
DJ-MC: A Reinforcement Learning Agent for
Music Playlist Recommendation

Elad Liebman Maytal Saar-Tsechansky Peter Stone

University of Texas at Austin

May 11, 2015

1 / 35

Background & Motivation

I Many Internet radio services (Pandora,
last.fm, Jango etc.)

I Some knowledge of single song
preferences

I No knowledge of preferences over a
sequence

I ...But music is usually in context of
sequence

I Key idea - learn transition model for
song sequences

I Use reinforcement learning

2 / 35

Overview

I Use real song data to obtain
audio information

I Formulate the playlist
recommendation problem as
a Markov Decision Process

I Train an agent to adaptively
learn song and transition
preferences

I Plan ahead to choose the next
song (like a human DJ)

I Our results show that
sequence matters, and can be
efficiently learned

3 / 35

Reinforcement Learning Framework

The adaptive playlist generation problem – an episodic Markov
Decision Process (MDP) (S,A,P,R,T). For a finite set of n
songs and playlists of length k :

I State space S – the entire ordered sequence of songs
played, S = {(a1,a2, . . . ,ai)|1 ≤ i ≤ k ; ∀j ≤ i ,aj ∈M}.

I The set of actions A is the selection of the next song to
play, ak ∈ A, i.e. A =M.

I S and A induce a deterministic transition function P.
Specifically, P((a1,a2, . . . ,ai),a∗) = (a1,a2, . . . ,ai ,a∗)
(shorthand notation).

I R(s,a) is the utility the current listener derives from
hearing song a when in state s.

I T = {(a1,a2, . . .ak)}: the set of playlists of length k .

4 / 35

Reinforcement Learning Framework

The adaptive playlist generation problem – an episodic Markov
Decision Process (MDP) (S,A,P,R,T). For a finite set of n
songs and playlists of length k :

I State space S – the entire ordered sequence of songs
played, S = {(a1,a2, . . . ,ai)|1 ≤ i ≤ k ; ∀j ≤ i ,aj ∈M}.

I The set of actions A is the selection of the next song to
play, ak ∈ A, i.e. A =M.

I S and A induce a deterministic transition function P.
Specifically, P((a1,a2, . . . ,ai),a∗) = (a1,a2, . . . ,ai ,a∗)
(shorthand notation).

I R(s,a) is the utility the current listener derives from
hearing song a when in state s.

I T = {(a1,a2, . . .ak)}: the set of playlists of length k .

5 / 35

Reinforcement Learning Framework

The adaptive playlist generation problem – an episodic Markov
Decision Process (MDP) (S,A,P,R,T). For a finite set of n
songs and playlists of length k :

I State space S – the entire ordered sequence of songs
played, S = {(a1,a2, . . . ,ai)|1 ≤ i ≤ k ; ∀j ≤ i ,aj ∈M}.

I The set of actions A is the selection of the next song to
play, ak ∈ A, i.e. A =M.

I S and A induce a deterministic transition function P.
Specifically, P((a1,a2, . . . ,ai),a∗) = (a1,a2, . . . ,ai ,a∗)
(shorthand notation).

I R(s,a) is the utility the current listener derives from
hearing song a when in state s.

I T = {(a1,a2, . . .ak)}: the set of playlists of length k .

6 / 35

Reinforcement Learning Framework

The adaptive playlist generation problem – an episodic Markov
Decision Process (MDP) (S,A,P,R,T). For a finite set of n
songs and playlists of length k :

I State space S – the entire ordered sequence of songs
played, S = {(a1,a2, . . . ,ai)|1 ≤ i ≤ k ; ∀j ≤ i ,aj ∈M}.

I The set of actions A is the selection of the next song to
play, ak ∈ A, i.e. A =M.

I S and A induce a deterministic transition function P.
Specifically, P((a1,a2, . . . ,ai),a∗) = (a1,a2, . . . ,ai ,a∗)
(shorthand notation).

I R(s,a) is the utility the current listener derives from
hearing song a when in state s.

I T = {(a1,a2, . . .ak)}: the set of playlists of length k .

7 / 35

Reinforcement Learning Framework

The adaptive playlist generation problem – an episodic Markov
Decision Process (MDP) (S,A,P,R,T). For a finite set of n
songs and playlists of length k :

I State space S – the entire ordered sequence of songs
played, S = {(a1,a2, . . . ,ai)|1 ≤ i ≤ k ; ∀j ≤ i ,aj ∈M}.

I The set of actions A is the selection of the next song to
play, ak ∈ A, i.e. A =M.

