
Reasoning about Hypothetical Agent Behaviours
and their Parameters

Stefano V. Albrecht
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712, USA
svalb@cs.utexas.edu

Peter Stone
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712, USA
pstone@cs.utexas.edu

ABSTRACT
Agents can achieve effective interaction with previously un-
known other agents by maintaining beliefs over a set of hy-
pothetical behaviours, or types, that these agents may have.
A current limitation in this method is that it does not recog-
nise parameters within type specifications, because types are
viewed as blackbox mappings from interaction histories to
probability distributions over actions. In this work, we pro-
pose a general method which allows an agent to reason about
both the relative likelihood of types and the values of any
bounded continuous parameters within types. The method
maintains individual parameter estimates for each type and
selectively updates the estimates for some types after each ob-
servation. We propose different methods for the selection of
types and the estimation of parameter values. The proposed
methods are evaluated in detailed experiments, showing that
updating the parameter estimates of a single type after each
observation can be sufficient to achieve good performance.

CCS Concepts
•Computing methodologies → Multi-agent systems;
Intelligent agents; Planning under uncertainty; Co-
operation and coordination;

Keywords
Ad hoc teamwork; Agent types; Parameter learning

1. INTRODUCTION
An important open problem in multi-agent systems is the

design of autonomous agents that can quickly and effectively
interact with other agents when there is no opportunity for
prior coordination, such as shared world models and com-
munication protocols [2, 11, 37]. Several works addressed this
problem by proposing methods which utilise beliefs over a set
of hypothetical behaviours for the other agents [1,4,8,9,16,36].
Behaviours in this approach are specified as types, which are
blackbox mappings from interaction histories to probability
distributions over actions. If the types are sufficiently repre-
sentative of the true behaviours of other agents, then this
method can lead to rapid adaptation and effective interaction
in the absence of explicit prior coordination [3, 8].

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

There is, however, a current limitation in this type-based
method, which is that it does not recognise parameters within
types. Complex behaviours often involve various continuous
parameters which govern certain aspects of the behaviour. For
example, reinforcement learning methods often use learning,
discounting, and exploration rates [38]. If we were to use
such a method as a type, we would have to instantiate its
parameters to some fixed values. Thus, an agent that wants to
account for n different parameter settings will have to reason
about n instances of the same type whose only difference is
in their parameter values. This, however, is very inefficient
as it leads to redundancy in space (storing n copies of the
type) and time (computing the outputs of n copies).

Our goal in this work is to devise a method which allows
an agent to reason about both the relative likelihood of types
and the values of their parameters. To be useful in practice,
this reasoning should be efficient and allow for any bounded
continuous parameters, without a need for the user to specify
maximum likelihood estimators for the individual parameters.

We show that the problem of space redundancy is typically
unavoidable because the internal state of a type may depend
on both the history of observations and the parameter values.
Regarding the time requirements, due to the blackbox nature
of types, the only way to ascertain the effect of a specific
parameter setting is to evaluate the type with that parameter
setting. Thus, our goal is to minimise the number of type
evaluations while achieving a useful and robust estimate of
the type’s true parameter setting. We propose a general
method which maintains individual parameter estimates for
each type and selectively updates the estimates for some types
after each observation. We propose different methods for the
selection of types and the estimation of parameter values. The
proposed methods are evaluated in the level-based foraging
domain [3], where they achieved substantial improvements in
task completion rates compared to random estimates, while
updating only a single parameter estimate in each time step.

2. MODEL & OBJECTIVE
We consider an interaction process with two or more agents.

The process starts at time t = 0. At time t, each agent i
receives a signal sti and independently chooses an action
ati from some countable set of actions Ai. The signal sti
may encode information about the state of the environment,
a private reward, etc. We leave the precise structure and
dynamics of sti open. This process continues indefinitely or
until some termination criterion is satisfied.

The probability with which action ati is chosen is given by
P (ati|Ht

i , θi, p), where Ht
i = (s0i , ..., s

t
i) is agent i’s history of

observations, θi is i’s type, and p = (p1, ..., pn) is a vector
of continuous parameters in θj . Each parameter pk takes a
fixed value from some bounded interval [pmin

k , pmax
k] ⊂ R. To

simplify the exposition, we assume that all types have the
same number of parameters, but in general this need not be
the case. Which type θj a parameter vector p belongs to is
disambiguated from context.

We control a single agent, i, which reasons about the be-
haviour of another agent, j. We assume that i knows j’s
action space Aj and that it can observe j’s past actions, i.e.
at−1
j ∈ sti for t > 0. The true type of j, denoted θ∗j , and

its true parameter values, p∗, are unknown to i. However, i
has access to a finite set of hypothetical types θj ∈ Θj , with
θ∗j ∈ Θj . We furthermore assume that i has all information
relevant to j’s decision making, so that Ht

j is a function of
Ht
i and we can write P (atj |Ht

i , θj , p).
The goal in this work is to devise a method which allows

agent i to reason about the relative likelihood of types θj ∈ Θj

and the values of their parameters p, based only on agent j’s
observed actions.

3. MARKOVIAN PARAMETERS
Types are often implemented as Markov chains, such that

the choice of action depends only on the current signal stj and
a current internal state wtj of the type, i.e. P (atj |stj , wtj , θj , p).
The information contained in stj is then incorporated into

the next state wt+1
j , usually by aggregating the information

within a collection of variables inside the state.
For types which are realised in this way, it is important

to note that the internal state of the type may depend on
both the history of observations and the parameter values.
To illustrate this, consider a simple Q-learning agent [40]
which uses three parameters, α, γ, ε ∈ [0, 1]. Its internal state
is defined by a matrix, Q, which is used to compute and
store expected payoffs for state-action pairs. This matrix is
updated at each time step as

Q(s, a)← (1− α)Q(s, a) + α

[
r + γmax

a′
Q(s′, a′)

]
where s, a is the previous state-action pair, r is some reward,
and s′ is the new state. Given a state s, the agent chooses
an action in arg maxaQ(s, a) with probability 1− ε, and a
random action otherwise. In this example, the values of Q
depend on the history of observed states and rewards and
the values of α, γ.

This dependence on parameter values has important con-
sequences for space requirements. Suppose we use the Q-
learning agent as a type θj and fix its parameter setting to
some values p. Its internal state wtj , defined by Q, will depend
on past observations and p. Now, if we change the param-
eter setting to p′ 6= p at some time t, we have a potential
inconsistency in that P (atj |stj , wtj , θj , p′) may not be equal to
P (atj |Ht

j , θj , p
′), since wtj has thus far been updated using

p. Therefore, to ensure correct probabilities, we may have
to adjust wtj to conform to the new parameter setting p′. In
general, this can be done by recomputing the internal state
“from the ground up” using the new parameter setting. How-
ever, more efficient methods may be possible depending on
how the internal states are influenced by parameters.

