Reasoning about Hypothetical Agent Behaviours and their Parameters

Stefano Albrecht and Peter Stone

Introduction

Motivation: Ad Hoc Teamwork

Design individual agent which can collaborate effectively with other agents, without pre-coordination

- Flexibility ability to collaborate with different teammates
- Efficiency find effective policy quickly
- AAAI 2010 Challenge Paper (Stone et al.)

Motivation: Ad Hoc Teamwork

Design individual agent which can collaborate effectively with other agents, without pre-coordination

Multiagent Interaction without Prior Coordination

JAAMAS Special Issue on MIPC AAMAS'17 Workshop on MIPC

mipc.inf.ed.ac.uk

Type-Based Method

Hypothesise possible types of other agents:

• Each type $\theta_j \in \Theta_j$ is blackbox behaviour specification

Introduction Approach Experiments

Type-Based Method

Hypothesise possible types of other agents:

• Each type $\theta_i \in \Theta_i$ is blackbox behaviour specification

Compute belief over types based on interaction history H^t

$$P(\theta_j|H^t) \propto P(H^t|\theta_j)P(\theta_j)$$

Introduction Approach Experiments

Type-Based Method

Hypothesise possible types of other agents:

• Each type $\theta_i \in \Theta_i$ is blackbox behaviour specification

Compute belief over types based on interaction history H^t

$$P(\theta_j|H^t) \propto P(H^t|\theta_j)P(\theta_j)$$

Plan own action with respect to belief over types

Type-Based Method

Introduction Approach Experiments

Type-Based Method

- HBA (Albrecht & Ramamoorthy, AlJ'16)
- PLASTIC (Barrett & Stone, AIJ'16)

Type-Based Method and Parameters

Type-based method useful for ad hoc teamwork:

- Flexible can hypothesise any types
- Efficient can learn true type with few observations
- But...

Introduction Approach Experiments

Type-Based Method and Parameters

Type-based method useful for ad hoc teamwork:

- Flexible can hypothesise any types
- Efficient can learn true type with few observations
- But...

Limitation: method does not recognise parameters in types!

- Complex behaviours often have parameters
- If we want to reason about n parameter settings, have to store n copies of same type with different parameter settings
 - ⇒ Inefficient, does not scale

Type-Based Method and Parameters

Goal in this work

Devise method which allows agent to reason about both:

- Relative likelihood of types and
- Values of bounded continuous parameters in types

Introduction Approach Experiments

Type-Based Method and Parameters

Goal in this work

Devise method which allows agent to reason about both:

- Relative likelihood of types and
- Values of bounded continuous parameters in types

- Keep blackbox nature of types (can be any model)
- Work with any continuous parameters in types

For each $\theta_j \in \Theta_j$, maintain parameter estimate $p \in [p^{\min}, p^{\max}]^n$ Update estimates after new observations

For each $\theta_j \in \Theta_j$, maintain parameter estimate $p \in [p^{\min}, p^{\max}]^n$ Update estimates after new observations

Updating estimate incurs two computational costs:

For each $\theta_j \in \Theta_j$, maintain parameter estimate $p \in [p^{\min}, p^{\max}]^n$ Update estimates after new observations

Updating estimate incurs two computational costs:

- Computing new parameter estimate
 Types are blackboxes: must sample effects of parameters
 - ⇒ Need general, efficient estimation methods

For each $\theta_j \in \Theta_j$, maintain parameter estimate $p \in [p^{\min}, p^{\max}]^n$ Update estimates after new observations

Updating estimate incurs two computational costs:

- Computing new parameter estimate
 Types are blackboxes: must sample effects of parameters
 - ⇒ Need general, efficient estimation methods
- Adjusting internal state of type
 May depend on history of observations and parameter values
 - ⇒ New estimate may introduce model inconsistency

Observe action a_i^{t-1} of agent j

Updating Parameter Estimates

Given type θ_j , update parameter estimate $p^{t-1} o p^t$

Type defines action likelihoods

$$P(a_j^{t-1} \mid H^{t-1}, \theta_j, {\color{red} p})$$

Idea: construct Bayesian update using polynomials

• Maintain prior $P(p|H^{t-1},\theta_i)$, represented as polynomial

Idea: construct Bayesian update using polynomials

- Maintain prior $P(p|H^{t-1}, \theta_j)$, represented as polynomial
- Approximate likelihood $f(p) = P(a_j^{t-1}|H^{t-1},\theta_j,p)$ as polynomial by sampling over p

Idea: construct Bayesian update using polynomials

- Maintain prior $P(p|H^{t-1},\theta_j)$, represented as polynomial
- Approximate likelihood $f(p) = P(a_j^{t-1}|H^{t-1},\theta_j,p)$ as polynomial by sampling over p
- Take convolution of prior and likelihood, refit to original degree, normalise to get posterior $P(p|H^t, \theta_j)$

Idea: construct Bayesian update using polynomials

- Maintain prior $P(p|H^{t-1}, \theta_j)$, represented as polynomial
- Approximate likelihood $f(p) = P(a_j^{t-1}|H^{t-1},\theta_j,p)$ as polynomial by sampling over p
- Take convolution of prior and likelihood, refit to original degree, normalise to get posterior $P(p|H^t, \theta_j)$
- Get parameter estimate p^t by taking maximum or sampling from posterior

Likelihood of
$$a_j^{t-1}$$
 given type θ_j

$$f(p) = P(a_j^{t-1}|H^{t-1},\theta_j,p)$$

Past action a_j^{t-1}

Prior

Likelihood of a_i^{t-1} given type θ_j $f(p) = P(a_i^{t-1}|H^{t-1},\theta_i,p)$

Past action a_i^{t-1}

Prior

Likelihood of a_i^{t-1} given type θ_j $f(p) = P(a_i^{t-1}|H^{t-1}, \theta_i, p)$

 \leftarrow Generate estimate p^t from posterior

Posterior (blue)

Exact Global Optimisation (EGO)

Estimation as Global Optimisation:

$$\arg\max_{p} \prod_{\tau=1}^{t} P(a_{j}^{\tau-1}|H^{\tau-1},\theta_{j},p)$$

Solve with Bayesian Optimisation

Selecting Types for Parameter Updates

Expensive to update all types after each observation...

