
To appear in Autonomous Agents and Multiagent Systems - Adaptive Learning Agents Workshop (AAMAS - ALA),
St. Paul, Minnesota, USA, May 2013.

Communicating with Unknown Teammates

Samuel Barrett
Dept. of Computer Science
The Univ. of Texas at Austin

Austin, TX 78712 USA
sbarrett@cs.utexas.edu

Noa Agmon
Dept. of Computer Science

Bar-Ilan University
Ramat Gan, 52900 Israel

agmon@macs.biu.ac.il

Noam Hazon
Dept. of Computer Science

Bar-Ilan University
Ramat Gan, 52900 Israel

hazonn@macs.biu.ac.il

Sarit Kraus
Dept. of Computer Science

Bar-Ilan University
Ramat Gan, 52900 Israel

sarit@cs.biu.ac.il

Peter Stone
Dept. of Computer Science
The Univ. of Texas at Austin

Austin, TX 78712 USA
pstone@cs.utexas.edu

ABSTRACT

Teamwork is central to many tasks, and past research has
introduced a number of methods for coordinating teams of
agents. However, with the growing number of sources of
agents, it is likely that an agent will encounter teammates
that do not share its coordination method. Therefore, it is
desirable for agents to adapt to these teammates, forming
an effective ad hoc team. Past ad hoc team research has
focused on cases where the agents do not directly commu-
nicate. This paper tackles the problem of communication
in ad hoc teams, introducing a minimal version of the mul-
tiagent, multi-armed bandit problem with communication
between the agents. The theoretical results in this paper
prove that this problem setting can be solved in polynomial
time when the agent knows the set of possible teammates.
Furthermore, the empirical results show that an agent can
cooperate with a variety of teammates not created by the
authors even when its models of these teammates are im-
perfect.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms

Algorithms

Keywords

Ad Hoc Teams, Multiagent Systems, Teamwork

1. INTRODUCTION
Given the growing number of both software and robotic

agents, effective teamwork is becoming vital to many tasks.
Robots are becoming cheaper and more durable, and soft-
ware agents are becoming more common for tasks including
bidding in ad auctions. These agents are being developed
by an increasing number of companies and research labora-
tories. As the number of sources of agents grows, so does
the need for agents to cooperate with a variety of different
teammates.
This need is addressed in the area of ad hoc teamwork,

where agents are evaluated in their ability to cooperate with

a variety of teammates. Stone et al. [20] define ad hoc team-
work problems as problems in which a team cannot pre-
coordinate its actions, and they argue that evaluating an
ad hoc team agent fundamentally depends on both the do-
mains it may face as well as the teammates it can encounter.
Then, they introduce an evaluation algorithm that includes
this consideration.

One example of where ad hoc teamwork is especially ap-
plicable is in search and rescue. Currently, after a disaster,
robots from a number of different laboratories are used to
map the area and locate survivors. However, these robots
are not designed to work with each other. With more time,
these robots could be programmed to use existing coordi-
nation algorithms, but, given time constraints, this is not
usually possible. Therefore, it is desirable for these robots
to be able to intelligently adapt to a variety of possible team-
mates.

Past work on ad hoc teamwork has focused on the case
where the ad hoc agent cannot directly communicate to its
teammates. Instead, the focus of this work is on how an
agent can influence its teammates through limited commu-
nication when a common language exists and the agent has
more knowledge than its teammates. However, the ad hoc
agent cannot influence how its messages are interpreted, only
the messages it sends. This work has three main contri-
butions, the first being the introduction of a minimal do-
main for investigating teammate communication. The sec-
ond contribution is proving that several scenarios (with two
Bernoulli actions and three types of messages) are solvable
in polynomial time. However, for practical use, the polyno-
mial algorithm does not scale well, so the third contribution
is the evaluation of an empirical planning algorithm.

2. PROBLEM DESCRIPTION
This paper focuses on a multiagent, multi-armed bandit

problem that allows limited communication. The multi-
armed bandit setting is chosen as it has been well studied
in the past, and it serves as a minimal decision making do-
main that exhibits the necessary properties for investigating
communication with unknown teammates. The multi-armed
bandit setting is a fundamental problem in single agent rein-
forcement learning [22]. Ad hoc teamwork in the bandit do-
main is studied in [21], in a setting where one agent teaches
its teammate. However, in their formulation, the ad hoc

agent knows its teammates’ behaviors, and the agents can-

not communicate. Therefore, the ad hoc agent must teach
its teammate solely through the arms it chooses to pull.

