Determining Placements of Influencing Agents in a Flock

Katie Genter, Shun Zhang and Peter Stone

The University of Texas at Austin
{katie,menie482,pstone}@cs.utexas.edu

May 6, 2015
Background

- Artificial intelligence
 - Multi-agent systems
 - Teamwork
 - Ad hoc teamwork
 - Swarm behavior
 - Flocking
Ad Hoc Teamwork

- Only in control of a single agent or subset of agents
- Shared goals
- No pre-coordination
- No explicit communication
Flocking

- Emergent behavior found in nature
 - Birds, fish, insects

- Animals follow a simple local behavior rule

- Group behavior is cohesive
Example — Leading Teammates in Ad Hoc Settings
Example — Leading Teammates in Ad Hoc Settings
Differences from Related Work

- Our work considers how to:
 - Influence the flock to quickly adopt a particular behavior by introducing agents into the flock
 - Control agents by considering and accounting for how the other agents will react
Outline

1. Introduction
2. Problem Definition
3. Determining Desired Positions
4. Results
5. Summary
Problem Definition

Each agent has:
- Constant, non-zero velocity
- 2D Position
- Global heading
Each flocking agent reacts only to agents within a certain *neighborhood* around itself.

- Characterized by a radius in this work
A flocking agent’s heading at the next time step is set to be the *average global heading* of all agents currently within the agent’s neighborhood.

- Agent can turn any amount instantaneously (not fully realistic)
Previously we considered on how the influencing agents should behave in order to best influence the flock (Genter and Stone, ANTS 2014).
Research Question

Previously we considered on how the influencing agents should behave in order to best influence the flock (Genter and Stone, ANTS 2014).

Research Problem:
Where should influencing agents be located within a flock to maximize their influence on the flock?
Outline

1. Introduction
2. Problem Definition
3. Determining Desired Positions
4. Results
5. Summary
Determining Desired Positions

Two cases addressed in paper:

- Initial position “dropped into the flock”

- Desired position “entering from outside the flock”
Determining Desired Positions

- Two cases addressed in paper:
 - Initial position “dropped into the flock”
 - Desired position “entering from outside the flock”

- Talk focuses on *initial* position
Determining Desired Positions

- Random Placement
- Grid Placement
- Border Approach
- Graph Approach
Determining Desired Positions

- Random Placement
 - Randomly place influencing agents within the dimensions of the flock.

- Grid Placement

- Border Approach

- Graph Approach
Grid Placement

Place **influencing agents** at predefined, well-spaced, gridded positions throughout flock.
Border Approach

Place **influencing agents** as evenly as possible around the space covered by the flocking agents.
Consider many possible sets of positions in which the **influencing agents** could be placed, and then evaluate how well each of these sets connects the flocking agents with the influencing agents.
Graph Approach - Steps (1)

- Create the graph of flocking agents
- Consider possible sets of influencing agent positions
 - Mid-points between flocking agents
 - Only for agents within 2 neighborhood radii
- Near flocking agents
Graph Approach - Steps (2)

- Evaluate each set of influencing agent positions
 - minimize the number of flocking agents not *connected* to an influencing agent
 - maximize the number of *connections* between flocking agents and influencing agents
 - maximize the number of *direct connections* between flocking agents and influencing agents
Graph Approach - Steps (2)

- Evaluate each set of influencing agent positions
 - minimize the number of flocking agents not connected to an influencing agent
 - maximize the number of connections between flocking agents and influencing agents
 - maximize the number of direct connections between flocking agents and influencing agents
Graph Approach - Steps (2)

- Evaluate each set of influencing agent positions
 - minimize the number of flocking agents not connected to an influencing agent
 - maximize the number of connections between flocking agents and influencing agents
 - maximize the number of direct connections between flocking agents and influencing agents
Random Placement
Grid Placement
Border Placement
Graph Placement
Possible Metrics

- steps for the flock to converge
- the number of trials in which any flocking agents were lost
- the average number of flocking agents lost
- the average distance of the flocking agents from the center of flock at convergence
Possible Metrics

- steps for the flock to converge
- the number of trials in which any flocking agents were lost
- the average number of flocking agents lost
- the average distance of the flocking agents from the center of flock at convergence
Experimental Results

- Random
- Grid
- Border
- Graph

Avg Num Flocking Agents Lost

bar graph showing the average number of flocking agents lost for different scenarios.
Experimental Results

The average number of flocking agents lost when the flock contained 10 agents. These results are obtained over 100 runs. Error bars show sample standard deviation.
Experimental Results

![Bar Chart]

- Random
- Grid
- Border
- Graph

Num Trials with >0 Flocking Agents Lost

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Experimental Results

The number of trials (out of 100) in which any flocking agent was lost when the flock contained 10 agents.
Ongoing Research

- More efficient graph-based placement approach
 - Current placement selection is $O(n^3 \binom{m^2 + m}{k})$
 - n is flock size
 - m is the number of flocking agents
 - k is the number of influencing agents
- Automatically determine ideal influencing agents formation
- Utilizing multiple stations from which agents can emerge to join the flock
Research Problem:
Where should influencing agents be located within a flock to maximize their influence on the flock?
Related Work — Ad Hoc Teamwork

- Stone et al. 2010
 - Introduced the ad hoc teamwork problem

- Agmon and Stone 2012, Stone et al. 2010
 - Leading teammates in ad hoc settings from a game theoretic approach

- Jones et al. 2006
 - Empirically studied dynamically formed heterogeneous multi-agent teams
 - All agents know they are working as a team
Related Work — Flocking (1)

- Reynolds 1987, Vicsek et al. 1995
 - Concerned with simulating flock behavior
 - Not concerned with adding controllable agents to the flock
- Turgut et al. 2008
 - Considered the behavioral effects of providing different information to the flock
- Jadabaie et al. 2003, Su et al. 2009, Celikkanat and Sahin 2010
 - Used controllable agents to influence the flock
 - Only concerned with making the flock converge to some heading eventually
Related Work — Flocking (2)

- Couzin et al. 2005
 - Considered how grouping animals make informed unanimous decisions

- Cucker and Huepe 2008, Ferrante et al. 2010, Yu et al. 2010
 - Used informed agents to influence flock
 - Behave in a fixed way that is predetermined on based on type

- Han et al. 2006
 - Studied how one agent can influence the direction in which a flock of agents is moving
 - Utilized one influencing agent with unlimited, non-constant velocity