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ABSTRACT
This paper addresses an epidemiologic inference problem where,

given realtime observation of test results, presence of symptoms,

and physical contacts, the most likely infected individuals need to

be inferred. The inference problem is modeled as a hidden Markov

model where infection probabilities are updated at every time step

and evolve between time steps. We suggest a unique inference

approach that avoids storing the given observations explicitly. The-

oretical justification for the proposed model is provided under

specific simplifying assumptions. To complement these theoretical

results, a comprehensive experimental study is performed using a

custom-built agent-based simulator that models inter-agent con-

tacts. The reported results show the effectiveness of the proposed

inference model when considering more realistic scenarios – where

the simplifying assumptions do not hold. When pairing the pro-

posed inference model with a simple testing and quarantine policy,

promising trends are obtained where the epidemic progression is

significantly slowed down while quarantining a bounded number

of individuals.
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1 INTRODUCTION
When combating an ongoing epidemic, many authorities attempt

to hinder or even halt the disease spread across the community. Sev-

eral tools are utilized towards achieving this objective. In general,
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these can be divided into two classes, disease surveillance [12] and

containment strategies [23]. Disease surveillance tools commonly

use observations such as test results, presence of symptoms, and

physical contact patterns along with epidemic models for anticipat-

ing the disease progression. Based on the surveillance projection,

containment strategies can appropriately be applied. Containment

strategies may include individual or collective quarantine orders,

enforcing social distancing, closing certain public facilities such as

schools or shops, etc. See Walensky and Del-Rio [23] for a survey

on such strategies.

Effective combinations between surveillance tools and contain-

ment strategies were shown to lead to desirable outcomes w.r.t.

epidemic progression [8, 14, 20]. The approaches proposed in these

publications, however, rely on simple inference rules regarding

individual infection likelihood. For instance, by ranking the in-

fection likelihood based on a weighted combination of observed

symptoms [10].

We present a novel approach for infection inference that reports

individual infection probabilities per day over the entire population.

We show how such an approach, when paired with a simple con-

tainment strategy, is highly successful in hindering the epidemic

progression in a simulated community.

The proposed inference approach models the problem as a hid-

den Markov model [9], where every time step is defined by indi-

vidual infection probabilities (the belief state) and a compressed

representation of the physical contact history. At every state a set

of observations is provided, namely, test results for a subset of

the community, symptom presence for each individual, and physi-

cal contacts within the community. Based on these observations

and given conditional probabilities (false-positive/negative test and

symptoms rates), the individual infection probabilities are updated.

Finally, the transition probabilities are defined by the probability

of recovering (transitioning from being infected to recovered) per

time step.

The inference procedure is justified using a set of simplifying

assumptions. In order to compliment these theoretical results, we

present a comprehensive experimental study using a custom-built



agent-based simulator. Our experimental study shows the effective-

ness of the proposed approach in more realistic settings where the

simplifying assumptions might be violated.

2 PROBLEM DEFINITION
We consider a scenario where a population, 𝑆 , is exposed to an

infectious disease. At every time step, 𝑡 , a subset of the population,

𝐼𝑡 ⊂ 𝑆 , is sick. The median individual sickness period is known and

denoted, 𝑑 . We define an infection event for individual 𝑠𝑖 at time 𝑡

by 𝑠𝑖 ∈ 𝐼𝑡+1 and 𝑠𝑖 /∈ 𝐼𝑡 . Note that we use the term ‘sick’ in lieu of

the term infected which is more common in the epidemiological

literature.We do so in order to avoid confusion between an infection

event and a state of being infected which is denoted ‘sick’. Once

an individual is infected, they will remain sick (and infectious to

others) until they recover. Each individual can be tested at any time

step to determine if they are sick. The test false positive and false

negative rates are known and denoted 𝐹+𝑡𝑒𝑠𝑡 and 𝐹−𝑡𝑒𝑠𝑡 respectively.
Every individual can also be showing symptoms (or not) at every

time step. The probability of showing symptoms and not being sick

is known and denoted 𝐹+𝑠𝑦𝑚𝑝 . Similarly, the probability of showing

no symptoms and being sick is known and denoted 𝐹−𝑠𝑦𝑚𝑝 . We

define the Sickness Likelihood Inference problem as follows.

Goal: compute a sickness belief state over the entire population.

That is, compute a vector of probabilities, 𝐵 = R |𝑆 | , where 𝐵[𝑖]

represents the probability that individual 𝑖 is currently sick (and

infectious).

Input: The following observations are provided at every time step,

𝑡 :

• Test results for a subset, of the population.

• The existence of symptoms for each individual.