2.1 Ad Hoc Teamwork
While general multiagent research focuses on creating a

coordinated team to perform tasks, this research focuses on
ad hoc teamwork. In ad hoc teamwork, the goal is to create
agents that can cooperate with a variety of possible team-
mates. Specifically, we assume that n of the agents are pre-
designed to accomplish the task as a coordinated team of
n + 1 agents. However, the remaining agent is an ad hoc
agent. We treat the n agents’ behaviors as fixed; we cannot
change them. Instead, we design only the ad hoc agent’s be-
havior to maximize the shared payoffs received by the team.

2.2 Bandit Setting
Formally, the bandit problem in this paper is given by the

tuple G = (A,C,P, T) where A is a set of two Bernoulli arms
{arm1, arm2} that return either 0 or 1, C is a set of possible
communications that can be sent including the broadcasting
costs, P denotes the players in the problem with |P| = n+1,
and T is the number of rounds. Each round in the problem
involves two phases: 1) a communication phase followed by
2) an action phase. In both phases, all agents act simultane-
ously. In the communication phase, each agent can broad-
cast a message of each type to its teammates, but messages
have costs. Specifically, there are three messages types, and
each type has an associated cost:

• obs – Send the agent’s last selected arm and payoff
• meanarm – Send the agent’s observed mean and num-

ber of pulls for the specified arm
• suggest

arm
– Suggest that the agent’s teammates pull

the specified arm

Other types of communication are possible, but for formal
analysis, it is useful to limit the types of communication.
In the action phase, each agent chooses a single arm and
observes a payoff from that arm. We use arm∗ to denote the
arm with the highest payoff.

2.3 Behavior
Since the ad hoc agent’s teammates form an existing team,

we assume that they are tightly coordinated. Specifically,
we assume that the team’s behavior can be described as a
function of the team’s total number of pulls and successes
of each arm, but only the ad hoc agent’s pulls and successes
that it has communicated. While assuming that the team-
mates operate as a function of the team’s observations is
a strong assumption, it is possible in many scenarios. For
example, each agent could broadcasts all observations or if
the team’s actions are coordinated and they only broadcast
when the chosen arm returns 1. However, this assumption is
removed in Section 4, although the ad hoc agent continues
planning as if this assumption were true.
This behavior consists of an action and a communication

function. We denote the action function of each teammate
by the function act, where the result of act is a probability
distribution over the agent pulling each arm. Specifically,
Pr(at

i = armj) = act(p0, s0, p1, s1, i, T − t, sugg) where at
i

is the action chosen by agent i in round t, pk is the num-
ber of times that armk was pulled by the team, sk is the
number of times that armk returned a value of 1, T − t is

the number of rounds remaining, and sugg is the ad hoc
agent’s last suggestion. We denote the teammates’ commu-
nication function by comm, where the result of comm is the
probability of sending each possible message. In particular,
Pr(cj ∈ Ct

i) = comm(p0, s0, p1, s1, i, T − t, sugg) where Ct
i

is the set of messages broadcast by agent i in round t and
cj ∈ C.

3. THEORETICAL ANALYSIS
To solve this general problem, we first tackle the simplest

version of the problem and then progressively relax the prob-
lem’s assumptions. Specifically, Sections 3.1–3.4 show that
a variety of ad hoc team problems in the bandit setting can
be solved in polynomial time, as summarized in Table 1.
These results do not prove communication will improve the
team’s performance, instead proving that agents can reason
about communication without moving to a higher complex-
ity class. However, the empirical results in Section 4 show
that communication does help improve the team’s perfor-
mance in many scenarios.

Knowledge of Teammate Knowledge of Solution
Section

Teammates Type Environment Type

Known Stochastic Known Exact 3.1
Finite Set Deterministic Known Exact 3.2

Parameterized Set Stochastic Known Approx. 3.3
Parameterized Set Stochastic Unknown Approx. 3.4

Table 1: A summary of the ad hoc team problems that are proven
to be solvable in polynomial time.

