DJ-MC: A Reinforcement Learning Agent for
Music Playlist Recommendation

Elad Liebman  Maytal Saar-Tsechansky Peter Stone
University of Texas at Austin

May 11, 2015

/35



Background & Motivation

» Many Internet radio services (Pandora,
last.fm, Jango etc.)

» Some knowledge of single song
preferences

» No knowledge of preferences over a PANDORA

sequence | %tfm

» ...But music is usually in context of
sequence

» Key idea - learn transition model for
song sequences

» Use

2/35



S B

» Use real song data to obtain
audio information

» Formulate the playlist
recommendation problem as
a Markov Decision Process

» Train an agent to adaptively
learn song and transition
preferences

» Plan ahead to choose the next
song (like a human DJ)

» Our results show that
sequence matters, and can be
efficiently learned

3/35



Reinforcement Learning Framework

The adaptive playlist generation problem — an episodic Markov
Decision Process (MDP) (S, A, P, R, T). For afinite set of n
songs and playlists of length k:

» State space S — the entire ordered sequence of songs
played, S = {(a, a,...,a)|1 <i<k;Vj<ia e M}

» The set of actions A is the selection of the next song to
play, ax € A, i.e. A= M.

» S and Ainduce a deterministic transition function P.
Specifically, P((ay, ao, ..., aj),a*) = (ai, az, ..., a;,a")
(shorthand notation).

» R(s, a) is the utility the current listener derives from
hearing song a when in state s.

» T ={(ai,an,...ak)}: the set of playlists of length k.

/35



Reinforcement Learning Framework

The adaptive playlist generation problem — an episodic Markov
Decision Process (MDP) (S, A, P, R, T). For afinite set of n
songs and playlists of length k:

» State space S — the entire ordered sequence of songs
played, S = {(ar1, az,...,a)|1 < i< k;Vj<i a € M}

» The set of actions A is the selection of the next song to
play, ax € A i.e. A= M.

» S and Ainduce a deterministic transition function P.
Specifically, P((ay, ao, ..., aj),a*) = (ai, az, ..., a;,a")
(shorthand notation).

» R(s, a) is the utility the current listener derives from
hearing song a when in state s.

» T ={(ai,an,...ak)}: the set of playlists of length k.

/35



Reinforcement Learning Framework

The adaptive playlist generation problem — an episodic Markov
Decision Process (MDP) (S, A, P, R, T). For afinite set of n
songs and playlists of length k:

» State space S — the entire ordered sequence of songs
played, S = {(ar1, az,...,a)|1 < i< k;Vj<i a € M}

» The set of actions A is the selection of the next song to
play, ax € A, i.e. A= M.

» S and Ainduce a deterministic transition function P.
Specifically, P((ai, as, ..., aj),a*) = (a1, a2, ..., aj, a")
(shorthand notation).

» R(s, a) is the utility the current listener derives from
hearing song a when in state s.

» T ={(ai,an,...ak)}: the set of playlists of length k.

/35



Reinforcement Learning Framework

The adaptive playlist generation problem — an episodic Markov
Decision Process (MDP) (S, A, P, R, T). For afinite set of n
songs and playlists of length k:

» State space S — the entire ordered sequence of songs
played, S = {(ar1, az,...,a)|1 < i< k;Vj<i a € M}

» The set of actions A is the selection of the next song to
play, ax € A, i.e. A= M.

» S and Ainduce a deterministic transition function P.
Specifically, P((ay, ao, ..., aj),a*) = (ai, az, ..., a;,a")
(shorthand notation).

» R(s, a) is the utility the current listener derives from
hearing song a when in state s.

» T ={(ai,an,...ak)}: the set of playlists of length k.

/35



Reinforcement Learning Framework

The adaptive playlist generation problem — an episodic Markov
Decision Process (MDP) (S, A, P, R, T). For afinite set of n
songs and playlists of length k:

» State space S — the entire ordered sequence of songs
played, S = {(ar1, az,...,a)|1 < i< k;Vj<i a € M}

» The set of actions A is the selection of the next song to
play, ax € A, i.e. A= M.

» S and Ainduce a deterministic transition function P.
Specifically, P((ay, ao, ..., aj),a*) = (ai, az, ..., a;,a")
(shorthand notation).

