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Introduction

* Curriculawidespreadinhumanlearning
e Education, sports, games...

 Whycurricula?
* Target task too hard to make progress
* Fasterto learn and combine skills from
easier tasks

A good curriculum:
 Breaks down the task

* Letsthe agentlearnonits own

* Adjuststothe progress of the agent
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Example: Quick Chess

* Quickly learn the
fundamentals of chess

5 x 6 board

Fewer pieces per type

No castling

No en-passant
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Example: Quick Chess
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Task Space

Pawns + King
Pawns only / ‘
/,, \\\\\

Empty task ‘

/’,
‘

Target task

A

One piece per type

e Quick Chessis a curriculum designed for people

 We wanttodo somethingsimilarforautonomous agents
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Task = MDP

Curriculum Learning

Environment

Action

Task Creation

Sequencing Transfer Learning

e Curriculumlearningisa complex problemthattiestask creation, sequencing,
and transferlearning
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Transfer Learning

Task Creation ‘

Sequencing Transfer Learning

* Well studied problem [Taylor 2009, Lazaric 2011]

* Givenasource and target task, how to transfer knowledge
e We transfer value functions
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Task Creation

Task Creation ‘

Sequencing Transfer Learning

* Thistalk will focus on task creation
* Automaticsequencingisan importantdirection for future work

 Show we can create a useful space of tasks to compose a curriculum
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Task Creation
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Formalism for Task Creation

* Key Idea: create tasks using both domain knowledge and by observing
the agent’s performance on a task

 We proposeaformalism fortask creation
 Consists ofa set of heuristicfunctions f : My X X — Mj

that create a source task M, given a target task M, and (s,a,s’,r)
trajectorytuples X from M,

 Formalismis domain-independent (applicable to many domains)
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Formalism for Task Creation

e Each function alters different parts of the MIDP M to create
source tasks

Rewards

State/Action Space

Reward for promotion
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Transitions

C

Initial/Terminal State Distributions
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Heuristic Functions

1. Task Simplification }

2. Promisinglnitializations )
3. Mistake Learning
—
4. Action Simplification
5. Option-based Subgoals
6. Task-based Subgoals
7. Composite Subtasks _/
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Uses knowledge of domain

Observes the agent
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Experimental Domains

Ms. Pac-Man Half Field Offense




Task Simplification

* Use knowledge of thedomain encoded in degrees of freedom F to
simplify the task
e F=[Fy, F,, ... F,] vector of features that parameterize the domain

* Assumesordering over each F, correspondingto task complexity

* Reducesthe complexity of one degree of freedom ata time

Easier

Harder
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Promising Initializations

Positive outcomes can be rare at onset of learning

Exploresregions of state space near positive outcomes/rewards
PROMISINGINITIALIZATIONS (M, X, C, 6, p)

C(sq, s,): distance measure quantifying state proximity
d :threshold on distance
p :percentilethreshold on which states/rewardsin X are positive outcomes

Returns MDP thatinitializes start state distribution to these states
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Promising Initializations

Number of “moves” away Number of steps away Euclidean Distance
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Mistake Learning

e Createsubtaskstoavoid orcorrect mistakes
» Specified by the domain
e Eg. Termination in non-goal state

 Rewindtheepisode epsilon steps back, and learn a revised policy from
there

& . & MISTAKE
- Rewind
| |
2 2 <IIIIIIIIIIIII 2 2 2
_ - Aa A Checkmate
i | | | "%}
'tt,.. Q
....O. i i
Revise A i
i '@
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Mistake Learning

University of Texas at Austin

How far back
to rewind?

Sanmit Narvekar

MISTAKES

Getting eaten
by ghost

Not eating
edible ghost

Failing to score

Losing possession
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Results

Ms. Pac-Man

(results in paper)
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2v2 Half Field Offense
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2v2 HFO Baseline

0.8 Various Curricula for 2v2 HFO
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Curriculum Generation

Task Simplification

Empty Task

Mistake Learning
~
~ ~

Agent

Promising Initializations
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Target Task

X ={(s,a,sr), ..}
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Shoot Task

* Initially, goal scoringepisodes are
rare

* We observe a few successful
goals

* Use Promisinglnitializationsto
target explorationin thisregion

M shoot = PROMISINGINITIALIZATIONS(Ma2y2, X242, C, 6, p)

e Agentslearn toshooton goal

University of Texas at Austin Sanmit Narvekar
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Dribble Task

e Agenttakes too many shotsfrom
far away

e Skill needed: move the ball up
the field while maintaining
possession, untilashotis likely to
score

M, = LINKSUBTASK(Ma2y2, Mshoot, Vshoot )
Maripble = ACTIONSIMPLIFICATION(M7, X2y2, @)

University of Texas at Austin Sanmit Narvekar
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2v2 HFO Results

Various Curricula for 2v2 HFO
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2v2 HFO Results

Various Curricula for 2v2 HFO
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2v2 HFO Results

Various Curricula for 2v2 HFO
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2v3 HFO Results

0.6 Various Curricula for 2v3 HFO
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2v3 HFO Results

Various Curricula for 2v3 HFO
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2v3 HFO Results

Various Curricula for 2v3 HFO
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Experimental Recap

* Tasks created by our formalism can be used as source tasks
inacurriculum

* Learningvia a curriculum can improve learning speed or
performance
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Related Work

Curriculum learningin supervised learning [Bengio et al. 2009]

Multi-task reinforcement learning [Wilson et al. 2007]

Lifelong reinforcement learning [Ammar et al. 2014]

Learning task transferability [Sinapovetal. 2015]

Key Differences
* Source tasks created solelytoimprove performance on target
* Focusontaskgeneration, notselection

* Agent-tailored source tasks based on agent performance
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Ssummary

Task Creation ‘
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Sequencing Transfer Learning

* Presented curriculumlearninginthe
context of reinforcement learning

e

* Defineda domain-independent i[d|3]k]1
formalism to create source tasks, L1484
tailored to the performance of the

Various Curricula for 2v2 HFO o Various Curricula for 2v3 HFO

* Empiricallydemonstratedusinga
curriculumcan improve learning speed
or performance
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