• Contact graph as a symmetric matrix, 𝐶𝑡 = R
|𝑆 |× |𝑆 |

. 𝐶𝑡 [𝑖, 𝑗],

represents the transmission probability between individuals

𝑖 and 𝑗 during time step 𝑡 .

In a real-world scenario some of these inputs might be unknown.

For instance, some individuals might refuse to report existing symp-

toms or who they were in contact with. We consider such partial

observability in the experimental study.

Desiderata: The proposed solution should (a)maximize prediction

accuracy regarding sick individuals, and (b) avoid storing the full

contact, testing, and symptoms history due to computational and

memory limitations as well as privacy concerns.

3 RELATEDWORK
Previous work [11, 21] attempted to estimate the individual sick-

ness (for covid-19) probabilities based on different features, namely,

age, gender, presence of prior medical conditions, general feeling,

and the symptoms fever, cough, shortness of breath, sore throat

and loss of taste or smell. The observed correlations between the

mentioned attributes and positively testing for covid-19 were re-

ported. These studies, however, did not consider physical contact

tracing or inference over successive days.

Grushka et al. [10] considered similar symptom attributes along

with a binary attribute designating contact with a confirmed case.

Full contact history was not considered based on the following

explanation, “The purpose of data security is similar to the task

of testing and contact tracing organizations. The sheer amount

of daily user activity in IT database systems prevents testing and

logging every action”. Grushka et al. showed that reported contact

with a confirmed case was the dominant feature for determining

the probability that an individual will be tested positive. Again,

a Markov process was not assumed, and probabilities were not

updated over time.

Another line of previous work [1, 4, 17–19] did model epidemic

progression as a Markov process. However, such models assume full

observability regarding the susceptible, infected, and recovered sub-

groups. The resulting statistical inference relates to the infection

distribution for the entire population and not per individual.

4 SICKNESS LIKELIHOOD INFERENCE
PROCEDURE

We address the sickness likelihood inference problem as a hidden

Markov model [9] where the sickness probabilities define the state

space. At each time step, the sickness probabilities are updated ac-

cording to test results, symptoms, and contact observations. At each

state transition the infection probabilities are updated according to

a recovery probability.

Applying the Markov property to the affiliated state space seems

counter-intuitive since updating the sickness probabilities for the

current state impacts the infection probabilities in previous time

steps. For example, if 𝑠𝑖 tested positive today, the sickness prob-

ability for its previous physical contacts should be increased. In

order to maintain the Markov property, we include a compressed

representation of the contact history in each state. Such a com-

pressed representation also complies with the desired feasibility

and privacy restrictions that prohibit explicitly storing the contact

history. Algorithm 1 details our proposed solution.

At every time step, three data-fields are updated and stored per

individual, 𝑠𝑖 . These are, sickness probability (𝐵[𝑖]), double decayed

contact history (𝐶𝛾2 [𝑖]), and triple decayed contact history (𝐶𝛾3 [𝑖]).

Each of the decayed contact histories is stored as a symmetric matrix

with an entry per (unordered) pair of individuals in the commu-

nity. We denote these matrices as double and triple decayed contact

histories since they are decayed by factors 𝛾2 and 𝛾3 respectively.

The intuition behind these decay factors is not straightforward.

This need is derived from the mathematical representation of the

problem under a set of assumptions that are discussed later in the

“Theoretical Analysis” section. Both contact matrices are initialized

as a zero matrix in Lines 4 and 5. The diagonals of both contact

matrices are set as constant at 𝐶𝛾2 [𝑖, 𝑖] = 1 and 𝐶𝛾3 [𝑖, 𝑖] = 0. The

specified data-fields define the state space in the affiliated HMM

representation. A decay rate, 𝛾 , is set such that an initial probability

of 1 would decay to 0.5 after 𝑑 days (Line 3). This decay rate repre-

sents a recovery probability of 0.5 by the median infection period

(𝑑). Such a decay rate assumes a constant per day probability of

recovering (see Assumption 1 in the “Theoretical Analysis” section).

Line 16 updates both (double and triple) decayed contact history to

include the contacts reported for the current time step (𝐶𝑡 ). Recall

that the entries of matrices 𝐶𝛾2 , 𝐶𝛾3 , and 𝐶𝑡 represent probabilities.

As a result, every entry is capped at 1.



