!9:;:<%/$%=#&1%>/3"%
,-./-012"

34567"
89-/97:;"#"
34567"
89-/97:;"$'"
<67=.6>"
/?-.97:;"#"
<67=.6>"
/?-.97:;"$'"

#"

!###"

$###"

%###"

&###"

#" $'"!
"#
$%
&"
'
#&
0%
AB
6
"%
5(

&-C
D1
E%

("
&%"

(-
./
0"

%

9(-./0".%F"G/&"%1&#-$-$C%

H-6531#$"/5.%78!9:;:<%/$%=#&1%>/3"%

34567"
89-/97:"

<67=.6>"
/?-.97:"

,-./-012"
67>@"

Figure 6: Learning curves for simultaneous

TAMER+RL on cart pole, following the same for-

mat as Figure 5.

training begins after 25 episodes, still receives almost twice
the reward of SARSA(λ). We also observe that training at
the beginning of learning is more effective—in terms of mean
reward during a run—than training after some MDP-only
learning, as we expected.

Seeing that training is most effective at the start of learn-
ing, one might ask whether the n episodes of MDP-only
learning before training is helping or whether the prior learn-
ing should be abandoned to start from scratch. We can
quantitatively evaluate this question. Starting from scratch
after n episodes is the same as simply training from the
start and stopping n episodes early. So if we ignore the
first n episodes of the later-training group and the last n
episodes of the training-at-start group, the comparison of
the groups’ mean reward addresses this question. In other
words, for a task with run size m, we examine two conditions
per combination technique: (1) from the trajectories where
training began at the first episode, the performance of the
the agent from episodes (1, 2, ...,m−n) is averaged, and (2)
from the trajectories where training began at episode n, the
performance of the agent during episodes (n+1, n+2, ...,m)
is averaged. Thus, each condition is examined over m − n
episodes, and training begins at the first episode of exami-
nation. The main difference between the conditions is that
the later-training group (i.e., starting at n) starts training
after already learning from MDP reward, so we can reason-
ably conclude that performance differences arise from the
presence or lack of MDP-only learning prior to training.

Of four such comparisons (2 techniques x 2 tasks, shown in
Figure 7), the later-training group outperforms three times
and is roughly equal once, suggesting that the prior learning
does indeed help.10

For clarity, we note that we do not aim to quantitatively
compare sequential and simultaneous tamer+rl. Our re-
sults in Figure 7 conclusively show the benefit of training
after some MDP-only learning, when it is too late to learn
sequentially. Therefore, simultaneous learning provides ben-
efits that sequential learning cannot. And when training
without MDP reward is relatively costless, sequential learn-
ing allows an agent to be thoroughly taught before begin-
ning more costly learning with MDP reward; thus, sequential
learning likewise provides benefits that simultaneous learn-
ing cannot. Neither learning scenario is strictly better than
the other.

These results, shown in Figures 5, 6, and 7, demonstrate
the potential effectiveness of simultaneous tamer+rl with
the eligibility module.

5. RELATED WORK
In this section, we situate our work within prior research

on naturally transferring knowledge to a reinforcement learn-
ing agent. We focus on work not already mentioned in Sec-
tion 3.1 or in the previous papers on tamer [7, 8].

Sridharan [13] also extended the original tamer+rl work [8],
showing that action biasing improves an RL agent’s learn-
ing in the domain of 3v2 keepaway. In this work, he tests a
“bootstrapping” approach for determining β that sets it by a
metric of agreement between the Q-function policy and the
Ĥ-policy, where more agreement yields a larger β.