» R(s, a) is the utility the current listener derives from
hearing song a when in state s.

» T ={(ay,an,...a)}: the set of playlists of length k.

/35



Song Descriptors

visual representation of acoustic features, 10e6 song dataset

: tLW*W W‘WWWMWWWW o W‘W‘W i W AP WW} " l

» Used a large archive - The Million Song Dataset
(Bertin-Mahieux et al.

» Feature analysis and metadata provided by The Echo Nest
» 44745 different artists, 108 songs

» Used features describing timbre (spectrum), rhythmic
characteristics, pitch and loudness

» 12 meta-features in total, out of which 2 are
12-dimensional, resulting in a 34-dimensional feature
vector

9/35



Song Representation

To obtain more compact state and action spaces, we represent
each song as a vector of indicators marking the percentile bin
for each individual descriptor:

song = (13.3, 15.4, 0.53, ..., 22.7, 107.65)

feature_1 ét_ure_z feature_3 feature_k
X _V

N

Percentile

Bins /

e/

10/35



Transition Representation

To obtain more compact state and action spaces, we represent
each transition as a vector of pairwise indicators marking the
percentile bin transition for each individual descriptor:

song_a = (13.3, 15.4, 0.53, ..., 22.7, 107.65)
song_b 479.6,2.2 ,0.17, ..., 11.8, 56.83)

feature
_1la

11/35



Modeling The Reward Function

We make several simplifying assumptions:

>

The reward function R corresponding to a listener can be
factored as R(s, a) = Rs(a) + Ri(s, a).

For each feature, for each each 10-percentile, the listener
assigns

for each feature, for each percentile-to-percentile transition,
the listener assigns

In other words, each listener internally assigns 3740
weights which characterize a unique preference.
Transitions considered throughout history, stochastically
(last song - non-Markovian state signal)

totalReward; = Rs(a;) + Ri((ay, ..., ar_1), a:) where
t—1
E[Ri((a1, .- ar1),a)]l = 3. wrlari, ar)

i=1

12/35



Expressiveness of the Model

» Does the model capture
differences between
separate types of transition
profiles? Yes

» Take same pool of songs

» Consider songs appearing
in sequence originally vs.
songs in random order

» Song transition profiles
clearly different (19 of 34
features separable)

avg distance normalized by percentiles

5 5
features

13/35



Learning Initial Models _

arn Initial Song Preferences (Que

Random Transition Selections fr

Use Active Feedback to Initialize Transition
t Preferences J

14/35



Planning via Tree Search _

‘ Filter Upper Median of Corpus J

L&

S—
__

15/35



Full DJ-MC Architecture

Input: Song Corpus M,
sequence length K

e

Learn Song Learn
—— Transition
Preferences ‘ Preferences

Assign Credit
to Song and

Plan via Tree
Search

|

Obtain Reward
from Listener

16/35



Experimental Evaluation in Simulation

v

Use real user-made playlists to model listeners

Generate collections of random listeners based on models
Test algorithm in simulation

Compare to baselines: random, and greedy

Greedy only tries to learn song rewards

v

v

v

v

17/35



Experimental Evaluation in Simulation

cumulative reward distribution at 10 steps

@

» DJ-MC agent gets more
reward than an agent :
which greedily chooses the
“best” next song

» Clear advantage in “cold
start” scenarios

reward

,_cumulative reward distribution at 30 steps

18/35



Experimental Evaluation on Human Listeners

» Simulation useful, but human listeners are (far) more
indicative

» Implemented a lab experiment version, with two variants:
DJ-MC and Greedy

» 24 subjects interacted with Greedy (learns song
preferences)

» 23 subjects interacted with DJ-MC (also learns transitions)

» Spend 25 songs exploring randomly, 25 songs exploiting
(still learning)