Algorithm 1: Sickness Likelihood Inference

Input: daily contacts, test results, and symptoms report

Result: Daily individual sickness probabilities, 𝐵

1 Initialization:
2 Init belief state as a vector of probabilities: 𝐵 = R |𝑆 |

where ∀𝑠𝑖 ∈ 𝑆 , 𝐵[𝑖] = |𝐼 |/|𝑆 |;
3 Set the decay rate based on the sickness median length

(𝑑): 𝛾 =
𝑑
√
0.5;

4 Init double decay contact history as a symmetric matrix

of probabilities: 𝐶𝛾2 = R |𝑆 |× |𝑆 | ;
5 Init triple decay contact history as a symmetric matrix

of probabilities: 𝐶𝛾3 = R |𝑆 |× |𝑆 | ;
6 foreach step 𝑡 , (day) do
7 Decay the sickness probabilities: 𝐵 = 𝛾𝐵;

8 Update contact matrices based on today’s reported

contacts (𝐶𝑡 ): 𝐶𝛾2 = 𝛾2𝐶𝛾2 +𝐶𝑡 and 𝐶𝛾3 = 𝛾3𝐶𝛾3 +𝐶𝑡 ;

9 foreach individual, 𝑠𝑖 ∈ 𝑆 do
10 If tested positive, then: 𝐵[𝑖] = 1 − (1 − 𝐵[𝑖]) 𝐹+𝑡𝑒𝑠𝑡 ;
11 Else if tested negative, then: 𝐵[𝑖] = 𝐵[𝑖]𝐹−𝑡𝑒𝑠𝑡 ;
12 If showing symptoms, then:

𝐵[𝑖] = 1 − (1 − 𝐵[𝑖]) 𝐹+𝑠𝑦𝑚𝑝 ;

13 Else (no symptoms), then: 𝐵[𝑖] = 𝐵[𝑖]𝐹−𝑠𝑦𝑚𝑝 ;

14 end
15 foreach individual, 𝑠𝑖 ∈ 𝑆 do
16 𝐵𝑛𝑒𝑥𝑡 [𝑖] =

1 −∏
𝑗

(
1 − 𝐵[ 𝑗]

(
𝐶𝛾2 [𝑖, 𝑗] − 𝐵[𝑖]𝐶𝛾3 [𝑖, 𝑗]

))
;

17 end
18 Normalize 𝐵𝑛𝑒𝑥𝑡 ;

19 𝐵 = 𝐵𝑛𝑒𝑥𝑡 ;

20 end

The individual sickness probabilities are updated based on re-

ported test results and symptoms observations. For instance, if

individual 𝑠𝑖 tested positive at the current time step, we update its

sickness probability to equal the complementary event for both

not-being sick and falsely testing positive (Line 10). Note that this

algorithm makes a simplifying assumption that test observation

and symptoms observation are conditionally independent given

sickness. If this assumption is violated, as suggested for covid-19

[10], then lines 10-13 should specify unique and mutually excluding

cases per outcome combination. For example, if 𝑠𝑖 tested positive

and is showing symptoms, then 𝐵[𝑖]← 1 − (1 − 𝐵[𝑖])𝐹++
𝑡𝑒𝑠𝑡&𝑠𝑦𝑚𝑝

where 𝐹++
𝑡𝑒𝑠𝑡&𝑠𝑦𝑚𝑝

is the probability of not being sick when both

test results and symptoms indicate sickness (false positive-positive

rate). Similarly, 𝐹+−
𝑡𝑒𝑠𝑡&𝑠𝑦𝑚𝑝

, 𝐹−+
𝑡𝑒𝑠𝑡&𝑠𝑦𝑚𝑝

, and 𝐹−−
𝑡𝑒𝑠𝑡&𝑠𝑦𝑚𝑝

will need

to be defined.

Next, sickness probabilities are updated according to both de-

cayed contact matrices (Line 16). Specifically, Line 16 computes the

probability that 𝑠𝑖 was infected by some individual 𝑠 𝑗 over the past

days and did not recover since. The derivation of this update formula

is provided later in the “Theoretical Analysis” section. Setting the

diagonals of the two contact matrices𝐶𝛾2 ,𝐶𝛾3 as, ones and zeros re-

spectively results in self infection probability of 1 from the previous

day. That is, unless recovered, a sick individual will remain sick. The

reader can verify that for these values, 𝐵[𝑖](𝐶𝛾2 [𝑖, 𝑖] − 𝐵[𝑖]𝐶𝛾3 [𝑖, 𝑖])

results in 𝐵[𝑖] (Line 16). Note that, Lines 15-16 can, and should, be

computed more efficiently using matrix operations. The iterative

form is provided for ease of presentation.

Finally, the set of probabilities is normalized to fit the estimated

disease spread in the community (Line 18). Specifically, 𝐵 is scaled

such that

∑
𝐵 =

ˆ|𝐼 | where ˆ|𝐼 | is the estimated number of sick in-

dividuals. We assume that 𝐼 can be evaluated using positivity test

rates and random serological/PCR tests.