3.1 Known Teammates and Arms
In this setting, the ad hoc agent knows the true distribu-

tions of the arms and can observe its teammates’ actions and
the resulting payoffs. In addition, the ad hoc agent knows
the true stochastic behavior of its teammates, i.e. the ad
hoc agent knows both act and comm. Therefore, the ad hoc
agent has a full model of the problem and must plan to op-
timally select the best actions and messages. Arms other
than arm∗ are considered because their observations affect
the messages that the ad hoc agent can send to affect its
teammates’ actions.

We model this problem as a Markov Decision Process
(MDP). An MDP is a 4-tuple M = (S,A, P,R) where S
is a set of states, A(s) is the set of actions available from
state s ∈ S, P (s, a, s′) = Pr(st+1 = s′|st = s, at = a) is
the transition function specifying the probability of reach-
ing state s′ after taking action a in state s, and R(s, a, s′) is
the resulting immediate reward.

In the bandit setting, part of the state corresponds to
the pulls and observations of the ad hoc agent’s teammates.
The other factor of the state comes from the communications
of the agents. Specifically, the state is given by the vector
(p0, s0, p1, s1, t, sugg, p

a
0 , s

a
0 , p

a
1 , s

a
1 , p

c
0, s

c
0, p

c
1, s

c
1, phase), where

pi and si are the number of pulls and successes of armi, p
a
i

and sai are the number of pulls and success of the ad hoc
agent, pci and sci are the number of communicated pulls and
successes, and sugg is the ad hoc agent’s most recent sug-
gestion. We split the pulls and successes communicated by
the ad hoc agent from the team’s totals to model how its
communications will affect the team. To better illustrate
the communication, if the ad hoc agent has previously com-
municated its last observation, communicating its observed
number of pulls and successes of the same arm will replace

its teammates’ memory of this observation. Given that there
are T rounds and n teammates, pi and si are each bounded
by nT , and pai , s

a
i , p

c
i , and sci are each bounded by T . The

round t is bounded by T , and the most recent suggestion
sugg takes on one of 3 values (arm0, arm1, or no suggestion).
Finally, there are 2 possible phases of a round. Therefore,
the state space has at most (nT)4 ·T ·T 4 ·T 4 ·3 ·2 = 6n4T 13

states.
The transition function P is composed of the act and

comm functions, the probability distributions of the arms,
and the ad hoc agent’s actions. The reward function R is a
combination of the rewards coming from the arms and the
costs of communication. The actions of the MDP are se-
lecting arms and messages. In the communication phase,
there are 2 · 3 · 3 = 18 possible actions, coming from option-
ally sending obs; sending mean0, mean1, or no mean; and
suggesting one of the two arms or sending no suggestion.
Using Dynamic Programming (DP), it is possible to find

the optimal solution to an MDP in polynomial time in terms
of the number of states and actions [22]. The number of
states is polynomial in terms of T and n, and the number
of actions is 18. Let b be the time that it takes to calculate
the behavior of the entire team. Calculating the transition
function takes time proportional on b for any given state.
Therefore, Theorem 1 directly follows.

Theorem 1. An ad hoc agent that knows the arm distri-

butions and its teammates’ behaviors can calculate its op-

timal behavior for maximizing the team’s shared payoffs in

poly(T, n, b) time.

3.2 Teammates from a Finite Set
In this section, we relax the constraint on knowing the

teammates’ behaviors. Instead, the ad hoc agent knows that
the behaviors are drawn from a known, finite set of deter-
ministic behaviors. In addition, it still knows the true distri-
butions of the arms. This case is of interest because a finite
set of behaviors can often cover the space of likely behav-
iors. For example, analysis of bandit problems [17], ad hoc
teamwork [3], and using machine learning with psycholog-
ical models [18] suggests that a finite number of behaviors
may be representative of the spread of possible behaviors
that teammates may exhibit.
In general, this finite set of behaviors can vary, but, we