» queried participants on whether they liked/disliked songs
and transitions

19/35



Experimental Evaluation on Human Listeners

v

To analyze results and estimate distributions, used
bootstrap resampling

DJ-MC gains substantially more reward (likes) for
transitions

v

v

Comparable for song transitions

v

Interestingly, transition reward for Greedy somewhat better
than random

20/35



Experimental Evaluation on Human Listeners

Before
Learning

After
Learning

o
&

15

10

(a) bootstrapped distribution, greedy vs. di-me
songreward, 1-25

“w-greedy
2l Song A d-me
Reward § W
v
, ¥
¥ 7
o [} &
ververesil Errverveeey
(a) cumulative reward
(¢) bootstrapped distribution, greedy vs. di-mc
songreward, 25-50
reedy
i 4
5 v
ot e
(REELELI L 1~0 15 S 20
(¢) cumulative reward

(b) bootstrapped distribution, greedy vs. di-me
transition reward, 1-25

30
s ~9-greed
Transition
iy b il
o0| Reward -
K
10 i
o X3
) T "
X VYT 10 ,.’»21‘25 250
(b) cumulative reward
(d) bootstrapped distribution, greedy vs. di-mc
transition reward, 25-50
20
15 £
&t
5
v €%
y (2
B T o A
% 10 A5V %
(d) cumulative reward

21/35



Experimental Evaluation on Human Listeners
() bootstrapped distribution, greedy vs. dji-mc (b) bootstrapped distribution, greedy vs. di-mc
songreward, 1-25 transition reward, 1-25
25 30
Before ool Song N Transition /|
’ R d o Reward (7%
Learning ewar 7| % 20 3
15 H 2
& ¢ | % &
i il 10
9/ 4
34 g -
\RARA 1 AARSRARART vy ] TERITTIIRTIYY
(a) cumulative reward )C reward
(c) bootstrapped distribution|, greedy vs. dj-mc (d) bootstrapped disfribution, greedy vs. di-mc
songrevsard, 25-50 transitjor reward, 25-50
20 20
After

Learning 15 15

210 2o

5 5

4 Y
.J,g e
aAAASARRTS TR 10 NARRRRRRRE )

(c) cumulative reward (d) cumulative reward

22/35



Related Work

» Chen et al., Playlist prediction via metric embedding, KDD
2012

» Aizenberg et al., Build your own music recommender by
modeling internet radio streams, WWW 2011

» Zheleva et al., Statistical models of music-listening
sessions in social media, WWW 2010

» Mcfee and Lanckriet, The Natural Language of Playlists,
ISMIR 2011

23/35



Summary

» Sequence matters.

» Learning meaningful sequence preferences for songs is
possible.

» A reinforcement-learning approach that models transition
preferences does better (on actual human participants)

compared to a method that focuses on single song
preferences only.

» Learning can be done with respect to a single listener and
online, in reasonable time and without strong priors.

24/35



V8. gime

geety geedyus dmc
songreward, 125 ranstonreward, 125
B
Before ) Song A E Transton Fimy
Learning Reward 47w 20 Reward /7Y
M IS 4
’ F B Y
1 LA i
y ! 10 [
| P pol

J

Questions? o L S

lamaneman Blemaie

geedyvs. drme geedyvs. d-me
‘songreward, 25-50 ‘ransitionreward, 25-50
Input: Song Corpus M, e A n B
sequence length K S A T
AR |
10 1 ] £

Leam Song Leam
_— Transition

Plan via Tree

Assign Credit

QObtain Reward

w from Listener

Thank you for listening!

25/35



A few words on representative selection

% renicer (a) clustering (b) representative selection
X X representatives X 3 S
2 x 2 .
§ X "
i R ‘ g(x: ! X%
5 S 0 - RS .
0 3¢ j‘( WX 0 "><. % + X o
¥ X X et e . X
X XXX % c el
-1 % x X .. Y. " SRCE
° x x . x
-2 X X _2 A
X X
_3 -
X X
4352 -1 o 1 45— -1 o i 5 3

26/35



21:
. end for

RN AWM~

Input: data xg . . . xm, required distance §

Initialize representatives = (.