We adopt the naming convention and say that parameters
p of type θj are Markovian if θj ’s action probabilities are
independent of past values of p given their current values, i.e.

Algorithm 1 Selective parameter estimation in types

Given: type space Θj , initial belief P (θj |H0
i) and parameter

estimate p0 for each type θj ∈ Θj

Repeat for each t > 0:

1: Select a subset Φt ⊂ Θj for parameter updates

2: For each θj ∈ Φt:

3: Obtain new parameter estimate pt for θj

4: If pt non-Markovian, adjust internal state of θj

5: Set pt = pt−1 for all θj 6∈ Φt

6: For each θj ∈ Θj , update belief:

P (θj |Ht
i) ∝ P (at−1

j |Ht−1
i , θj , p

t)P (θj |Ht−1
i)

P (aj |Ht
j , θj , p

t, pt−1, ..., p0) = P (aj |Ht
j , θj , p

t) (1)

where pτ are the parameter values at time τ . Hence, the
parameters in the Q-learning example (specifically α, γ) are
not Markovian since they directly influence the values of Q.

4. LEARNING PARAMETERS IN TYPES
We propose a method whereby agent i maintains individual

parameter estimates for each hypothetical type θj ∈ Θj and
selectively updates the estimates after each observation.

The method starts with an initial belief P (θj |H0
i) which

specifies the relative likelihood (probability) that agent j
has type θj . In addition, for each type θj ∈ Θj , it maintains
an initial parameter estimate p0 within the respective value
bounds. Then, at each time t > 0, the method selects a subset
of types Φt ⊂ Θj and obtains a new parameter estimate pt

for each θj ∈ Φt. (Sections 4.1 and 4.2 propose methods for
each of these operations.) If the parameters of a type θj ∈ Φt

are non-Markovian, then the internal state of θj may have
to be adjusted to conform to the new parameter estimate
(cf. Section 3). The parameter estimates of types not in Φt

remain unchanged. Given the estimate pt for type θj , the
current belief is updated via

P (θj |Ht
i) ∝ P (at−1

j |Ht−1
i , θj , p

t)P (θj |Ht−1
i) (2)

and the method continues in this fashion (cf. Algorithm 1).
The use of point estimates of parameters effectively allows

us to use Algorithm 1 as a pre-routine on top of an existing
implementation A of the type-based method (e.g. [3, 10]).
That is, at each time t > 0, we first execute Lines 1-5 to
set the parameter values for each type, after which Line 6
executes A to update the belief and perform the planning step.
From the perspective of A, there is formally no difference in
the types since their parameters were set externally.

However, using point estimates can also cause a potential
problem in our setting: it may generally be the case that
P (at−1

j |H
t−1
i , θ∗j , p

t) = 0 while P (at−1
j |H

t−1
i , θ∗j , p

∗) > 0.1

The latter can cause P (θ∗j |Ht
i) to prematurely converge to

zero, even though we may learn the correct parameter values
p∗ at a later time. To prevent this, we assume that for any
θj ∈ Θj , if P (at−1

j |Ht−1
i , θj , p) is positive for some p, then it

is positive for all p. In practice, this can be ensured by using
close-to-zero probabilities instead of zero probabilities.

1As an example, consider the Q-learning agent from Section 3 and

set εt = 0, ε∗ = .5, and at−1
j 6∈ arg maxaQ(s, a).

4.1 Selecting Types for Parameter Updates
Since we do not know which type in Θj is the true type θ∗j ,

the safe choice of Φt is to update the parameter estimates of
all types in Θj . However, this is also the most costly choice
in terms of computation time. On the other hand, we may
minimise computation costs by updating parameter estimates
only for some subset Φt ⊂ Θj , but this carries the risk that θ∗j
may not be included in Φt. In this sense, we view the choice
of Φt as a decision problem which balances exploitation (i.e.
choosing types which are in some sense expected to benefit
the most from an update) and exploration. We propose two
approaches to make this choice, which entail different notions
of exploitation, exploration, and risk.

4.1.1 Posterior Selection
The first approach is to select types which are believed to

be most likely, with the expectation that one of them is the
true type. Here, exploitation amounts to choosing types θj ∈
Θj which have maximum probability P (θj |Ht−1

i). However,
depending on the observation history Ht−1

i and parameter
estimates p0, ..., pt−1, there is a risk that P (θj |Ht−1

i) assigns
high probability to incorrect types θj 6= θ∗j . This can lead
to premature convergence of beliefs to incorrect types if we
do not update the parameter estimates of the true type θ∗j .
Thus, exploration in this approach means choosing types
which currently seem less likely than other types. To balance
exploitation and exploration, we propose to sample Φt from
the belief P (θj |Ht−1

i).

4.1.2 Bandit Selection
The second approach is to select types according to their

expected change in parameter estimates after the new obser-
vation is accounted for. This is predicated on the assumption
that parameter estimates will converge, so that exploitation
entails selecting types which are expected to make the largest
leaps toward convergence. The risk is that the parameter
estimates for some types, including the true type θ∗j , may
not change significantly until certain observations are made.
Hence, exploration entails choosing types even if their pa-
rameter estimates are not expected to change much.

To balance exploitation and exploration, we can frame
this approach as a multi-armed bandit problem [34]. In the
general setting, there are k arms to choose from at each time
step t, and each choice results in a reward rt drawn from an
unknown distribution associated with the chosen arm. The
goal is to choose arms so as to maximise the sum of rewards.
In our case, the arms represent the types in Θj and we define
the reward rt after updating the parameter estimate of type
θj as the normalised L1 norm

rt = η−1
n∑
k=1

|ptk − pt−1
k |, η =

n∑
k=1

pmax
k − pmin

k . (3)

Thus, rewards are in the range [0, 1], where a reward of 0
means no change in the parameter estimate and a reward
of 1 represents maximum change. Several algorithms exist
which solve this problem, subject to different assumptions
regarding the distribution of rewards (e.g. [6,25]). In our case,
the reward distributions of arms are independent but possibly
changing over time (e.g. if estimates converge). Therefore,
one should also consider algorithms designed for changing
reward distributions (e.g. [7, 17]).