consider two types of teammates: 1) greedy agents and 2)
ones that choose arms using confidence bounds, specifically
using UCB1 [1]. The teammates are assumed use the ad
hoc agent’s communicated pulls in selecting actions and to
share information, but the ad hoc agent cannot determine
their types from their messages. The ad hoc agent is given
a prior probability over encountering teams following either
of these behaviors.
To tackle this problem, we add the ad hoc agent’s beliefs

about its teammates into the state space. As the teammates
are deterministic, there are three possibilities for the belief
space: either both models are possible, only the greedy is
possible, or only the UCB1 one is possible. Therefore, the
combined belief and world state space is three times larger
than the world state space, and the resulting MDP has state
space of size 18n4T 13. The transition function can be mod-
ified to simultaneously update the ad hoc agent’s beliefs
as well as the world state based on whether a teammate
model predicts the observed actions. Therefore, the MDP

can again be solved using DP in polynomial time. Theo-
rem 2 follows directly from this reasoning.

Theorem 2. An ad hoc agent that knows the arm distri-

butions and that its teammates’ behaviors are drawn from

a known set of two deterministic behaviors can calculate its

optimal behavior for maximizing the team’s shared payoffs

in poly(T, n, b) time.

3.3 Teammates from a Continuous Set
In this section, we further relax the constraints on the

teammates’ behaviors, considering a continuous set of stochas-
tic behaviors. We still consider a small number of possible
behaviors, specifically ε-greedy and UCB(c). For these be-
haviors, ε is the probability of taking a random action, and
c is a scaling factor of the confidence bound. Therefore, the
ad hoc agent must maintain a belief distribution over values
of ε, values of c, and the behavior types. The ad hoc agent
knows that ε, c are uniformly distributed over [0, 1], and it
knows the prior probabilities of the two models. Note that
while we only use two models for simplicity, this analysis
can be extended for any fixed number of models.

To tackle this problem, we model the problem as a par-
tially observable Markov decision process (POMDP). In our
case, the belief space has three partially observed values: ε,
c, and the probability of the teammates being ε-greedy ver-
sus UCB(c). The transition function for the fully observable
state variables remains the same as the original MDP. The
probabilities of the two models are updated given the prob-
ability that each of the models would have predicted the
observed actions, and the updates to the probability distri-
butions of ε and c are described in Lemma 3. The remainder
of the POMDP remains as defined above.

Note that this problem is closely related to the problem
of determining which MDP an agent is in, as studied in [5].
However, no formal bounds on the computational complex-
ity of selecting an MDP have been found, though empirical
results show that existing POMDP solvers can perform well
on these problems.

Specifically, in Lemma 3 and Theorem 4, we show that in
this expansion of the problem, the ad hoc agent can perform
within η of the optimal behavior with calculations performed
in polynomial time. This result comes from reasoning about
the δ-covering of the belief space. For a metric space A, a
set B is a δ-covering if ∀a ∈ A ∃b ∈ B such that |a− b| < δ.
Intuitively, a δ-covering can be thought of as a set of multi-
dimensional balls filling a space.

Lemma 3. The belief space of the resulting POMDP has

a δ-covering with size poly(T, n, 1/δ).

Proof. Using Proposition 1 of [12], we know that the
fully observed state variables result in a multiplicative factor
that is polynomial in T and n. The probability between the
two models is a single real value in [0,1], resulting in a factor
of 1/δ. The parameter ε has a uniform prior, so the posterior
is a beta distribution, relying on two parameters, α and β.
These parameters correspond to the (fully observed) number
of observed greedy and random pulls; thus, each are integers
bounded by nT . Therefore, the probability distribution over
ε results in a factor of size (nT)2.

The parameter c has a uniform prior, and UCB agents

choose based on comparing
si+sc

i

pi+pc
i

+ c
√

ln(p0+pc
0
+p1+pc

1
)

pi+pc
i

for

i = 1, 2. Using linear programming, pieces of the range of c

can be eliminated, but the posterior remains uniform. Given
the nature of c, the eliminated pieces of the range must be
at the top or bottom of the current range of c. Therefore,
the probability distribution over c can be represented using
two real values in [0, 1] that are the top and bottom of the
uniform range of c, resulting in a factor of 1/δ2 Combin-
ing these all of these factors results in a δ-covering of size
poly(T, n, 1/δ).

