Ad Hoc Teamwork for Leading a Flock

Katie Genter1, Noa Agmon2, and Peter Stone1

1University of Texas at Austin \quad 2Bar Ilan University
Austin, TX 78712 USA \quad Ramat Gan, 52900, Israel

May 10, 2013
Outline

1. Introduction
2. Problem Definition
3. Stationary Agents Case
4. Non-stationary Ad Hoc Agents Case
5. Summary
Ad Hoc Teamwork

Always:
- Only in control of a single agent or subset of agents
- Shared goals
- No pre-coordination

Sometimes:
- Unknown teammates
- No explicit communication
Flocking

- Emergent behavior found in nature
 - Birds, fish, insects
- Animals follow a simple local behavior rule
- Group behavior is cohesive
Example — Leading Teammates in Ad Hoc Settings
Example — Leading Teammates in Ad Hoc Settings
Example — Leading Teammates in Ad Hoc Settings

Add agents that:
- Lead the team to adopt desired behaviors
- Influence team to maximize team utility
Flocking + Ad Hoc Teamwork

Why is this an ad hoc teamwork problem?

- No explicit control of flocking agents
- All agents have shared goals (maximize team utility)
- On-the-fly coordination
In previous work (Jadbabaie et al. 2003, Su et al. 2009), the flock eventually converges to a single controllable agent’s heading.
In previous work (Jadbabaie et al. 2003, Su et al. 2009), the flock eventually converges to a single controllable agent’s heading.

Research Problem:
Is it possible for one or more agents to lead the team to a desired orientation, and if so - what is the most efficient way of doing so?
Outline

1. Introduction

2. Problem Definition

3. Stationary Agents Case

4. Non-stationary Ad Hoc Agents Case

5. Summary
Problem Definition

Each agent has:
- Constant velocity
- 2D Position
- Global orientation
Each flocking agent reacts only to agents within a certain *neighborhood* around itself.

- Characterized by a *visibility cone*
Problem Definition - Orientation Update

A flocking agent’s orientation at the next time step is set to be the average global orientation of all agents currently within the agent’s visibility cone.

Katie Genter, Noa Agmon, and Peter Stone
Ad Hoc Teamwork for Leading a Flock
Problem Definition
Outline

1. Introduction
2. Problem Definition
3. Stationary Agents Case
4. Non-stationary Ad Hoc Agents Case
5. Summary
As the flocking agents are influenced to turn towards a target orientation, different ad hoc agents become available to influence the flocking agents.
Stationary Agents Theorems

It suffices to consider only algorithms that choose at each time step just one orientation for all of the ad hoc agents to adopt.
In previous work (Jadbabaie et al. 2003, Su et al. 2009):

- The flock eventually converges to a single controllable agent’s heading
In previous work (Jadbabaie et al. 2003, Su et al. 2009):

- The flock eventually converges to a single controllable agent’s heading

In this work:

- We prove a tight bound on the number of time steps needed for the ad hoc agents to influence the flocking agents to reach θ^* (when θ^* is reachable).
Forward Search Planning Method

Flocking Agent
Ad Hoc Agent

Only Cases to Consider

Ad Hoc Teamwork for Leading a Flock
Stationary Agents Video

Katie Genter, Noa Agmon, and Peter Stone

Ad Hoc Teamwork for Leading a Flock
1. Introduction
2. Problem Definition
3. Stationary Agents Case
4. Non-stationary Ad Hoc Agents Case
5. Summary
Non-stationary Ad Hoc Agents

Heuristic behaviors for ad hoc agents that are *not* within the visibility cone of any flocking agents.

- Towards Flocking Agent
- Towards Visibility Cone

Katie Genter, Noa Agmon, and Peter Stone
Non-stationary Agents Video

Katie Genter, Noa Agmon, and Peter Stone
Ad Hoc Teamwork for Leading a Flock
Experimental Methodology

- Agents randomly placed in a 950 cell by 500 cell environment
- Ad hoc agents have velocity of 50 cells/step
- Each experimental configuration used the same randomization seed
Empirical Results

Is there a significant difference in the number of steps required for the flocking agents to orient to θ^* with each heuristic behavior?

![Graph showing the difference in average steps required between Direct and Ad Hoc Methods for 1-2 Flocking w/ 1-4 Ad Hoc, 1-4 Flocking w/ 1-2 Ad Hoc, and 1-4 Flocking w/ 1-4 Ad Hoc. The graph compares the difference in average steps required towards flocking agent and towards visibility cone.](chart.png)
Related Work — Ad Hoc Teamwork

- Jones et al. 2006
 - Empirically studied dynamically formed heterogeneous multi-agent teams
 - All agents know they are working as a team

- Agmon and Stone 2012, Stone et al. 2010
 - Leading teammates in ad hoc settings from a game theoretic approach

- Stone et al. 2010
 - Introduced the ad hoc teamwork problem
Related Work — Flocking

- Han et al. 2006
 - Studied how one agent can influence the direction in which a flock of agents is moving
 - Utilized one ad hoc agent with unlimited, non-constant velocity

- Reynolds 1987, Vicsek 1995
 - Concerned with simulating flock behavior
 - Not concerned with adding controllable agents to the flock

 - Used controllable agents to influence the flock
 - Only concerned with making the flock converge to some orientation eventually
Future Work

- More efficient search (ARMS ’13)
- General case of non-stationary agents
- Optimal behavior for non-stationary ad hoc agents
Research Problem:
Is it possible for one or more agents to lead the team to a desired orientation, and if so - what is the most efficient way of doing so?