5 THEORETICAL ANALYSIS
The following simplifying assumptions are used for justifying the
update rule in Line 16 of Algorithm 1.

(1) A constant per day recovery probability (1 − 𝛾 ) for sick indi-

viduals.

(2) If 𝑠𝑖 was infected on some day then it cannot get infected on

subsequent days (events of infection are mutually exclusive

over days).

(3) The probability that any individual was previously sick and

recovered is practically zero.

(4) For any individual, 𝑠𝑖 , the daily a priori infection probability

is equal between past days.

The reader should note that, in many real-world scenarios, these

assumptions are not guaranteed to hold. For example, evidence

regarding the covid-19 pandemic [16] do not support Assumption 1.

Furthermore, Assumption 3 is mainly relevant during the initial

stages of the outbreak. Nonetheless, the reader should keep in

mind that the early stages of the outbreaks are exactly those where

inference is most important, as it enables reducing the maximal

number of concurrent active cases (the epidemic spread peak) by

applying better confinement strategies.

Let 𝑝𝑡
𝑖
be the probability that individual 𝑠𝑖 is sick on day 𝑡 . Simi-

larly, 𝑝𝑡−𝑘
𝑖

is the probability the individual 𝑠𝑖 was sick 𝑘 days before

𝑡 . Following Assumption 1, we get:

Proposition 1. The probability that 𝑠 𝑗 infected 𝑠𝑖 on day 𝑡 − 𝑘
and 𝑠𝑖 did not recover since is:

𝑝𝑡−𝑘𝑗 𝐶𝑡−𝑘 [𝑖, 𝑗]𝛾
𝑘

(1)

When considering Assumption 2, Proposition 1 must be updated

to include the requirement that 𝑠𝑖 was not already sick at day 𝑡 − 𝑘 .

Proposition 2. The probability that 𝑠 𝑗 infected 𝑠𝑖 on day 𝑡 − 𝑘
and 𝑠𝑖 was not already sick and 𝑠𝑖 did not recover since is:

𝑝𝑡−𝑘𝑗 𝐶𝑡−𝑘 [𝑖, 𝑗](1 − 𝑝𝑡−𝑘𝑖 )𝛾𝑘 (2)

Note that Proposition 2 does not take into account a case where

𝑠𝑖 was infected and fully recovered before day 𝑡 −𝑘 . Recall that such
scenarios have a probability of 0 according to Assumption 3. Also

note that Proposition 2 defines infection events that are mutually

exclusive over days. It is well known that the probability that no



mutually exclusive event happens is one minus the sum of the

events probabilities. Following Proposition 2, we can write the

probability that individual 𝑖 is currently sick as one minus the

probability that no unrecovered infection occurred between 𝑠𝑖 and

any other individual, 𝑠 𝑗 , at any past day, 𝑘 . And so:

Proposition 3. The probability that individual 𝑖 is currently (time
step 𝑡 ) sick is:

1 −
∏
𝑗

(
1 −

∑
𝑘

𝑝𝑡−𝑘𝑗 𝛾𝑘𝐶𝑡−𝑘 [𝑖, 𝑗](1 − 𝑝𝑡−𝑘𝑖 )

)
(3)

Lemma 1. Assumptions 1-4 imply:

𝑝𝑡−𝑘𝑖 = 𝑝𝑡𝑖 𝛾
𝑘

(4)

Proof. Let 𝑝𝑡
𝑖
+ represent the event where 𝑠𝑖 is sick at time step

𝑡 . Similarly, 𝑝𝑡
𝑖
− represent the event where 𝑠𝑖 is not sick at time

step 𝑡 . Let 𝑃 (𝐴|𝐵) be the conditional probability of event 𝐴 given

event 𝐵.

𝑝𝑡−𝑘𝑖 =
(1) 𝑝𝑡𝑖 · 𝑃 (𝑝

𝑡−𝑘
𝑖 + |𝑝𝑡𝑖 +) + (1 − 𝑝𝑡𝑖 )(𝑝

𝑡−𝑘
𝑖 + |𝑝𝑡𝑖 −)

=
(2) 𝑝𝑡𝑖 · 𝑃 (𝑝

𝑡−𝑘
𝑖 + |𝑝𝑡𝑖 +)

=
(3) 𝑝𝑡𝑖 · 𝑃 (𝑝

𝑡
𝑖 + |𝑝

𝑡−𝑘
𝑖 +) =

(4) 𝑝𝑡𝑖 𝛾
𝑘

=
(1)

by definition.

=
(2)

follows from Assumption 3.

=
(3)

follows from Bayes Theorem and Assumption 4.