Algorithm 2 Approximate Gradient Ascent

Given: parameter estimate pt−1, degree d

1: Collect samples D = (p(l), f(p(l))) // e.g. uniform grid

2: Fit polynomial f̂ of degree d to D

3: Compute gradient ∇f̂(pt−1) and step size λt

4: Update estimate pt = pt−1 + λt∇f̂(pt−1)

Algorithm 3 Approximate Bayesian Updating

Given: P (p|Ht−1
i , θj), represented as polynomial of deg. d

1: Fit f̂ to f as in Algorithm 2

2: Compute polynomial product ĝ = f̂ · P (p|Ht−1
i , θj)

3: Collect samples D = (p(l), ĝ(p(l))) // e.g. uniform grid

4: Fit new polynomial ĥ of degree d to D

5: Compute integral I =
∫ pmax

pmin ĥ(p) dp

6: Set new belief P (p|Ht
i , θj) = ĥ/I

7: Extract estimate pt from P (p|Ht
i , θj) // e.g. sample

4.2 Estimating Parameter Values
We propose three different methods for the estimation of

parameter values pt of a type θj . For notational convenience,
we define f(p)

.
= P (at−1

j |Ht−1
i , θj , p).

4.2.1 Approximate Gradient Ascent
The idea in this method is to update parameter estimates

by following the gradient of a type’s action probabilities
with respect to the parameter values. Formally, the estimate
is updated as pt = pt−1 + λt∇f(pt−1), where ∇f denotes
the gradient of f and λt is some suitably chosen step size
(e.g. constant or optimised via line search). This requires a
representation of f which is differentiable in p and flexible
enough to allow for a variety of shapes, including skewness
and multi-modality. We can obtain such a representation by
approximating f as a polynomial f̂ of some specified degree
d, fitted to a suitable set of samples (p(l), f(p(l))). For exam-
ple, one could use a uniform grid over the parameter space
that includes the boundary points. Algorithm 2 provides a
summary of this method.

We note that operations such as fitting and differentiation
of multivariate polynomials can be costly, even in the ap-
proximate case [19], whereas univariate polynomials can be
processed very efficiently. To alleviate this, one may parti-
tion parameters p1, ..., pn into clusters C1, C2, ... according
to their degree of correlation in f (so that parameters from
different clusters are independent or only weakly correlated;
cf. [5]) and use separate polynomials for each cluster. If the
resulting clusters are small, this can significantly reduce com-
putational costs [12, 30]. However, care must be taken not
to break important correlations between parameters, which
may degrade the accuracy of parameter estimates.

4.2.2 Approximate Bayesian Updating
Rather than using f̂ to perform gradient-based updates,

we can use f̂ to perform Bayesian updates that retain infor-
mation from past updates. In addition to the belief P (θj |Ht

i),
agent i now also has a belief P (p|Ht

i , θj) to quantify the rela-
tive likelihood of parameter values p for θj . This new belief is

represented as a polynomial of the same degree d as f̂ . The

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

Be
lie

f d
en

si
ty

P (p|Ht−1
i , θj)

p∗

0 0.2 0.4 0.6 0.8 1
p

0

0.002

0.004

0.006

0.008

0.01

f̂
(p
)

foraging.H (true type)

Samples from f

Fitted f̂

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

Be
lie

f d
en

si
ty

Samples from ĝ

Fitted ĥ
P (p|Ht

i , θj)
p∗

0 0.2 0.4 0.6 0.8 1
p

0

1

2

3

4

5

6
Be

lie
f d

en
si

ty
P (p|Ht−1

i , θj)
p∗

0 0.2 0.4 0.6 0.8 1
p

-0.5

0

0.5

1

1.5

f̂
(p
)

Samples from f

Fitted f̂

0 0.2 0.4 0.6 0.8 1
p

-1

0

1

2

3

4

Be
lie

f d
en

si
ty

Samples from ĝ

Fitted ĥ
P (p|Ht

i , θj)
p∗

0 0.2 0.4 0.6 0.8 1
p

0

0.5

1

1.5

2

Be
lie

f d
en

si
ty

P (p|Ht−1
i , θj)

p∗

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

1.2

f̂
(p
)

Samples from f

Fitted f̂

0 0.2 0.4 0.6 0.8 1
p

-1

0

1

2

3

Be
lie

f d
en

si
ty

Samples from ĝ

Fitted ĥ
P (p|Ht

i , θj)
p∗

(a) Prior belief

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

Be
lie

f d
en

si
ty

P (p|Ht−1
i , θj)

p+

0 0.2 0.4 0.6 0.8 1
p

0

0.002

0.004

0.006

0.008

0.01

f̂
(p
)

foraging.H (true type)

Samples from f

Fitted f̂

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

Be
lie

f d
en

si
ty

Samples from ĝ

Fitted ĥ
P (p|Ht

i , θj)
p+

0 0.2 0.4 0.6 0.8 1
p

0

1

2

3

4

5

6
Be

lie
f d

en
si

ty
P (p|Ht−1

i , θj)
p+

0 0.2 0.4 0.6 0.8 1
p

-0.5

0

0.5

1

1.5

f̂
(p
)

Samples from f

Fitted f̂

0 0.2 0.4 0.6 0.8 1
p

-1

0

1

2

3

4

Be
lie

f d
en

si
ty

Samples from ĝ

Fitted ĥ
P (p|Ht

i , θj)
p+

0 0.2 0.4 0.6 0.8 1
p

0

0.5

1

1.5

2

Be
lie

f d
en

si
ty

P (p|Ht−1
i , θj)

p+

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

1.2

f̂
(p
)

Samples from f

Fitted f̂

0 0.2 0.4 0.6 0.8 1
p

-1

0

1

2

3

Be
lie

f d
en

si
ty

Samples from ĝ

Fitted ĥ
P (p|Ht

i , θj)
p+

(b) f̂ (likelihood)

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

Be
lie

f d
en

si
ty

P (p|Ht−1
i , θj)

p∗

0 0.2 0.4 0.6 0.8 1
p

0

0.002

0.004

0.006

0.008

0.01

f̂
(p
)

foraging.H (true type)

Samples from f

Fitted f̂

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

Be
lie

f d
en

si
ty

Samples from ĝ

Fitted ĥ
P (p|Ht

i , θj)
p∗

0 0.2 0.4 0.6 0.8 1
p

0

1

2

3

4

5

6

Be
lie

f d
en

si
ty

P (p|Ht−1
i , θj)

p∗

0 0.2 0.4 0.6 0.8 1
p

-0.5

0

0.5

1

1.5

f̂
(p
)

Samples from f

Fitted f̂

0 0.2 0.4 0.6 0.8 1
p

-1

0

1

2

3

4

Be
lie

f d
en

si
ty

Samples from ĝ

Fitted ĥ
P (p|Ht

i , θj)
p∗

0 0.2 0.4 0.6 0.8 1
p

0

0.5

1

1.5

2

Be
lie

f d
en

si
ty

P (p|Ht−1
i , θj)

p∗

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

1.2

f̂
(p
)

Samples from f

Fitted f̂

0 0.2 0.4 0.6 0.8 1
p

-1

0

1

2

3

Be
lie

f d
en

si
ty

Samples from ĝ

Fitted ĥ
P (p|Ht

i , θj)
p∗

(c) Posterior belief

Figure 1: Approximate Bayesian Updating for a single parameter p ∈ [0, 1] with true value p∗ = 0.11. The polynomials have
degree 4 and are fitted using 5 uniformly spaced points from the parameter space.