Idea: let agent decide which types to update

Focus on types which are "most useful" to update

Two selection methods:

- Posterior selection
- Bandit selection

Posterior Selection

Focus on types which are believed to be most likely

• Don't waste time on unlikely types

But: can lead to premature convergence of belief to wrong type...

Occasionally update types which are less likely

Posterior Selection

Focus on types which are believed to be most likely

Don't waste time on unlikely types

But: can lead to premature convergence of belief to wrong type...

Occasionally update types which are less likely

Tradeoff: sample Φ from belief $P(\theta_j|H^{t-1})$

Bandit Selection

Assumption: parameter estimates converge

- Focus on types which are expected to make largest leap toward convergence
- Don't waste time on estimates that wouldn't change much

ntroduction Approach Experiments

Bandit Selection

Assumption: parameter estimates converge

- Focus on types which are expected to make largest leap toward convergence
- Don't waste time on estimates that wouldn't change much

Frame as multi-armed bandit problem:

- Each type θ_j is an arm
- Pulling arm (= updating type) θ_j gives reward

$$r^{t} = \eta^{-1} \sum_{k=1}^{n} |\rho_{k}^{t} - \rho_{k}^{t-1}|, \quad \eta = \sum_{k=1}^{n} \rho_{k}^{\mathsf{max}} - \rho_{k}^{\mathsf{min}}$$

• Can solve efficiently using bandit algorithm (e.g. UCB1)

Experiments

Level-Based Foraging

Blue = our agent, red = other agent

Goal: collect all items in minimal time

Agents and items have $\textit{skill levels} \in [0, 1]$

⇒ Have to coordinate skills

Level-Based Foraging

Red has one of 4 types:

 θ_j^{L1} : Search for item, try to load

 θ_j^{L2} : Search for *feasible* item, try to load

 θ_j^{F1} : Search for agent, load item closest to agent

 θ_j^{F2} : Search for agent, load closest *feasible* item

Level-Based Foraging

Red has one of 4 types:

- θ_j^{L1} : Search for item, try to load
- θ_i^{L2} : Search for feasible item, try to load
- θ_j^{F1} : Search for agent, load item closest to agent
- θ_j^{F2} : Search for agent, load closest *feasible* item

Each type has 3 parameters:

- level p₁
- view radius p₂
- view angle p₃

ntroduction Approach **Experiments**

Level-Based Foraging

Red has one of 4 types:

 θ_j^{L1} : Search for item, try to load

 θ_i^{L2} : Search for feasible item, try to load

 θ_j^{F1} : Search for agent, load item closest to agent

 θ_j^{F2} : Search for agent, load closest *feasible* item

Each type has 3 parameters:

- level p₁
- view radius p_2
- view angle p₃

Blue does not know true type, parameter values, or meaning of parameters Uses MCTS to plan own actions

Videos

2 agents, 5 items, 10×10 world Starting with random parameter estimates First video without updating Second video with updating, using bandit selection and EGO

3 agents, 10 items, 15×15 world Starting with random parameter estimates First video without updating Second video with updating, using bandit selection and EGO Introduction Approach **Experiments**

Results

15x15 world, 10 items, 3 agents Averaged over 500 random instances

ntroduction Approach **Experiments**

Results

15x15 world, 10 items, 3 agents Averaged over 500 random instances

Results

Average seconds (log-scale) needed per parameter update for single type

Results

Mean error in estimates of view radius p_2 for true type in 15x15 world (updating all types in each time step)

Results

Average belief $P(\theta_j^*|H^t)$ for true type θ_j^* in 10x10 world (updating all types in each time step)

 Updating single type after each observation already achieves substantial improvements over random estimates

- Updating single type after each observation already achieves substantial improvements over random estimates
- Posterior selection tends to select more greedily than Bandit selection, premature convergence of beliefs

- Updating single type after each observation already achieves substantial improvements over random estimates
- Posterior selection tends to select more greedily than Bandit selection, premature convergence of beliefs
- EGO best estimation, can detect parameter correlation, but also most expensive

- Updating single type after each observation already achieves substantial improvements over random estimates
- Posterior selection tends to select more greedily than Bandit selection, premature convergence of beliefs
- EGO best estimation, can detect parameter correlation, but also most expensive
- Future work: improved methods for type selection; theoretical understanding of interaction between parameter estimates and belief evolution

Thank you

Alexander von Humboldt Stiftung/Foundation

Raytheon

ntroduction Approach Experiments

Algorithm: Selective Parameter Updating

Given: type space Θ_j , initial belief $P(\theta_j|H^0)$ and parameter estimate p^0 for each $\theta_j \in \Theta_j$

Repeat for each t > 0:

- 1: Observe action a_i^{t-1} of agent j
- 2: Select a subset $\Phi \subset \Theta_j$ for parameter updates
- 3: For each $\theta_j \in \Phi$:
- 4: Obtain new parameter estimate p^t for θ_j
- 5: Adjust internal state of θ_j wrt p^t
- 6: Set $p^t = p^{t-1}$ for all $\theta_j \not\in \Phi$
- 7: For each $\theta_j \in \Theta_j$, update belief:

$$P(\theta_j|H^t) \propto P(a_j^{t-1}|H^{t-1},\theta_j,p^t) P(\theta_j|H^{t-1})$$