=
(4)

follows from Assumption 1. □

Combining Proposition 3 with Lemma 1, we get:

Proposition 4.

𝑝𝑡+1𝑖 = 1 −
∏
𝑗

(
1 −

∑
𝑘

𝑝𝑡𝑗𝛾
𝑘𝛾𝑘𝐶𝑡−𝑘 [𝑖, 𝑗](1 − 𝑝𝑡𝑖 𝛾

𝑘
)

)
= 1−

∏
𝑗

(
1−𝑝𝑡𝑗

(∑
𝑘

(
𝛾2𝑘𝐶𝑡−𝑘 [𝑖, 𝑗]

)
−𝑝𝑡𝑖

∑
𝑘

(
𝛾3𝑘𝐶𝑡−𝑘 [𝑖, 𝑗]

)))
(5)∑

𝑘 𝛾
2𝑘𝐶𝑡−𝑘 [𝑖, 𝑗] is an exponentially decayed moving average

that is stored as 𝐶𝛾2 in Algorithm 1. That is, there is no need

for explicitly storing the full contact history. The same goes for∑
𝑘 𝛾

3𝑘𝐶𝑡−𝑘 [𝑖, 𝑗] that is stored as 𝐶𝛾3 .

The reader can verify that Line 16 from Algorithm 1 follows

from Equation 5 in Proposition 4.

6 EXPERIMENTAL STUDY
To complement our theoretical analysis, we evaluate the effective-

ness of the proposed approach via experiments in a custom-built

agent-based pandemic simulator. Although some of the simulator’s

design have been motivated by the covid-19 pandemic, we expect

that our main experimental results are generally applicable. Note

that in the simulator, the simplifying assumptions upon which the

theoretical analysis relied do not hold. Namely, the recovery prob-

ability is not constant (in contrast to Assumption 1), but rather a

function of the sickness duration and individual attributes; the prob-

ability that any individual was previously sick and recovered grows

as time progresses (in contrast to Assumption 3); and for any indi-

vidual, the daily a priori infection probability changes as a function

of contact with sick individuals (in contrast to Assumption 4).

Our empirical study addresses the following questions.

(1) Can the proposed inference approach proactively identify

sick individuals better than existing approaches?

(2) When comparing to existing approaches, can the proposed

inference approach reduce epidemic progression when com-

bined with a simple testing and quarantine policy?

(3) How do different levels of observability regarding contact

tracing affect the efficiency of the proposed approach?

The reported results support the following answers: yes, yes,

and better contact tracing leads to better inference.

6.1 Experimental Settings
Our experiments are conducted in a novel open-source agent-based

simulator [15], written in python, that models the interactions be-

tween individual people at specific locations within a community.

The simulator was developed with input from leading epidemi-

ologists. It is fully configurable to allow modeling of the demo-

graphics of a specific community, as well as the number of gro-

cery stores, schools, and other businesses. The simulator follows

previous work [13] which suggested social mirror identities of

daily-contact networks for purposes of performing epidemiological

simulations. On top of that, the simulator includes configurable

parameters to model the degree to which each individual within

the population complies to social distancing guidelines. It also mod-

els other known properties of covid-19 spread, such as the facts

that some people are asymptomatic or spread the virus while pre-

symptomatic [3], and that some infected individuals barely spread

the virus, while others spread it widely [22]. Crucially for this paper,

the simulator models testing, including false positive and false neg-

ative tests, and allows for contact tracing and subsequent isolation

and quarantining.

From a high-level perspective, the simulator models a population

of individuals who are assigned to houses. The simulator advances

in 24 steps per day (each representing 1 hour). During each step,

individuals execute a stochastic behavior, which can be simplisti-

cally summarized as follows: they stay home (at night or if retired),

go to school (if minor), or go to work at one of several types of

business places (if of working age). People also go to a local grocery

store once a week, and a hair salon roughly once a month. In the

evenings, people occasionally go to social gatherings.

The spread of the virus ismodeled using a standard SEIRmodel [2]

represented as a finite state machine such that susceptible individ-
uals probabilistically transition to the exposed state depending on

howmany sick individuals they interacted with during the day. The

probability of this transition is also governed by whether individ-

uals are following social distancing measures, individuals’ spread

rates (drawn from a distribution), and the contact rates associated

with different locations (for example to represent that the virus is

more likely to spread at a hair salon than a grocery store, due to the

different type of contacts). From the exposed state, individuals can

transition to infected-asymptomatic or infected-symptomatic, which
can evolve to infected-critical. People in the infected-critical state

go to a hospital if there is sufficient capacity. Infected individuals



can transition to recovered; infected-critical individuals can also

transition to a deceased state.