From Theorem 1 in [15], it is known that a POMDP can
be approximately solved in time polynomial in terms of the
size of its covering number. While this theorem shows this
case for the infinite horizon, discounted rewards case, these
results extend to the simpler finite horizon setting. Given
this result and Lemma 3, Theorem 4 follows directly.

Theorem 4. If an ad hoc agent can observe its team-

mates’ actions, knows the arm distributions, and knows that

its teammates are drawn from a known, continuous set of

ε-greedy and UCB teammates, it can calculate an η-optimal

behavior in poly(n, T, b, 1/η) time.

3.4 Unknown Arms
The previous sections assumed that the ad hoc agent al-

ready knew the underlying distributions of the arms, but in
many cases the ad hoc agent may not have prior knowledge
of the arms. Therefore, it is desirable for the ad hoc agent
to be able to reason about trading off between exploring
the domain, exploring its teammates, and exploiting its cur-
rent knowledge. In this section, we prove that the ad hoc
agent can optimally handle this tradeoff while planning in
polynomial time. However, we still assume that the ad hoc
agent knows the pulls and payoffs of its teammates, either
by observing them or through their communications.
The belief space of the POMDP is increased to track two

additional values, one for the Bernoulli success probability
for each arm. The probabilities of each of these values can
be tracked using a beta distribution similar to ε in Lemma 3,
resulting in a multiplicative factor of (nT)2. Therefore, the
covering number has size poly(T, n, 1/δ). Theorem 5 follows
naturally from this result and the reasoning in Theorem 4.

Theorem 5. If an ad hoc agent that does not know the

arm distributions, but has a uniform prior over their success

probability and does know that its teammates’ behaviors are

drawn from a known, continuous set of stochastic behaviors

and can observe the results of their actions, it can calculate

an η-optimal behavior in poly(n, T, b, 1/η) time.

4. EMPIRICAL EVALUATION
While the previous section focused on proving that our

multi-armed bandit problems can be solved in polynomial
time, the existing techniques for calculating exact solutions
are impractical for solving problems with more than a cou-
ple of rounds and more than two arms. Therefore, in the
empirical setting, we use Partially Observable Monte-Carlo
Planning (POMCP) [19]. POMCP has been shown to be
effective on a number of large POMDPs, and similar plan-
ning methods have been effective for ad hoc teamwork [3].
While POMCP will find an optimal solution given unlimited
computation, no guarantees exist with limited computation.
However, our results show that POMCP can be effective
for cooperating with a variety of possible teammates in the
multi-armed bandit setting.

4.1 Methods
POMCP is a Monte Carlo Tree Search (MCTS) algorithm

that is based on the Upper Confidence bounds for Trees
(UCT) algorithm [14]. Specifically, POMCP starts from the
current state of the problem and performs a number of sim-
ulations until reaching the end of the problem. These sim-
ulations involve selecting the ad hoc agent’s actions using
upper confidence bounds and randomly sampling the out-
comes from the arms. For its teammates, the ad hoc agent
plans as if they are selecting actions using either the ε-greedy
or the UCB algorithms. To model the effects of suggestions,
agents are given some probability of following the suggestion
rather than taking their regular action, with the probability
being uniformly drawn from [0,1]. In all of the evaluations,
we assume that the ad hoc agent can observe its teammates’
actions and payoffs. The ad hoc agent knows the true distri-
butions of the arms except where otherwise noted (Figure 3).

While we evaluate the ad hoc agent when it encounters
teammates that are using the ε-greedy and the UCB al-
gorithms, we also consider a number of agents that were
not created by the authors, denoted externally-created team-

mates. These agents were designed by undergraduate and
graduate students as part of an assignment on agent design.
To prevent any bias in the creation of the agents, the stu-
dents designed the entire team and were unaware of the ad
hoc teamwork problem. These agents were given the same
types of messages available to the ad hoc agent.