I S and A induce a deterministic transition function P.
Specifically, P((a1,a2, . . . ,ai),a∗) = (a1,a2, . . . ,ai ,a∗)
(shorthand notation).

I R(s,a) is the utility the current listener derives from
hearing song a when in state s.

I T = {(a1,a2, . . .ak)}: the set of playlists of length k .

8 / 35

Song Descriptors

I Used a large archive - The Million Song Dataset
(Bertin-Mahieux et al.

I Feature analysis and metadata provided by The Echo Nest
I 44745 different artists, 106 songs
I Used features describing timbre (spectrum), rhythmic

characteristics, pitch and loudness
I 12 meta-features in total, out of which 2 are

12-dimensional, resulting in a 34-dimensional feature
vector

9 / 35

Song Representation

To obtain more compact state and action spaces, we represent
each song as a vector of indicators marking the percentile bin
for each individual descriptor:

10 / 35

Transition Representation

To obtain more compact state and action spaces, we represent
each transition as a vector of pairwise indicators marking the
percentile bin transition for each individual descriptor:

11 / 35

Modeling The Reward Function

We make several simplifying assumptions:
I The reward function R corresponding to a listener can be

factored as R(s,a) = Rs(a) + Rt(s,a).
I For each feature, for each each 10-percentile, the listener

assigns reward
I for each feature, for each percentile-to-percentile transition,

the listener assigns transition reward
I In other words, each listener internally assigns 3740

weights which characterize a unique preference.
I Transitions considered throughout history, stochastically

(last song - non-Markovian state signal)
I totalRewardt = Rs(at) + Rt((a1, . . . ,at−1),at) where

E [Rt((a1, . . . ,at−1),at)] =
t−1∑
i=1

1
i2 rt(at−i ,at)

12 / 35

Expressiveness of the Model

I Does the model capture
differences between
separate types of transition
profiles? Yes

I Take same pool of songs
I Consider songs appearing

in sequence originally vs.
songs in random order

I Song transition profiles
clearly different (19 of 34
features separable)

13 / 35

Learning Initial Models

14 / 35

Planning via Tree Search

15 / 35

Full DJ-MC Architecture

16 / 35

Experimental Evaluation in Simulation

I Use real user-made playlists to model listeners
I Generate collections of random listeners based on models
I Test algorithm in simulation
I Compare to baselines: random, and greedy
I Greedy only tries to learn song rewards

17 / 35

Experimental Evaluation in Simulation

I DJ-MC agent gets more
reward than an agent
which greedily chooses the
“best” next song

I Clear advantage in “cold
start” scenarios

18 / 35

Experimental Evaluation on Human Listeners

I Simulation useful, but human listeners are (far) more
indicative

I Implemented a lab experiment version, with two variants:
DJ-MC and Greedy

I 24 subjects interacted with Greedy (learns song
preferences)

I 23 subjects interacted with DJ-MC (also learns transitions)
I Spend 25 songs exploring randomly, 25 songs exploiting

(still learning)
I queried participants on whether they liked/disliked songs

and transitions

19 / 35

Experimental Evaluation on Human Listeners

I To analyze results and estimate distributions, used
bootstrap resampling

I DJ-MC gains substantially more reward (likes) for
transitions

I Comparable for song transitions
I Interestingly, transition reward for Greedy somewhat better

than random

20 / 35

Experimental Evaluation on Human Listeners

21 / 35

Experimental Evaluation on Human Listeners

22 / 35

Related Work

I Chen et al., Playlist prediction via metric embedding, KDD
2012

I Aizenberg et al., Build your own music recommender by
modeling internet radio streams, WWW 2011

I Zheleva et al., Statistical models of music-listening
sessions in social media, WWW 2010

I Mcfee and Lanckriet, The Natural Language of Playlists,
ISMIR 2011

23 / 35

Summary

I Sequence matters.
I Learning meaningful sequence preferences for songs is

possible.
I A reinforcement-learning approach that models transition

preferences does better (on actual human participants)
compared to a method that focuses on single song
preferences only.

I Learning can be done with respect to a single listener and
online, in reasonable time and without strong priors.

24 / 35

Questions?

Thank you for listening!