Bayesian update is then constructed as follows:
After fitting f̂ , we take the convolution (i.e. polynomial

product) of P (p|Ht−1
i , θj) and f̂ , resulting in a polynomial ĝ

of degree greater than d. To restore the original representa-
tion, we fit a new polynomial ĥ of degree d to any suitably
chosen set of sample points from the convolution ĝ. Again,
we could use a uniform discretisation of the parameter space.
Finally, we compute the integral of ĥ under the parameter
space and divide the coefficients of ĥ by the integral, to ob-
tain the new belief P (p|Ht

i , θj). This new belief can then be
used to obtain a parameter estimate, e.g. by finding the max-
imum of the polynomial or by sampling from the polynomial.
Algorithm 3 provides a summary of this process and Figure 1
gives a graphical example.

While the use of polynomials allows for great flexibility, it
does not come without limitations: Polynomials suffer from
known instability issues in extrapolation and interpolation.
Extrapolation is not of concern here since we are confined to
bounded parameter spaces. However, instability of interpola-
tion can lead to negative values between fitted samples (cf.
Figure 1b). While this poses no difficulty for the calculation
of maxima and sampling, it does mean that the integral in
the normalisation of ĥ has to be “absolute”, in that any area
below the zero axis is assigned a positive sign. Moreover, due
to the nature of approximate fitting and finite machine ac-
curacy, care should be taken that the samples taken from ĝ
to construct ĥ (cf. Figure 1c) are not negative in ĝ, as oth-
erwise negative minima may be propagated across updates,
which can lead to further instabilities.

4.2.3 Exact Global Optimisation
The previous methods rely on an approximation f̂ of f to

perform successive updates. An alternative approach is to
reason directly with f . In addition to avoiding the potential
inaccuracies caused by the approximations, this would allow
for the detection of possible discontinuities in f(p) which
cannot be represented by continuous polynomials.

Specifically, the estimation of parameter values can be
viewed as a global optimisation problem [22] in which the
goal is to find a parameter setting pt with maximum prob-
ability over the history of observations Ht

i . Formally, the
optimisation problem is defined as follows:

Find pt ∈ arg max
p

F (p) =

t∏
τ=1

P (aτ−1
j |Hτ−1

i , θj , p) (4)

s.t. ∀k pk ∈ [pmin
k , pmax

k]

Since the evaluation of the objective function F for a given
parameter setting p can be relatively costly, one would ideally
solve this problem using an optimisation method that seeks
to minimise the number of evaluations. Bayesian optimisation
was specifically designed for such settings and has been shown
to be effective for low-dimensional problems [29]. The idea is
to use a Gaussian process [33] to represent uncertainty over
the values of F . Each iteration of the method selects a new
point p to evaluate, according to some tradeoff criterion for
exploitation (choosing points which are expected to have high
values) and exploration (minimising uncertainty). A crucial
choice in this method is the form of the covariance function,
which is used to measure similarity of points [35].

5. EXPERIMENTAL EVALUATION
We provide a detailed experimental evaluation of our meth-

ods in the level-based foraging domain [3], which was intro-
duced as a test domain for ad hoc teamwork [37].

5.1 Domain Description
The domain consists of a rectangular grid in which a team

of agents must collaborate to collect a number of items in
minimal time. The agents’ ability to collect items is limited
by skill levels: each agent and item has an individual level
which is represented by a number in the range [0, 1]. A group
of agents can collect an item if (i) they are located next to the
item, (ii) they simultaneously choose the load action, and (iii)
the sum of the agents’ levels is at least as high as the item’s
level. Thus, in Figure 2, the two agents in the left half can
jointly collect an item which individually they cannot collect.
When an item is collected, it is removed from the grid and
the team receives a reward of 1; in all other cases, the reward
is 0 (timing will become relevant via a discount factor). In
addition to the load action, each agent has 4 actions N, E, S,
W, which move the agent into the corresponding direction if
the target cell is empty and inside the grid. Ties are resolved
by executing actions in random order.

To enforce collaboration and keep this solvable, skill levels
are chosen such that all agents have levels below the highest
item level, and no item has a level greater than the sum of
all agent levels. Furthermore, items are placed such that the
Euclidean distance between each item is greater than 1, and
no item is placed at any border of the grid.

We extend this domain by adding view cones for agents,
which are parameterised by a radius and angle. An agent’s
view cone determines which items and other agents it can
see, as well as the certainty with which they are seen. The

.48

.20

.12

.24 .20

.86

.60

.91 .68

.43.11

.60

.39

Figure 2: Level-based foraging domain. Agents are marked
by circles (blue is our agent) and items are marked by grey
squares. Skill levels are shown inside agents and items. The
dashed magenta lines show the other agents’ view cones.

latter is calculated as the percentage (measured in [0, 1]) with
which the view cone overlaps with the grid cell occupied by
an agent or item. Thus, the agent in the right half of Figure 2
can see two items, one with certainty 1 and another one with
certainty ≈ 0.85. We assume that our agent can see the entire
grid (cf. Section 2), hence it has no view cone.

5.2 Hypothetical Type Space
The hypothetical type space Θj consists of four types which

are all based on the template given in Algorithm 4. The tem-
plate uses three parameters: p1 ∈ [0, 1] specifies the agent’s
skill level; p2 ∈ [.1, 1] specifies the agent’s view radius as
p2
√
w2 + h2, where w and h are the width and height of the

grid; and p3 ∈ [.1, 1] specifies the view angle as p32π. The
parameters p2, p3 are used in the VisibleAgentsAndItems
routine, which returns two sets containing the visible agents
and items with a view certainty of 0.1 or higher. The param-
eter p1 is used in the ChooseTarget routine, which returns
a specific target out of the visible agents and items.