Section 2 specifies that the teammates are assumed to be
tightly coordinated and know each other’s actions and pay-
offs. However, the externally-created agents cannot freely
share this information, instead they can communicate to
their teammates given the existing message types. There-
fore, modeling them as completely sharing their knowledge
is imperfect, but this simplifies planning and our results indi-
cate that this model is sufficient for achieving good perfor-
mance. Note that the ad hoc agent can still observe the
teams’ actions and payoffs, but they do not observe the
ad hoc agent’s actions. In addition, the externally-created
agents are not purely ε-greedy or UCB; they follow a va-
riety of possible behaviors, with varying effectiveness, and
may react differently to incoming messages. Rather than
being optimal, these agents represent a diverse set of im-
perfect agents that may be created by a variety of designers
attempting to solve a real problem.

4.2 Results
All evaluations use 100 runs with randomly selected teams,

random either in the parameters for the ε-greedy and UCB
teams, or in the selection of which externally-created team
to use. The probability of a success on each arm is randomly
selected as well. In this analysis, the ad hoc agent initially
samples a number of ε-greedy and UCB teams with random
parameter values. When the ad hoc agent knows the cor-
rect behavior type, the results are similar to knowing that
either ε-greedy or UCB teams are possible. The results are
the average team rewards normalized by the average reward
if every agent continuously pulled the best arm. Statisti-
cal significance is tested with a paired Student-T test with
p < 0.05 and is denoted with a “+” in the figures when
comparing POMCP to all other methods.

We compare four behaviors of the ad hoc agent:

• Match - Plays as if it were another agent of the team’s
type, but can observe all agents’ results

• NoComm - Always pulls the best arm and does not
communicate

• Obs - Always pulls the best arm and communicates
its last observation

• POMCP - Plans using POMCP which arm to pull
and what to communicate

Match, NoComm, and Obs serve as baselines. Pulling the
best arm and communicating other messages were tested,
but generally produced worse results than either NoComm
or Obs. Match is only used as a baseline when the arms’
payoffs are unknown, as there was no way to provide the
externally-created teammate serving as the ad hoc agent
with the true knowledge of the arms’ payoffs. Unless other-
wise specified, there are 3 arms, 10 rounds, and 7 externally-
created teammates to test how our approach scales to bigger
problems than are theoretically proven. Furthermore, the
costs for sending messages are randomly selected for each
run, and all agents are informed of the costs. To model the
size of different messages and allow for varied communica-
tion scenarios, the cost of sending the last observation is
selected from [0, 2m] (arm and payoff), the cost of sending
the mean of an arm is in [0, 3m] (arm, pulls, and successes),
and the cost of suggesting an arm is in [0,m] (arm), where
m = 0.75 unless specified.
Figure 1 presents the results when the ad hoc agent en-

counters the problem discussed in Section 3.3, cooperating
with teams that are ε-greedy or UCB, with varied message
costs. Note that NoComm is unaffected by the message costs
as it does not communicate. The results indicate that the
agent can effectively plan its actions, significantly outper-
forming the baselines.
On the other hand, Figure 2 shows the results with externally-

created agents, a problem not covered by any theoretical
guarantees, as the models do not match the true teammates.
If all agents start with no observations of the arms, all the
methods perform similarly because the teammates usually
quickly converge to the best arm. Therefore, for these re-
sults, we consider the case where in the first 5 rounds, the
teammates’ pulls of the best arm are biased to have a lower
chance of success. Then, we evaluate how well the ad hoc
agents help correct their teammates’ biases. In these evalua-
tions, we test the sensitivity of the agent to various problem
parameters. Note that the message costs are also applied
to the externally-created teammates, which are informed of
the current message costs, so the performance of NoComm
is also affected by message costs.
As the cost of communicating increases, NoComm be-

comes closer to the optimal behavior. As the number of
rounds increases, communicating is more helpful because
there is more time to reap the benefits of better inform-
ing the teammates. With more arms, it is harder to get
the teammates to select the best arm, so communicating
is less helpful. With more teammates, communicating is
more likely to be outweighed by other agents’ messages, but
there is more benefit if the team can be convinced, hence the
improvement of Obs. Overall, the results in all of these sce-
narios tell a similar story, specifically that reasoning about
communication helps an ad hoc agent effectively cooperate
with various teammates, even when its models of these team-
mates are incomplete or incorrect.
Finally, in Figure 3, we investigate how well the ad hoc

agent can do when it does not know the true payoffs of the
arms, but can still observe the payoffs of its teammates’

actions. In the POMCP setting, the ad hoc agent samples
its starting states by randomly selecting the payoff value
of each arm. In the NoComm and Obs settings, the ad
hoc agent acts ε-greedy, with ε = 0.1, because it does not
know the true best arm. To encourage more sharing when
the knowledge is limited, the base message cost is set to
m = 0.04. The results show that even when the ad hoc agent
is unsure of the arms’ payoffs, it performs better by using
communication in order to cooperate with its teammates.