To contain the spread of the virus, available government actions

include limiting the size of social gatherings, limiting the capacity

or hours of certain businesses, and enacting social distancing mea-

sures (which are obeyed probabilistically). Most pertinent to this

paper, the government can test symptomatic and asymptomatic

individuals at different rates and can implement contact tracing to

decide which individuals to quarantine. Quarantined individuals

refrain from going to school, work, businesses, or social gatherings;

they are completely isolated for a duration of 14 days. Isolated indi-

viduals are not considered for being tested. Contact tracing can be

implemented at three levels.

(1) Passive tracing - home andwork/school addresses are known.

(2) x% tracing - 𝑥% of the population are actively traced (e.g.,

by a relevant cellphone app). When two such individuals

occupy the same building, a contact event is registered along

with the contact duration.

(3) Active tracing - denotes 100% tracing.

For passive tracing, the daily reported contacts 𝐶𝑡 [𝑖, 𝑗] is set

to equal 0 and then +0.5 if 𝑠𝑖 , 𝑠 𝑗 shared the same house and +0.1

for sharing the same school/work place. For active tracing, 𝐶𝑡 [𝑖, 𝑗]

was set proportional to the contact length between 𝑠𝑖 and 𝑠 𝑗 in

hours divided by 24, i.e., the fraction of time steps that they were in

the same location. For 𝑥% tracing, 𝐶𝑡 [𝑖, 𝑗] was set according to the

active tracing rule if both 𝑠𝑖 and 𝑠 𝑗 are actively traced; otherwise it

was set according to the passive tracing rule.

For our experiments we followed the default simulator settings.

That is, a small-town scenario of 1000 individuals with an age distri-

bution based on U.S. demographics. Physical locations throughout

the town are defined by types, assigned number of employees, and

a visitors bound. The town consist of 300 homes to which all 1000

people were assigned. Adults are assigned to work at one of the

locations occupying an employee slot. Minors are assigned as visi-

tors to schools. The locations were configured using the following

settings. 6 Grocery stores, each with 3 employees and up to 20

concurrent visitors (customers). 30 offices, each with 35 employees

and no visitors. 8 school sections (classes), each with 5 employees

and up to 37 concurrent visitors (students). 2 hospital sections each

with 15 employees and up to 5 concurrent visitors (patients). 6 re-

tail stores, each with 3 employees and up to 20 concurrent visitors

(customers). 4 barber shops each with 3 employees and up to 5

concurrent visitors (customers).

The simulator’s hyper-parameters were set based on data re-

ported for the covid-19 pandemic. Decay rate is set based on a

median sickness length of 5 days. False positive 𝐹+𝑡𝑒𝑠𝑡 and false

negative 𝐹−𝑡𝑒𝑠𝑡 test rates were set to 0.0165 and 0.0332 respectively

following average outcomes reported for 3,524 PCR tests [5] in

Brazil.

The false positive symptomatic rate (showing symptoms yet are

not sick), 𝐹+𝑠𝑦𝑚𝑝 , was set to 0.0655 following the average workdays

loss ratio (pre covid-19) due to sickness in Japan [7]. The false

negative symptomatic rate (sick but asymptomatic), 𝐹−𝑠𝑦𝑚𝑝 , was set

to 0.6 following the “Current Best Estimate” (September-8, 2020) of

the US Centers for Disease Control and Prevention [6]. Further, it

was assumed that not all of those whom are symptomatic would re-

port their status. In our experiments 30% of the population dutifully

reported their symptomatic status.

6.2 Baseline
Our baseline for comparison follows the risk score method pre-

sented by Grushka et al. [10] for ranking covid-19 positive testing

probabilities. According to the reported correlations, the following

ranking is inferred (lower rank number implies higher sickness

probability).

(1) Individuals who tested positive.

(2) Individuals who were in contact with a confirmed case dur-

ing the last 7 days (exposed) and are showing symptoms.

(3) Exposed individuals.

(4) Individuals showing symptoms.

(5) All others.

Each individual in the community is assigned to the highest rank

(where 1 is the highest and 5 the lowest) that fits their status. That

is, if an individual is both showing symptoms and was exposed, it

is assigned to rank 2. We consider four unique baselines that are

derived from the above categories.

• Exposure+symptoms, sickness probability ordering fol-

lows the above ranking as suggested by Grushka et al. i.e.,

1 ≺ 2 ≺ 3 ≺ 4 ≺ 5.

• Exposure, sickness probability ordering follows the ranking
1 ≺ (2 ≡ 3) ≺ 4 ≺ 5.

• Symptomatic, sickness probability ordering follows the

ranking 1 ≺ (2 ≡ 4) ≺ 3 ≺ 5.