The four types in Θj differ from each other in their speci-
fication of the ChooseTarget routine:

• θL1
j : if items visible, return furthest2 one; else, return ∅

• θL2
j : if items visible, return item with highest level below

own level, or item with highest level if none are below own
level; else, return ∅
• θF1

j : if agents visible but no items visible, return furthest
agent; if agents and items visible, return item that furthest
agent would choose if it had type θL1

j ; else, return ∅

• θF2
j : if agents visible but no items visible, return agent with

highest level above own level, or furthest agent if none are
above own level; if agents and items visible, select agent
as before and return item that this agent would choose if
it had type θL2

j ; else, return ∅

Intuitively, types θL1
j and θL2

j can be viewed as leaders:
they choose targets on their own and expect others to follow
their lead. Conversely, types θF1

j and θF2
j can be viewed as

followers: they assume other agents know best and attempt
to follow their lead. The leader and follower types are further
distinguished by whether they consider skill levels.

2We found that choosing the furthest item/agent penalises wrong
parameter estimates more than choosing closest ones, since the
latter is invariant to overestimation of view cone parameters.

Algorithm 4 Template for foraging types

Parameters: skill level p1, view radius p2, view angle p3
Initialise: destination memory Mem← ∅
Repeat for each t:

1: // Select destination

2: Loc← own location, Dest← ∅
3: if Mem 6= ∅ and Loc 6= Mem then

4: Dest← Mem

5: else

6: (A, I)← VisibleAgentsAndItems(Loc)

7: Targ← ChooseTarget(A, I)

8: if Targ 6= ∅ then
9: Dest← Targ

10: Save destination in memory: Mem← Dest

11: // Assign action probabilities

12: if Dest = ∅ then
13: Assign probability 0.25 to each move action

14: else

15: if Dest is item and Loc is next to Dest then

16: Assign probability 1 to load action

17: else

18: Use A∗ [21] to find path from Loc to Dest

19: Assign probability 1 to first move action in path

20: Add probability 0.01 to each action and normalise

The internal state of the template is defined by a memory
Mem for the current destination (x/y position) which the
agent is trying to reach. Once the destination in Mem has
been reached, the template chooses a new destination using
the ChooseTarget routine. Thus, the contents of Mem is
directly affected by the parameters, and we can classify them
as non-Markovian (cf. Section 3).

Finally, Line 20 in Algorithm 4 is a simple way of guaran-
teeing the assumption that the set of actions with positive
probability is invariant of the parameter values (see last para-
graph before Section 4.1).

5.3 Experimental Setup
We tested various configurations of Algorithm 1. For the

selection of types for parameter updates (Φt), we tested
updating all types in Θj , sampling a single type from Θj

using the belief P (θj |Ht−1
i) (Section 4.1.1), and sampling a

single type from Θj using a bandit algorithm (Section 4.1.2).
A number of bandit algorithms were tried in preliminary
experiments, including UCB1 [6], EEE [17], S [25], Exp3 [7],
and Thompson sampling [39]. All reported results are based
on UCB1, which achieved the best performance.

For the estimation of parameter values, we tested Approx-
imate Gradient Ascent (AGA), Approximate Bayesian Up-
dating (ABU), and Exact Global Optimisation (EGO). AGA
and ABU used univariate polynomials of degree 4 for each
parameter, which were fitted using 5 uniformly spaced points
over the parameter space (as shown in Figure 1). AGA op-
timised the step size λt in each update using backtracking
line search (with the search parameters set to 0.5/0.5). ABU
used uniform initial beliefs P (p|H0

i , θj) for each type θj ∈ Θj

and generated parameter estimates by averaging over 10 sam-
ples taken from P (p|Ht

i , θj) (which we found to be more
robust than taking the maximum). EGO was implemented

using Bayesian optimisation with the “expected improvement”
search criterion [29] and squared exponential covariance with
automatic relevance detection [33]. The number of points
evaluated by EGO (cf. (4)) was limited to 10.

All configurations used uniform initial beliefs P (θj |H0
i)

over the set Θj (specified in Section 5.2) and random initial
parameter estimates for each θj ∈ Θj . In each time step,
Monte Carlo Tree Search (MCTS), specifically UCT [26], was
used to compute optimal actions with respect to the beliefs
and types. Each rollout in the tree search used the current
belief P (θj |Ht

i) to sample a type θj ∈ Θj which was used for
the entire rollout. Each time step generated 300/500 rollouts
in the 10x10/15x15 worlds, respectively (see below), which we
found to be robust numbers. Each rollout was over a horizon
of 100 time steps, and the rewards accumulated during a
rollout were discounted with a factor of 0.95. Subtrees from
previous time steps were reused to accelerate the tree search.

The configurations were tested in two different sizes of the
level-based foraging domain: a 10x10 world with 2 agents and
5 items, and a 15x15 world with 3 agents and 10 items (so our
agent reasons about the types and parameters of two other
agents). Each configuration was tested in the same sequence
of 500 instances, which were generated as follows: First, we
set random initial positions and skill levels for each agent and
item, subject to the constraints noted in Section 5.1. Then,
for each agent not under our control, we randomly selected
its true type θ∗j from the type space Θj and completed its
parameter setting by choosing random values for the view
cone parameters. Finally, for each θj ∈ Θj , we sampled
random initial parameter estimates which were used by the
tested configuration. Instances of the 10x10/15x15 world
were run for a maximum of 100/150 time steps, respectively.

We used two baselines to facilitate the comparison of our
methods: Rnd, which used fixed random parameter values
for each type, and Cor, which used the correct parameter
values for the true type and fixed random parameter values
for all other types (baselines did not update parameters).

5.4 Results
Figure 3 shows the average number of time steps and the

completion rates for each of the tested configurations and
world sizes. The completion rate is the percentage of instances
which were completed successfully (i.e. all items collected)
within the given amount of time. The average time steps are
for completed instances. To put the results into perspective,
we will begin by discussing the results of the two baselines,
Cor and Rnd. (In the following, all significance statements
are based on paired t-tests with a 5% significance threshold.)