5. RELATEDWORK
Multiagent teamwork is a well studied topic, with most

work tackling the problem of creating standards for coordi-
nating and communicating. These efforts include the Shared-
Plans framework [10] which reasons about agents that share
common recipes for coordination based on modeling agents’
beliefs and intentions. One popular approach is the STEAM
framework [23] which provides a set of generalized teamwork
rules. In the TAEMS framework [11], agents use a set of hi-
erarchical rules to model coordination relationships for the
agents and tasks. While these algorithms have been shown
to be effective, they require that the teammates share this
coordination algorithm.

On the other hand, ad hoc teamwork focuses on the case
where the agents do not share a coordination algorithm.
Bowling and McCracken [4] consider robots playing soccer in
which the ad hoc agent has a playbook that differs from its
teammates’. In [16], Liemhetcharat and Veloso reason about
selecting agents to form ad hoc teams. Barrett et al. [3] em-
pirically evaluate an MCTS-based ad hoc team agent in the
pursuit domain, and Barrett and Stone [2] analyze existing
research on ad hoc teams and propose one way to categorize
ad hoc teamwork problems. Other approaches include Jones
et al.’s work [13] on ad hoc teams in a treasure hunt domain.
A more theoretical approach is Wu et al.’s work [24] into ad
hoc teams using stage games and biased adaptive play.

Ad hoc teamwork is also closely related to the area of
opponent modeling, differing in whether one models team-
mates or opponents. Interacting with opponents often re-
quires reasoning about worst case scenarios. One promising
approach for opponent modeling is the AWESOME algo-
rithm [7], which tackles repeated games and guarantees con-
vergence and rationality. Further work investigates agents
that explicitly model and reason about their opponent’s be-
liefs in the form of interactive POMDPs [9] and interactive
dynamic influence diagrams (I-DIDs) [8].

6. CONCLUSION
Past work into ad hoc teamwork has largely focused on

scenarios in which the ad hoc agent cannot directly com-
municate with its teammates. This work addresses this gap
by introducing a minimal domain with communication and
proving that ad hoc team agents can optimally cooperate
in some scenarios using only polynomial computation. Note
that while the ad hoc agent controls what messages to send
to its teammates, it cannot control their reactions to the
messages. Furthermore, this paper evaluates an empirical
algorithm for planning in ad hoc teamwork problems. This
algorithm is shown to be effective when cooperating with
teammates created by a variety of developers.

One interesting avenue for future research is investigating
ad hoc teamwork in more complicated domains. Another

0.08 0.16 0.32 0.64 1.28 2.56

Message Cost

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(a) ε-greedy teammates

0.08 0.16 0.32 0.64 1.28 2.56

Message Cost

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(b) UCB teammates

Figure 1: Normalized rewards with varied message costs with a logarithmic x-axis. Significance is denoted by “+”

0.08 0.16 0.32 0.64 1.28 2.56

Message Cost

0.0

0.2

0.4

0.6

0.8

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(a) Message costs with logarithmic x-axis.

10 20 30 40 50

Num Rounds
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(b) Numbers of rounds.

2 3 4 5 6 7 8 9 10

Num Arms

0.4

0.5

0.6

0.7

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(c) Numbers of arms.

1 2 3 4 5 6 7 8 9

Num Teammates

0.3

0.4

0.5

0.6

0.7

0.8

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

(d) Numbers of teammates.

Figure 2: Normalized rewards with varied parameters when cooperating with externally-created teammates.

1 2 3 4 5 6 7 8 9

Num Teammates
0.60

0.65

0.70

0.75

0.80

0.85

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

Match

(a) Mix of ε-greedy and UCB teammates.