25 / 35

A few words on representative selection

26 / 35

1: Input: data x0 . . . xm, required distance δ
2: Initialize representatives = ∅.
3: Initialize clusters = ∅
4: representative assignment subroutine, RepAssign, lines

5-22:
5: for i = 0 to m do
6: Initialize dist =∞
7: Initialize representative = null
8: for rep in representatives do
9: if d(xi , rep) ≤ dist then

10: representative = rep
11: dist = d(xi , rep)
12: end if
13: end for
14: if dist ≤ δ then
15: add xi to clusterrepresentative
16: else
17: representative = xi
18: Initialize clusterrepresentative = ∅
19: add xi to clusterrepresentative
20: add clusterrepresentative to clusters
21: end if

22: end for

27 / 35

A few words on representative selection

1: Input: data x0 . . . xm, required distance δ
2: t = 0
3: Initialize representativest=0 = ∅.
4: Initialize clusters = ∅
5: repeat
6: t = t + 1
7: call RepAssign subroutine, lines 5-22 of Algorithm 2
8: Initialize representativest = ∅
9: for cluster in clusters do

10: representative = argmin
s∈cluster

∑
x∈cluster d(x , s) s.t.

∀x ∈ cluster .d(x , s) ≤ δ
11: add representative to representativest
12: end for
13: until representativest ≡ representativest−1

28 / 35

Tree-Search Algorithm
1: Input: Song corpusM, planning horizon q
2: Select upper median ofM,M∗, based on Rs
3: BestTrajectory = null
4: HighestExpectedPayoff = −∞
5: while computational power not exhausted do
6: trajectory = []
7: for 1.. . . . q do
8: song ← selected randomly fromM∗

(avoiding repetitions)
9: optional:

song_type← selected randomly from song_types(M∗)

(avoiding repetitions, song_types(·) reduces the set to clusters)
10: add song to trajectory
11: end for
12: expectedPayoffForTrajectory =

Rs(song1) +
q∑

i=2
(Rt ((song1, . . . , songi−1), songi) + Rs(songi))

13: if expectedPayoffForTrajectory > HighestExpectedPayoff then
14: HighestExpectedPayoff = expectedPayoffForTrajectory
15: BestTrajectory = trajectory
16: end if
17: end while
18: optional: if planning over types, replace BestTrajectory[0] with song.
19: return BestTrajectory[0]

29 / 35

Model Update

1: Input: Song corpus,M
Planned playlist duration, K

2: for i ∈ {1, . . . ,K} do
3: Use Algorithm 4 to select song ai , obtaining reward ri
4: let r̄ = average({r1, . . . , ri−1})
5: rincr = log(ri/r̄)

weight update:
6: ws = Rs(ai)

Rs(ai)+Rt (ai−1,ai)

7: wt =
Rt (ai−1,ai)

Rs(ai)+Rt (ai−1,ai)

8: φs = i
i+1 · φs + 1

i+1 · θs · ws · rincr

9: φt = i
i+1 · φt + 1

i+1 · θt · wt · rincr

10: Per d ∈ descriptors, normalize φd
s , φ

d
t

(where φd
x denotes coordinates in φx corresponding to 10-percentile bins of

descriptor d)
11: end for

30 / 35

Initializing Song Preferences

1: Input: Song corpus,M
Number of preferred songs to be provided by listener, ks

2: initialize all coordinates of φs to 1/(ks +#bins)
3: preferredSet = {a1, . . . ,aks} (chosen by the listener)
4: for i = 1 to ks do
5: φs = φs +

1
(ks+1) · θs(ai)

6: end for

31 / 35

Initializing Transition Preferences

1: Input: Song corpusM
Number of transitions to poll the listener, kt

2: initialize all coordinates of φt to 1/(kt +#bins)
3: Select upper median ofM,M∗, based on Rs
4: δ = 10th percentile of all pairwise distances between songs

inM
5: representative set C = δ -medoids (M∗)
6: song0 = choose a song randomly from C
7: for i = 1 to kt do
8: songi ← chosen by the listener from C
9: φt = φt +

1
(kt +1) · θt(songi−1, songi)

10: end for

32 / 35

Full DJ-MC Architecture

1: Input: M - song corpus, K - planned playlist duration, ks -
number of steps for song preference initialization, kt - the
number of steps for transition preference initialization

Initialization:
1: Initialize song preferences with corpusM and parameter ks

to initialize song weights φs.
2: Initialize transition preferences with corpusM and

parameter kt to initialize transition weights φt .
Planning and Model Update:

1: Simultaneously exploit and learn for K steps with corpusM
(this procedure iteratively selects the next song to play by
calling the tree search procedure, and then updates Rs and
Rt . This is repeated for K steps.)

33 / 35

Joint Feature Dependence

34 / 35

Joint Feature Dependence

35 / 35