The first observation is that there was only a small dif-
ference between Cor and Rnd in their average number of
time steps for completed instances, with margins of less than
10 time steps in both world sizes. This may seem surpris-
ing, given that the random parameter settings used by Rnd
can lead to significantly different predictions than the cor-
rect settings. However, in instances which were completed by
both baselines, we found that the MCTS planner was robust
enough to “absorb” the differences, in that it often produced
similar courses of actions despite the differences. On the
other hand, there were substantial differences in the comple-
tion rates of Cor and Rnd, dropping from 98% to 71% in
the 10x10 world and 79% to 41% in the 15x15 world, respec-
tively. We found that the random parameter settings used
by Rnd often led to predictions that fooled Rnd into taking

AGA ABU EGO
20

40

60

80

100

Ti
m

e
st

ep
s

All
Post
Bandit
Cor/Rnd

AGA ABU EGO
50

60

70

80

90

100

Co
m

pl
et

io
n

ra
te

(a) 10x10 world, 2 agents, 5 items

AGA ABU EGO

80

100

120

140

Ti
m

e
st

ep
s

All
Post
Bandit
Cor/Rnd

AGA ABU EGO
30

40

50

60

70

80

Co
m

pl
et

io
n

ra
te

(b) 15x15 world, 3 agents, 10 items

Figure 3: Time steps required in completed instances (means
and standard deviations) and completion rates for the tested
methods. Results are averaged over 500 instances in each
world. Dashed lines mark the baseline performances, where
Cor had lowest time steps and highest completion rates.

the wrong actions without ever realising it, thus inducing an
infinite cycle which the agent never escaped. This effect has
been described previously as “critical type spaces” [4]. Given
the means and standard deviations of time steps shown in
Figure 3, one can see that simply increasing the maximum
allowed time steps per instance would not significantly affect
Rnd’s ability to complete instances.

We now turn to a comparison of our proposed methods.
Most notably, the results show that updating a single type
in each time step achieved comparable performance to up-
dating all types in each time step, albeit at only a fraction
(approximately 1

4
th, since |Θj | = 4) of the computation time.

Moreover, bandit selection significantly outperformed poste-
rior selection in all tested configurations, except for EGO in
the 10x10 world, where the two were equivalent. We found
that this difference was due to the fact that posterior selec-
tion tended to exploit more greedily than bandit selection,
because the beliefs P (θj |Ht

i) often placed high probability
on certain types early on in the interaction. In contrast,
bandit selection was more exploratory because the rewards
defined in Section 4.1.2 tended to be more uniform across
types than beliefs. Given that the distributions underlying
these rewards were not stationary, it is worth pointing out
that bandit algorithms which were specifically designed for
changing distributions (e.g. [7, 17]) did not perform better
than those which assume stationary reward distributions.3

These results show that our approach of viewing the selec-
tion of types as a decision problem, balancing exploitation
and exploration, can be effective in practice.

Regarding the different estimation methods, the results
show a gradual improvement from AGA to ABU to EGO.
AGA performed worst because the gradient update used in
AGA did not retain information from past updates. Thus, its

3The analysis in [26] provides some insights into the performance
of UCB1 for non-stationary (“drifting”) reward distributions.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

All
Post
Bandit
Cor/Rnd

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

All
Post
Bandit
Cor/Rnd

AGA ABU EGO
0.01

0.1

1

Se
co

nd
s

(lo
g)

Figure 4: Average seconds (log-scale) needed per parameter
update for one type. Measured in Matlab R2015b on a UNIX
dual-core machine with 2.66 GHz per core.

estimates were dominated by the most recent observations,
which often prevented convergence to good estimates. In ad-
dition, AGA and ABU’s ability to estimate parameters was
hindered by the fact that they used individual polynomials
for the parameters, thus ignoring possible parameter correla-
tions at the benefit of reduced computation time. EGO, due
to its ability to detect parameter correlations and discontinu-
ities, achieved the best performance in our experiments. We
note that the results shown for EGO are for a maximum of
10 evaluated points. We were able to drive its performance
up by increasing the number of evaluated points, approach-
ing the performance of the Cor baseline in both worlds.
However, this performance came at a significant cost in com-
putation time (cf. Figure 4): while AGA and ABU needed
on average about 0.03 and 0.05 seconds per update, EGO
needed about 1 (2.3) seconds per update when evaluating
10 (20) points, which increased slowly for longer histories.
Thus, ABU provided the best tradeoff between task comple-
tion and computation time. However, the time requirements
of EGO may be reduced drastically by using a more efficient
implementation of Bayesian optimisation, e.g. [28].

Figure 5 shows the mean error in the parameter estimates
for the true type θ∗j . The figure shows that AGA’s estima-
tion errors increased slowly over time. One reason for this
was that f (i.e. the action probabilities of types with respect
to parameters; cf. Section 4.2) was often multi-modal and
hence non-convex, causing the gradient to point away from
the true parameter values. Another reason was that f could
change drastically between time steps, which in some cases
had a similar “trapping” effect on the gradient. Nonethe-
less, AGA still managed to produce good estimates in some
of the instances. A different picture is shown for ABU: its
mean errors dropped substantially after the first time step
and remained stable after. This shows that ABU was able
to effectively retain information from past updates, through
its conjugate polynomial update. While EGO did also re-
tain information from past observations, its estimates were
less stable than ABU’s estimates, often jumping radically
between different values. This was a result of the search strat-
egy used in Bayesian optimisation and the fact that it only
evaluated 10 points in each update, which can cause it to
find different solutions after each new observation. An in-
teresting observation is that EGO seemed to differentiate
between parameters, with substantially different mean errors
for the individual parameters. This, too, was a result of its
search strategy, which can concentrate on certain parame-
ters if they lead to better solutions. Thus, p1 (the skill level)
seemed to be less relevant than p2/p3 (the view cone param-
eters). Given that ABU’s mean error was substantially lower
than EGO’s mean error, it may be surprising that EGO still

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 end
Time step

0.20

0.25

0.30

0.35

0.40

M
ea

n
er

ro
r

AGA ABU EGO

(a) Parameter p1 (skill level)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 end
Time step

0.20

0.25

0.30

0.35

0.40

M
ea

n
er

ro
r

AGA ABU EGO

(b) Parameter p2 (view radius)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 end
Time step

0.20

0.25

0.30

0.35

0.40

M
ea

n
er

ro
r

AGA ABU EGO

(c) Parameter p3 (view angle)

Figure 5: Mean error in parameter estimates for the true type
θ∗j in the 15x15 world (updating all types in each time step),
averaged over 500 instances and both other agents. The error
at time t is defined as the absolute difference |p∗k−ptk|. Errors
are shown for the first 15 and last time steps of an instance.

outperformed ABU in completion rates. However, a closer
inspection showed that EGO more often estimated the right
combination of parameter values (i.e. it recognised correla-
tions in parameters), which in many cases was crucial for the
correct planning of actions.