1 2 3 4 5 6 7 8 9

Num Teammates
0.65

0.70

0.75

0.80

0.85

F
ra

c
o
f
M

a
x

R
e
w

a
rd

POMCP

NoComm

Obs

Match

(b) Externally-created teammates.

Figure 3: Normalized rewards when dealing with unknown arms and varying numbers of teammates.

problem to consider is an ad hoc agent learning about agents
that are in turn learning about it in a recursive modeling
setting [6]. Another area for future work is applying ad hoc
teamwork to enable agents to interact with humans.

7. REFERENCES

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Mach.

Learn., 47:235–256, May 2002.

[2] S. Barrett and P. Stone. An analysis framework for ad
hoc teamwork tasks. In AAMAS ’12, June 2012.

[3] S. Barrett, P. Stone, and S. Kraus. Empirical
evaluation of ad hoc teamwork in the pursuit domain.
In AAMAS ’11, May 2011.

[4] M. Bowling and P. McCracken. Coordination and
adaptation in impromptu teams. In AAAI, pages
53–58, 2005.

[5] E. Brunskill. Bayes-optimal reinforcement learning for
discrete uncertainty domains. In AAMAS ’12, 2012.

[6] D. Carmel and S. Markovitch. Incorporating opponent
models into adversary search. In Proc. of AAAI, pages
120–125, 1996.

[7] V. Conitzer and T. Sandholm. AWESOME: A general
multiagent learning algorithm that converges in
self-play and learns a best response against stationary
opponents. Machine Learning, 67, May 2007.

[8] P. Doshi and Y. Zeng. Improved approximation of
interactive dynamic influence diagrams using
discriminative model updates. In AAMAS ’09, 2009.

[9] P. J. Gmytrasiewicz and P. Doshi. A framework for
sequential planning in multi-agent settings. JAIR,
24(1):49–79, July 2005.

[10] B. Grosz and S. Kraus. The evolution of sharedplans.
In A. Rao and M. Woolridge, editors, Foundations and

Theories of Rational Agency, pages 227–262, 1999.

[11] B. Horling, V. Lesser, R. Vincent, T. Wagner,
A. Raja, S. Zhang, K. Decker, and A. Garvey. The
TAEMS White Paper, January 1999.

[12] D. Hsu, W. S. Lee, and N. Rong. What makes some
pomdp problems easy to approximate? In Advances in

Neural Information Processing System. 2007.

[13] E. Jones, B. Browning, M. B. Dias, B. Argall, M. M.
Veloso, and A. T. Stentz. Dynamically formed
heterogeneous robot teams performing
tightly-coordinated tasks. In ICRA, pages 570 – 575,
May 2006.

[14] L. Kocsis and C. Szepesvari. Bandit based
Monte-Carlo planning. In ECML ’06, 2006.

[15] H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP:
Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In In

Proc. Robotics: Science and Systems, 2008.

[16] S. Liemhetcharat and M. Veloso. Modeling mutual
capabilities in heterogeneous teams for role
assignment. In IROS ’11, pages 3638 –3644, 2011.

[17] C. Mayo-Wilson, K. Zollman, and D. Danks. Wisdom
of crowds versus groupthink: learning in groups and in
isolation. International Journal of Game Theory,
pages 1–29, 2012.

[18] A. Rosenfeld, I. Zuckerman, A. Azaria, and S. Kraus.
Combining psychological models with machine

learning to better predict peopleâĂŹs decisions.
Synthese, 189:81–93, 2012.

[19] D. Silver and J. Veness. Monte-Carlo planning in large
pomdps. In NIPS ’10. 2010.

[20] P. Stone, G. A. Kaminka, S. Kraus, and J. S.
Rosenschein. Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In AAAI ’10,
July 2010.

[21] P. Stone and S. Kraus. To teach or not to teach?
Decision making under uncertainty in ad hoc teams.
In AAMAS ’10, May 2010.

[22] R. S. Sutton and A. G. Barto. Reinforcement

Learning: An Introduction. MIT Press, Cambridge,
MA, USA, 1998.

[23] M. Tambe. Towards flexible teamwork. Journal of
Artificial Intelligence Research, 7:83–124, 1997.

[24] F. Wu, S. Zilberstein, and X. Chen. Online planning
for ad hoc autonomous agent teams. In IJCAI, 2011.