• Random, sickness probability ordering follows no ranking

(excluding positive test results), i.e., 1 ≺ 2 ≡ 3 ≡ 4 ≡ 5.

When querying for the 𝑛 most probable sick individuals, each

baseline method returns the 𝑛 highest ranked individuals while

breaking ties randomly.

6.3 Inference Accuracy
The first set of experiments aims to address research question #1:

Can the proposed inference approach proactively identify sick indi-

viduals better than the baseline methods?

In order to allow fair comparison between the baselines and the

inference approach, no quarantine operations were used and the

testing policy was purely random (sampling 1% of the population

each day). The baselines and the inference approach were provided

the exact same information (test results and contact tracing) within

the exact same run. Doing so allowed us to compare how accurately

each approach managed to guess the subset of sick individuals. It

is important to note that the compared prediction approaches did

not influence the simulation progression in any way (they simply

observed and reported predictions).

Let 𝐼𝑡 be the set of actively sick individuals at day 𝑡 . Let 𝑆𝑛(𝐵𝑡 )

be the set of 𝑛 individuals with the highest infection probability

according to belief state 𝐵𝑡 . Define hit-ratio for day 𝑡 as
|𝐼𝑡∩𝑆𝑛 (𝐵𝑡 ) |
|𝐼𝑡 |

with 𝑛 = |𝐼𝑡 |.
Figure 1 presents the hit-ratio over time for our inference ap-

proach and the four baseline approaches. Three scenarios are con-

sidered with regards to contact tracing, namely, active, 50%, and



Figure 1: Hit-ratio as a function of time. Shaded areas repre-
sent 95% confidence interval over 60 trials.

passive. Note that over different contact tracing scenarios (between

the subfigures) the ‘Random’ curve is showing the exact same trend

and this is also true for the ‘Symptomatic’ curve. Neither the ‘Ran-

dom’ or ‘Symptomatic’ approaches consider contact tracing, so all

the scenarios are the same from their perspective. However, several

trends regarding our proposed inference approach can be observed.

First, in all scenarios and all time steps the proposed inference

approach performs at least as well as all the baseline approaches

(equal or higher hit-ratios). The advantage reported for our infer-

ence approach is not a clear winner and, in many times steps, its

advantage is not statistically significant over all the baseline meth-

ods. Nonetheless, even small advantages in prediction accuracy

can result in a significant advantage once combined with a suitable

testing and quarantining policy, as shown in the next section.

Another observed trend is the significant advantage for the

‘Symptomatic’ and ‘Inference’ curves after the ‘Hit Ratio’ peak

(around day 37). Blindly prioritizing exposed individuals (‘Expo-

sure’, ‘Exposure+Symptomatic’) does not performwell in such cases

due to “herd immunity”, i.e., most contacts are with recovered indi-

viduals who do not get infected. However, the reader should note

that post-peak sickness prediction has little to no impact when

aiming to “flatten the curve”, i.e., reduce the peak’s magnitude with

respect to number of sick individuals.

6.4 Impact on Test and Quarantine Policies
The second set of experiments aims to address research question #2:

Can the proposed inference approach reduce epidemic progression

when combined with an appropriate testing and quarantine policy?

A simple testing policy was implemented where tests are as-

signed to the most probable sick individuals (excluding those previ-

ously teased positive) using either our inference approach or the

baseline approaches. The number of tests per day was set to 1% of

the population or 10 in total. A complimentary quarantine policy

was implemented where the most probable sick individuals were

isolated and had no active contacts in successive days. For the Ran-
dom baseline, those tested positive were isolated. Isolation lasts 14

days after which normal behavior is resumed. In order to allow

a fair comparison, the number of individuals that are sent to be

isolated per day is capped at 2% of the simulated population (20

individuals). Note that more than 20 individuals can be isolated

simultaneously if they were initially sent to isolation on different

days.

Figure 2 presents the number of sick individuals over time for

our inference approach and the four baseline approaches. As in

Figure1, three scenarios are considered and presented regarding the

contact tracing, namely, active, 50%, and passive. When full contact

tracing is considered, our inference approach shows a significant

advantage over the baseline approaches (the error intervals are not

overlapping). The advantage is apparent when aiming to “flatten

the curve”, that is, when seeking to reduce the maximal number

of concurrent sick individuals. On the other hand, when passive

tracing is considered, our inference approach shows little to no

advantage. For half tracing, our inference approach shows a signifi-

cant advantage however it is not as prominent as in the full tracing

case.



Figure 2: Number of actively sick individuals as a function
of time. Shaded areas represent 95% confidence interval over
60 trials.