Finally, Figure 6 shows the evolution of beliefs in the 10x10
world (the same picture was obtained in the 15x15 world).
The correct baseline Cor had a robust convergence to the
true type, with an average final probability of 0.975 for the
true type. In contrast, the random baseline Rnd converged
in many cases to an incorrect type, with an average final
probability of 0.314 for the true type. The corresponding
probabilities produced by our methods were 0.313 for AGA,
0.401 for ABU, and 0.482 (0.574) for EGO with 10 (50) eval-
uated points. Thus, AGA did not improve belief convergence
over Rnd while ABU and EGO produced statistically sig-
nificant improvements, albeit still a long way from Cor. By
the end of an instance, all methods placed most of their be-
lief mass on one type, with average maximum probabilities
(over any type) in the 0.9x range. These numbers show that
parameter estimates that deviate from the true values can
have a significant impact on the evolution of beliefs. As our
data show, convergence to the true type correlates with (and
causes) higher completion rates.

0 1 2 3 4 5 6 7 8 9 end
Time step

0.2

0.4

0.6

0.8

1
Pr

ob
ab

ilit
y

AGA
ABU
EGO
Cor
Rnd

Figure 6: Average belief P (θ∗j |Ht
i) for the true type θ∗j in the

10x10 world (updating all types in each time step). Probabil-
ities are averaged over 500 instances and shown for the first
10 and last time steps of an instance.

6. DISCUSSION

6.1 A Note on Belief Merging
A central feature of keeping beliefs over a set of behaviours

is a property called belief merging [23]. Under a condition of
“absolute continuity”, this property entails that the believed
distribution over future play converges in a strong sense to
the true distribution induced by the true behaviour. One
may ask if this property also holds in our method, given that
(2) may use different parameter estimates in each update.

The simple answer to this question is no, because changing
the parameter estimates means that the beliefs effectively
refer to a different type space in the original result [23]. Would
a method that uses distributions over parameter values rather
than point estimates inherit the belief merging property? It
can be shown that the answer here, too, is negative, and we
provide an example below (we assume basic familiarity with
the work of Kalai and Lehrer [23]):

Suppose agent j can choose between two actions. Its true
type, θ∗j , is to choose action 1 with probability δ and action 2
with probability 1− δ. Assume that agent i knows θ∗j but not
the value of the δ parameter, and so maintains a continuous
distribution over the interval [0, 1]. The probability measures
µ and µ′ over play paths are induced in the usual way [23]
from the true type and the distribution, respectively. Now,
consider the set Ω consisting of all infinite play paths in which
action 1 has limit frequency δ. We have µ(Ω) = 1, since θ∗j
can only realise paths in Ω, but µ′(Ω) = 0 due to the diffused
distribution over δ. Thus, the absolute continuity condition
is violated and belief merging does not materialise (absolute
continuity is in fact necessary for belief merging [24]).

Nonetheless, it has been argued that absolute continuity
and the resulting convergence (which implies accurate predic-
tion of infinite play paths [23]) are too strong for practical
applications [18,24,31]. It is easy to see that the ABU and
EGO methods described in Section 4.2 would converge point-
wise to the correct parameter value in the above example.

6.2 Related Work
Several works proposed methods which maintain Bayesian

beliefs over a set of possible behaviours or types [1, 9, 14,15,
20,36]. Some methods assume discrete (usually finite) type
spaces [3, 9, 14] while others assume continuous type spaces
[15,36]. Our work can be viewed as bridging these methods by
doing both: we maintain beliefs over a finite set of types, and
we allow each type to have continuous parameters. Moreover,
our methods can deal with any parameterisation, while the

methods proposed in [15,36] are specific to parameters of the
used distributions (e.g. Dirichlet).

Classical methods for opponent modelling assume a fixed
model structure (e.g. a decision tree or finite-state machine)
and attempt to fit the model parameters based on observed
actions (e.g. [10,13,27]). Because such models may involve
many parameters, the learning process may need many obser-
vations to produce useful fits. This is in contrast to type-based
methods, in which types are blackbox functions and we only
“fit”one probability for each type. The latter can lead to rapid
adaptation, but may not be as flexible as classical methods.
Here, too, our work can be viewed as a hybrid between the
two approaches: in addition to fitting probabilities over types
we now also fit parameters within types, giving them greater
flexibility, but the number of such parameters is usually lower
than that found in classical methods.

Our proposed method is in part inspired by methods of
selective inference in dynamic Bayesian networks [5]. In our
work, we selectively choose types whose parameter values we
wish to infer. However, the selection of types is viewed as
a decision problem whereas the selective inference in [5] is
predetermined by the structure of the network.

6.3 Conclusion & Outlook
This work extends the type-based interaction method by

allowing an agent to reason about both the relative likeli-
hood of types and the values of any bounded continuous
parameters within types. A key element in our approach to
minimise computation costs is to perform selective updates
of the types’ parameter estimates after new observations are
made. Moreover, our proposed methods for the estimation of
parameter settings can be applied to any continuous param-
eters in types, without requiring additional structure in type
specifications. We evaluated our methods in detailed experi-
ments, showing that they achieved substantial improvements
in task completion rates compared to random estimates, while
updating only a single parameter estimate in each time step.

There are several potential directions for future research.
Our experiments showed that parameter estimates can have
a significant effect on the evolution of beliefs over types.
However, we do not currently have a formal theory that char-
acterises the interaction between parameter estimates and
beliefs. Such a theory might have useful implications for the
selection of types and the derivation of estimates. Further-
more, our methods assume that we can observe (or derive)
the chosen actions and observations of other agents. A use-
ful generalisation of our work would be to also account for
possible uncertainties in such observations, e.g. [32]. Finally,
further enhancements of our methods could be made. For in-
stance, another approach to select types for updates might be
to estimate the impact that updating a particular type may
have on our beliefs and future actions. However, such meth-
ods can be computationally expensive, even in the myopic
approximate case [15].

Acknowledgements: This work took place in the Learning Agents
Research Group (LARG) at UT Austin. LARG research is sup-
ported in part by NSF (CNS-1330072, CNS-1305287, IIS-1637736,
IIS-1651089), ONR (21C184-01), AFOSR (FA9550-14-1-0087),
Raytheon, Toyota, AT&T, and Lockheed Martin. Peter Stone
serves on the Board of Directors of, Cogitai, Inc. The terms of this
arrangement have been reviewed and approved by The University
of Texas at Austin in accordance with its policy on objectivity in re-
search. Stefano Albrecht is supported by a Feodor Lynen Research
Fellowship from the Alexander von Humboldt Foundation.

REFERENCES
[1] S. Albrecht, J. Crandall, and S. Ramamoorthy. Belief and

truth in hypothesised behaviours. Artificial Intelligence,
235:63–94, 2016.