Initialize clusters = )

geg;esentative assighment subroutine, RepAssign, lines

for i =0to mdo
Initialize dist = co
Initialize representative = null
for rep in representatives do
if d(x;, rep) < dist then
representative = rep
dist = d(x;, rep)
end if
end for
if dist < ¢ then
add x; to clusterrepresentative
else
representative = x;
Initialize cluster;epresentative = 0
add x; to clusterrepresentative
add clusterrepresentative 10 clusters
end if

27/35



A few words on representative selection

Input: data x; . . . X, required distance §
t=0
Initialize representatives;_q = 0.
Initialize clusters = ()
repeat
t=1t+1
call RepAssign subroutine, lines 5-22 of Algorithm 2
Initialize representatives; = ()
for cluster in clusters do

representative = argminy ., . .s.er (X, S) s.1.
sccluster
Vx € cluster.d(x,s) < ¢

11: add representative to representatives;
12:  end for
13: until representatives; = representatives;_1

QU NSO RGN 2

—_

28/35



Tree-Search Algorithm

©

10:
11:
12:

13:
14.
15:
16:
17:
18:
19:

NoaR®N

Input: Song corpus M, planning horizon g
Select upper median of M, M*, based on Rs
BestTrajectory = null
HighestExpectedPayoff = —oo
while computational power not exhausted do
trajectory = ||
fori.....gdo
song < selected randomly from A*
(avoiding repetitions)
optional:
song_type <+ selected randomly from song_types(M*)
(avoiding repetitions, song_types(-) reduces the set to clusters)
add song to trajectory
end for
expectedPayoffForTrajectory =

g
Rs(song1) + Zz(Rt((SO”% ;- --,50Ngj_1), song;) + Rs(song;))
p

if expectedPayoffForTrajectory > HighestExpectedPayoff then
HighestExpectedPayoff = expectedPayoffForTrajectory
Bestlrajectory = trajectory
end if
end while
optional: if planning over types, replace BestTrajectory|0] with song.
return BestTrajectory[0]

29/35



Model Update

—_

11:

QX N @

: Input: Song corpus, M

Planned playlist duration, K
for ic{1,...,K} do
Use Algorithm 4 to select song a;, obtaining reward r;
let 7 = average({r1,...,ri_1})
Tiner = log(r;/T)
weight update:

We — Rs(a;)
S ™ Rs(a)+Ri(ai—1,a)
W = Ri(aj—1,3;)

Rs(@)+Rilai—1.a)
(z)s:ﬁ'd)s‘f',-%'@s'ws'rincr
<f>t:,-f1'¢t+,v%1'9t'wt'fincr

Per d € descriptors, normalize ¢¢, ¢¢

(where $2 denotes coordinates in ¢x corresponding to 10-percentile bins of
descriptor d)
end for

30/35



Initializing Song Preferences

. Input: Song corpus, M

Number of preferred songs to be provided by listener, ks
initialize all coordinates of ¢s to 1/(ks + #bins)
preferredSet = {ay, ..., ax,} (chosen by the listener)
for i =1 to ks do

s = ¢s+ (ks17+1) -0s(aj)
end for

31/35



Initializing Transition Preferences

W

10:

.in/\/l

: Input: Song corpus M

Number of transitions to poll the listener, k;
initialize all coordinates of ¢; to 1/(k; + #bins)
Select upper median of M, M*, based on Rs
= 10th percentile of all pairwise distances between songs

representative set C = § -medoids (M*)
songgy = choose a song randomly from C
for i =1 to k; do

song; <+ chosen by the listener from C

¢t = ¢t + iy - O(s0Ng;_1, s0Ng;)

end for

32/35



Full DJ-MC Architecture

1: Input: M - song corpus, K - planned playlist duration, ks -
number of steps for song preference initialization, k; - the
number of steps for transition preference initialization

Initialization:

1: Initialize song preferences with corpus M and parameter kg
to initialize song weights ¢s.

2: Initialize transition preferences with corpus M and
parameter K; to initialize transition weights ¢.

Planning and Model Update:

1: Simultaneously exploit and learn for K steps with corpus M
(this procedure iteratively selects the next song to play by
calling the tree search procedure, and then updates R and
R;. This is repeated for K steps.)

33/35



Joint Feature Dependence

cumulative reward distribution at 10 steps dependent listeners.

random| .
greedy
DMc

cumulative reward distribution at 30 steps dependent listeners.

34/35



Joint Feature Dependence

cumulative reward distribution at 10 steps

listeners

)
reward

reward

35/35