6.5 Sensitivity Analysis
Next we examine the inference procedure’s performance sensitivity

to the number of available tests and available quarantine orders per

day. This set of experiment is motivated by the assumption that

extensive quarantine orders cripple the economy and should, thus,

be minimized/capped by the authorities.

Table 1 compares the best performing baseline approach (Expo-

sure+Symptomatic) with our inference approach for different tests

and quarantine caps. The table entries report the maximal number

of concurrent sick individuals over the entire simulation run for the

baseline as well as the ratio of improvement over the baseline for

our inference approach (“improvement ratio”). Results are averaged

over 36 runs with similar random seeds for both the baseline and

our inference. 95% statistically significant, using a paired t-test, is

denoted by an asterisk.

We observe that, in general, more testing yields a greater ad-

vantage to our inference approach. This trend, however, is not

apparent when the baseline method can halt the disease progres-

sion (values ≤ 10). In such cases the baseline is sufficient to stop the

disease progression, meaning that it does not spread over the entire

community. As a result, the advantage from our (better) inference

method is limited. This phenomenon is more apparent in the 4% cap

quarantine/day. Such an aggressive quarantining policy results in

slightly more than 50% of the population concurrently isolated (as

opposed to 14% for a 1% cap). Consequently, the epidemic dies out

in most runs. Nonetheless, our inference approach can still provide

significant advantage when paired with active tracing by stopping

the epidemic progression earlier.

The reported results for passive tracing 2% quarantine/day and

0.5%, 1% test caps suggest that our inference approach can perform

worse than the baseline (improvement ratio < 1). However, the

reader should note that these results are not statistically significant.

As an example, consider 2% quarantine/day and 1% test caps. Table 1

places the baseline at a factor of 0.88 from the inference approach

yet in Figure 2 the inference approach seems to perform on par or

even slightly better than the baseline for the same scenario. Further

note that the results in Figure 2 are expected to be more accurate

as they are based on more trials, 60, as opposed to 36 for Table 1.

6.6 Conclusions
Several general conclusions are drawn from our empirical study.

• The proposed inference approach can better predict the sick

set of individuals prior to the epidemic peak when compared

to the baseline approaches.

• When paired with a simple testing and quarantine policy, the

proposed inference approach can significantly reduce the

number of concurrent active sick cases (flatten the curve).

This advantage can reach a factor of 58/17 = 3.41 (for testing

and quarantine caps of 4% and 2% respectively).

• In all of our experiments, other than the aggressive 4% quar-

antine/day policy, incorporating the inference with Active

contact tracing resulted in significant improvement over half

tracing, which significantly improved on passive tracing.



Active tracing Passive tracing
Test cap (%) 0.5 1 2 4 10 0.5 1 2 4 10

cap 1% quarantine/day

Baseline 197 188 165 161 64 199 194 185 160 108

Improvement ratio 1.09 *1.11 1.11 *1.44 *1.88 1.05 1.03 *1.08 1.15 *1.86

cap 2% quarantine/day

Baseline 100 97 75 58 10 104 105 106 86 25

Improvement ratio *1.28 *1.54 *1.79 *3.41 1.25 0.88 0.95 *1.18 *1.39 1.67

cap 4% quarantine/day

Baseline 10 8 7 8 8 10 10 7 9 6

Improvement ratio *1.11 *1.14 1.00 1.00 *1.14 1.11 1.43 1.00 1.13 1.20

Table 1: Maximal number of sick individuals in a single day for different caps of tests and quarantine orders per day. Asterisk
in front of a value denotes a 95% statistically significant difference over 36 trials.

• When applying an aggressive quarantine policy (4% quar-

antine/day), identifying sick individuals has little to no ad-

vantage as most of the population ends up isolated and the

epidemic dies out.

It is important to note that these conclusions are relevant to

the simulator utilized in this study. Discrepancies between the

simulated model and the real-world might influence these general

conclusions. An important direction for future work is to examine

the extent to which the above conclusions hold in other simulation

models. Ultimately, the reported trends ought to be examined in a

real-world scenario.

7 SUMMARY
We present and justify an inference approach for detecting infected

individuals during an epidemic outbreak. The proposed inference

method makes use of observed infection symptoms and infection

test results that are applied to a subset of the community. We show

that, under a set of simplifying assumptions, the statistical infer-

ence can be accurately performed without the need to store the

entire history of test results and symptoms presence. We report a

comprehensive experimental study in a custom-built agent-based

simulator that considers inter-agent contacts. The reported results

suggests that our proposed inference approach is beneficial for

more realistic scenario where the simplifying assumptions do not

hold. Our study further suggests that the more detailed the contact

tracing is, the better the inference performs when paired with a

straightforward testing and quarantine policy.
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