[2] S. Albrecht, S. Liemhetcharat, and P. Stone. Special issue on
multiagent interaction without prior coordination: Guest
editorial. Autonomous Agents and Multi-Agent Systems,
2016.

[3] S. Albrecht and S. Ramamoorthy. A game-theoretic model
and best-response learning method for ad hoc coordination
in multiagent systems. Technical report, School of
Informatics, The University of Edinburgh, 2013.

[4] S. Albrecht and S. Ramamoorthy. On convergence and
optimality of best-response learning with policy types in
multiagent systems. In Proceedings of the 30th Conference
on Uncertainty in Artificial Intelligence, pages 12–21, 2014.

[5] S. Albrecht and S. Ramamoorthy. Exploiting causality for
selective belief filtering in dynamic Bayesian networks.
Journal of Artificial Intelligence Research, 55:1135–1178,
2016.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning, 47(2-3):235–256, 2002.

[7] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire.
Gambling in a rigged casino: The adversarial multi-armed
bandit problem. In Proceedings of the 36th Symposium on
the Foundations of Computer Science, pages 322–331, 1995.

[8] S. Barrett and P. Stone. Cooperating with unknown
teammates in complex domains: a robot soccer case study of
ad hoc teamwork. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence, pages 2010–2016, 2015.

[9] S. Barrett, P. Stone, and S. Kraus. Empirical evaluation of
ad hoc teamwork in the pursuit domain. In Proceedings of
the 10th International Conference on Autonomous Agents
and Multiagent Systems, pages 567–574, 2011.

[10] S. Barrett, P. Stone, S. Kraus, and A. Rosenfeld. Teamwork
with limited knowledge of teammates. In Proceedings of the
27th AAAI Conference on Artificial Intelligence, pages
102–108, 2013.

[11] M. Bowling and P. McCracken. Coordination and adaptation
in impromptu teams. In Proceedings of the 20th National
Conference on Artificial Intelligence, pages 53–58, 2005.

[12] X. Boyen and D. Koller. Tractable inference for complex
stochastic processes. In Proceedings of the 14th Conference
on Uncertainty in Artificial Intelligence, pages 33–42, 1998.

[13] D. Carmel and S. Markovitch. Learning models of intelligent
agents. In Proceedings of the 13th National Conference on
Artificial Intelligence, pages 62–67, 1996.

[14] D. Carmel and S. Markovitch. Exploration strategies for
model-based learning in multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 2(2):141–172, 1999.

[15] G. Chalkiadakis and C. Boutilier. Coordination in
multiagent reinforcement learning: a Bayesian approach. In
Proceedings of the 2nd International Conference on
Autonomous Agents and Multiagent Systems, pages 709–716,
2003.

[16] M. Chandrasekaran, P. Doshi, Y. Zeng, and Y. Chen. Team
behavior in interactive dynamic influence diagrams with
applications to ad hoc teams. In Proceedings of the 13th
International Conference on Autonomous Agents and
Multiagent Systems, pages 1559–1560, 2014.

[17] D. de Farias and N. Megiddo. Exploration-exploitation
tradeoffs for experts algorithms in reactive environments. In
Advances in Neural Information Processing Systems 17,
pages 409–416, 2004.

[18] P. Doshi and P. Gmytrasiewicz. On the difficulty of
achieving equilibrium in interactive POMDPs. In
Proceedings of the 21st National Conference on Artificial
Intelligence, pages 1131–1136, 2006.

[19] B. Fu. Multivariate polynomial integration and
differentiation are polynomial time inapproximable unless P

= NP. In Lecture Notes in Computer Science, volume 7285,
pages 182–191. Springer, 2012.

[20] P. Gmytrasiewicz and P. Doshi. A framework for sequential
planning in multiagent settings. Journal of Artificial
Intelligence Research, 24(1):49–79, 2005.

[21] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. In IEEE
Transactions on Systems Science and Cybernetics, volume 4,
pages 100–107, July 1968.

[22] R. Horst, P. Pardalos, and N. Thoai. Introduction to Global
Optimization. Kluwer Academic Publishers, 2000.

[23] E. Kalai and E. Lehrer. Rational learning leads to Nash
equilibrium. Econometrica, 61(5):1019–1045, 1993.

[24] E. Kalai and E. Lehrer. Weak and strong merging of
opinions. Journal of Mathematical Economics, 23:73–86,
1994.

[25] R. Karandikar, D. Mookherjee, D. Ray, and
F. Vega-Redondo. Evolving aspirations and cooperation.
Journal of Economic Theory, 80(2):292–331, 1998.

[26] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo
planning. In Proceedings of the 17th European Conference
on Machine Learning, pages 282–293. Springer, 2006.

[27] A. Ledezma, R. Aler, A. Sanchis, and D. Borrajo. Predicting
opponent actions by observation. In RoboCup 2003: Robot
Soccer World Cup VII, pages 286–296. Springer, 2004.

[28] R. Martinez-Cantin. BayesOpt: A Bayesian optimization
library for nonlinear optimization, experimental design and
bandits. Journal of Machine Learning Research,
15:3735–3739, 2014.

[29] J. Mockus. Bayesian approach to global optimization: theory
and applications. Springer Science & Business Media, 2013.

[30] K. Murphy and Y. Weiss. The factored frontier algorithm for
approximate inference in DBNs. In Proceedings of the 17th
Conference on Uncertainty in Artificial Intelligence, pages
378–385, 2001.

[31] J. Nachbar. Beliefs in repeated games. Econometrica,
73(2):459–480, 2005.

[32] A. Panella and P. Gmytrasiewicz. Interactive POMDPs with
finite-state models of other agents. Autonomous Agents and
Multi-Agent Systems, 2017.

[33] C. Rasmussen and C. Williams. Gaussian Processes for
Machine Learning. MIT Press, 2006.

[34] H. Robbins. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical Society,
58:527–535, 1952.

[35] J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian
optimization of machine learning algorithms. In Advances in
Neural Information Processing Systems 25, pages 2951–2959,
2012.

[36] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch,
D. Billings, and C. Rayner. Bayes’ bluff: opponent modelling
in poker. In Proceedings of the 21st Conference on
Uncertainty in Artificial Intelligence, pages 550–558, 2005.

[37] P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein. Ad hoc
autonomous agent teams: collaboration without
pre-coordination. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence, pages 1504–1509, 2010.

[38] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. The MIT Press, 1998.

[39] W. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25:285–294, 1933.

[40] C. Watkins and P. Dayan. Q-learning. Machine Learning,
8(3):279–292, 1992.

