Adding Influencing Agents to a Flock

Katie Genter and Peter Stone

The University of Texas at Austin
{katie,pstone}@cs.utexas.edu

May 11, 2016
Motivating Example
Motivating Example
Ad Hoc Teamwork

- Only in control of a single agent or subset of agents
- Shared goals
- No pre-coordination
- Limited or no communication

Scientific question: How to design an agent to **productively join** a pre-existing team while requiring **no pre-coordination**?
Flocking

- **Emergent** behavior found in nature
 - Birds, fish, insects
- Simple local behaviors & interactions
- Group behavior appears well organized and stable
Research Question:

How can robots be utilized in various types of flocks in order to influence these flocks towards a particular behavior?
1. Introduction

2. Problem Definition

3. Existing Placement Methods

4. Improved Placement Methods

5. Behavior as Flock Arrives

6. Summary
Problem Definition

Both robots and birds have:
- Constant, equal velocity
- 2D Position
- Global orientation
Each bird reacts only to birds and robots within a certain neighborhood around itself.

- Characterized by a sphere of influence in this work.
A birds’ orientation at the next time step is set to be the average global orientation of all birds and robots currently within the bird’s neighborhood.

- Birds follow a simplified Reynolds flocking model
Two metrics used in this work:

- Number of birds ‘lost’
- Number of trials in which any birds are ‘lost’
Previously we considered how robots should behave and where they should be located within a flock in order to best influence the flock (Genter and Stone, ANTS 2014 & Genter, Zhang and Stone, AAMAS 2015).
Previously we considered how robots should behave and where they should be located within a flock in order to best influence the flock (Genter and Stone, ANTS 2014 & Genter, Zhang and Stone, AAMAS 2015).

Given computational limitations, how should robots be placed within a flock?

How should robots join a flock in motion if they are able to arrive ahead of the flock?
Outline

1. Introduction
2. Problem Definition
3. Existing Placement Methods
4. Improved Placement Methods
5. Behavior as Flock Arrives
6. Summary
Existing Placement Methods

Initial position “dropped into the flock”
- Random Placement
- Grid Placement
- Border Approach
- Graph Approach
Existing Placement Methods

- Random Placement
 - Randomly place robots within the square in which birds might exist.
- Grid Placement
- Border Approach
- Graph Approach
Grid Placement

Place **robots** at predefined, well-spaced, gridded positions throughout the square in which birds might exist.
Place robots as evenly as possible around the square in which birds might exist.
Graph Approach

Consider many possible sets of positions in which the robots could be placed, and then evaluate how well each of these sets connects the birds with the robots.

Complexity of placing robots: \(O((\text{robots} + \text{birds})^3 (\frac{\text{birds}^2 + \text{birds}}{\text{robots}})) \)
Outline

1. Introduction
2. Problem Definition
3. Existing Placement Methods
4. Improved Placement Methods
 - Scaled Placement Method
 - Hybrid Placement Method
5. Behavior as Flock Arrives
6. Summary
Fit the placement area for robots as a rectangle around the actual area covered by the flock.
The average number of birds lost when the flock contained 10 birds and 2-10 robots. These results are obtained over 100 runs. Error bars show the standard error of the mean.
The average number of birds lost when the flock contained 10 birds and 2-10 robots. These results are obtained over 100 runs. Error bars show the standard error of the mean.
Hybrid Placement

Use the **Graph placement method** to choose the first k_g robot placements. Then select the remaining $k - k_g$ placements using a constant time placement method.

Complexity of Graph placement:

$O((\text{robots} + \text{birds})^3 (\text{birds}^2 + \text{birds}/\text{robots}))$

Complexity of Hybrid placement:

$O((\text{robots} + \text{birds})^3 (\text{birds}^2 + \text{birds}/k_g))$
The average number of birds lost when the flock contained 10 birds and 2-8 robots. These results are obtained over 100 runs. Error bars show the standard error of the mean.
The average number of birds lost when the flock contained 10 birds and 2-8 robots. These results are obtained over 100 runs. Error bars show the standard error of the mean.
So far, we have assumed robots can be placed into a flock. Now, we begin to consider joining a flock.
So far, we have assumed robots can be placed into a flock. Now, we begin to consider joining a flock.

If robots are able to position themselves ahead of an approaching flock, how should these robots behave as the flock approaches?

- Face Current
- Face Goal
The average number of birds lost using the border placement approach when the flock contained 10 birds and 2-10 robots. These results are obtained over 100 runs. Error bars show the standard error of the mean.
The average number of birds lost using the border placement approach when the flock contained 10 birds and 2-10 robots. These results are obtained over 100 runs. Error bars show the standard error of the mean.
Related Work — Ad Hoc Teamwork

▶ Stone et al. 2010
 ▶ Introduced the ad hoc teamwork problem

▶ Agmon and Stone 2012, Stone et al. 2010
 ▶ Leading teammates in ad hoc settings from a game theoretic approach

▶ Jones et al. 2006
 ▶ Empirically studied dynamically formed heterogeneous multi-agent teams
 ▶ All agents know they are working as a team
Related Work — Flocking (1)

- Reynolds 1987, Vicsek et al. 1995
 - Concerned with simulating flock behavior
 - Not concerned with adding controllable agents to the flock

- Turgut et al. 2008
 - Considered the behavioral effects of providing different information to the flock

- Jadbabaie et al. 2003, Su et al. 2009, Celikkanat and Sahin 2010
 - Used controllable agents to influence the flock
 - Only concerned with making the flock converge to some heading eventually
Couzin et al. 2005
- Considered how grouping animals make informed unanimous decisions

Cucker and Huepe 2008, Ferrante et al. 2010, Yu et al. 2010
- Used informed agents to influence flock
 - Behave in a fixed way that is predetermined on based on type

Han et al. 2006
- Studied how one agent can influence the direction in which a flock of agents is moving
- Utilized one robot with unlimited, non-constant velocity
Research Problem:
Given computational limitations, how should influencing agents be placed within a flock? How should influencing agents join a flock in motion if they are able to arrive ahead of the flock?