In the only other algorithm for an agent learning simul-
taneously from both human and MDP reward [19], Thomaz
and Breazeal interfaced a human trainer with a table-based
Q-learning agent in a virtual kitchen environment. Their
agent seeks to maximize its discounted total reward, which
for any time step is the sum of human reward and MDP
reward. Their approach is a form of reward shaping, differ-
ing in that Thomaz and Breazeal directly apply the human
reward value to the current reward (instead of modeling
human reward and using the output of the model as sup-
plemental reward). Tenorio-Gonzalez et al. [18] expanded
this learning algorithm, additionally using human demon-
strations. In their algorithm—tested on a trainer and a vir-
tual robot—the RL agent learns from (s, a, r, s′) experiences
created during demonstrations.

Judah et al. consider a learning scenario that alternates
between “practice”, where actual world experience is gath-
ered, and an offline labeling of actions as good or bad by a
human critic [6]. Using an elegant probabilistic technique
with a few assumptions, the human criticism is input to a
loss function that lessens the expected value of candidate
policies while also automatically determining the level of
influence given to the criticism. From some mixed results
and comments from frustrated subjects, they predicted that
redesigning their system to be more interactive and to let

10The only other known difference between conditions is that
agents with prior learning were given less episodes of training than
those that were trained, as was described earlier in this section.
Despite the apparent disadvantage of fewer training episodes,
these agents still outperform those without prior learning in the
subset of episodes examined here.

!"#$%

!"#"%

!"##%

!&&%

!&'%

!&(%

!&)%

*+,-.%/0120.3% 4-.56-7%28160.3%!
"#
$%
&"
'
#&
(%
)*
+
"%
,-
%.
-#

/0%
1"

&%"
12
3-
("

4%5
67
%"
12
3-
("

3%

82,9%#$(%'2,9-:,%;<=-$/>%/"#&2.%?"@-&"%,2.%
2$%!-:$,#2$%A#&%

.-%9:!-.7;%
<=2%/<>-6<%
5610.0.3%

$#%
?.+-?.5<@%
9:!-.7;%<=2%
/<>-6<%
5610.0.3% !"

#!!"
$!!!"
$#!!"
%!!!"
%#!!"
&!!!"
&#!!"
'!!!"
'#!!"

()*+,"-./0.,1" 2+,34+5"06/4.,1"!
"#
$%
&"
'
#&
(%
)*
+
"%
,-

&./
01
2%

-"
&%"

-.
34
("

5%6
78
%"
-.
34
("

3%

9.10%#$(%'.104,1%:;<4$=>%="#&$.$/%?"@4&"%1&#.$.$/%
.$%A#&1%B4="%

,+"789+,5:"
;<0"-;=+4;"
34/.,.,1"

%#"
>,)+>,3;?"
789+,5:";<0"
-;=+4;"
34/.,.,1"

Figure 7: A comparison of simultaneous TAMER+RL performance with and without MDP-only learning before

training. The lighter blue bars indicate the mean performance of agents that received 20 or 25 episodes of MDP-only

learning before the human began teaching. The episodes of prior learning are not counted towards mean reward. The

agents corresponding to darker blue bars had no such learning prior to training. Standard error is shown.

the human train periodically—characteristics of simultane-
ous tamer+rl—would improve performance.

Learning from demonstration (LfD) has also been used to
improve reinforcement learning, using preprogrammed poli-
cies [11] or humans [17, 12] to provide demonstrations for an
agent that observes and learns. These approaches are similar
to control sharing. An advantage, though, of human reward
over demonstration is that human reward permits learning
the relative values of actions, allowing techniques like action
biasing to gently push the behavior of the RL agent towards
the policy endorsed by Ĥ, whereas pure demonstration is all
or nothing—either the demonstrator or the learning agent
chooses the action. Additionally, trainers can reward state-
action pairs visited by the agent’s policy, whereas demon-
strations might not ever visit areas of the state space that
the LfD algorithm visits.

Other recent work has employed non-expert humans to
aid RL algorithms through guidance on feature selection [2],
identification and demonstration of high-level actions [14],
and giving natural language advice [9].

6. CONCLUSION
Prior work on tamer+rl is limited by having only been

tested on a single domain and by simply taking the best β
combination parameter from testing. Further, past tamer+
rl algorithms were designed for sequential learning and were
unsuitable for simultaneously learning from the trainer and
the MDP reward signal. This paper addresses these limita-
tions, giving a clear endorsement of using Ĥ to affect action
selection and, for the first time, enabling a human trainer to
interactively provide feedback at any time during the learn-
ing process, a critical improvement towards the practicality
and widespread applicability of the tamer framework.

Acknowledgments
This work has taken place in the Learning Agents Research Group
(LARG) at The University of Texas at Austin. LARG research
is supported in part by grants from the NSF (IIS-0917122), ONR
(N00014-09-1-0658), and the FHWA (DTFH61-07-H-00030). W.
Bradley Knox has been supported by an NSF Graduate Research
Fellowship.

7. REFERENCES
[1] R. Bianchi, C. Ribeiro, and A. Costa. Heuristically

Accelerated Q–Learning: a new approach to speed up
Reinforcement Learning. Advances in AI – SBIA, 2004.

[2] L. Cobo, P. Zang, C. Isbell Jr, and A. Thomaz. Automatic
state abstraction from demonstration. In IJCAI, 2011.

[3] M. Dorigo and M. Colombetti. Robot shaping: Developing
situated agents through learning. Artificial Intelligence,
1994.

[4] F. Fernández and M. Veloso. Probabilistic policy reuse in
a reinforcement learning agent. AAMAS, 2006.

[5] C. Isbell, M. Kearns, S. Singh, C. Shelton, P. Stone, and
D. Kormann. Cobot in LambdaMOO: An Adaptive Social
Statistics Agent. AAMAS, 2006.

[6] K. Judah, S. Roy, A. Fern, and T. Dietterich.
Reinforcement Learning Via Practice and Critique Advice.
AAAI, 2010.

[7] W. Knox and P. Stone. Interactively shaping agents via
human reinforcement: The TAMER framework. K-CAP,
2009.

[8] W. Knox and P. Stone. Combining manual feedback with
subsequent MDP reward signals for reinforcement
learning. AAMAS, 2010.

[9] G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik.
Guiding a reinforcement learner with natural language
advice: Initial results in RoboCup soccer. In The
AAAI-2004 Workshop on Supervisory Control of
Learning and Adaptive Systems, July 2004.

[10] M. Mataric. Reward functions for accelerated learning.
ICML, 1994.

[11] B. Price and C. Boutilier. Accelerating reinforcement
learning through implicit imitation. JAIR, 19:569–629,
2003.

[12] W. Smart and L. Kaelbling. Practical reinforcement
learning in continuous spaces. ICML, 2000.

[13] M. Sridharan. Augmented reinforcement learning for
interaction with non-expert humans in agent domains. In
Proceedings of IEEE International Conference on
Machine Learning Applications, 2011.

[14] K. Subramanian, C. Isbell, and A. Thomaz. Learning
options through human interaction. In 2011 IJCAI
Workshop on Agents Learning Interactively from Human
Teachers (ALIHT), 2011.

[15] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[16] B. Tanner and A. White. RL-Glue: Language-independent
software for reinforcement-learning experiments. JMLR,
10, 2009.

[17] M. Taylor, H. Suay, and S. Chernova. Integrating
reinforcement learning with human demonstrations of
varying ability. AAMAS, 2011.

[18] A. Tenorio-Gonzalez, E. Morales, and
L. Villaseñor-Pineda. Dynamic reward shaping: training a
robot by voice. Advances in Artificial
Intelligence–IBERAMIA 2010, pages 483–492, 2010.

[19] A. Thomaz and C. Breazeal. Reinforcement Learning with
Human Teachers: Evidence of Feedback and Guidance
with Implications for Learning Performance. AAAI, 2006.

[20] E. Wiewiora, G. Cottrell, and C. Elkan. Principled
methods for advising reinforcement learning agents.
ICML, 2003.

