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ABSTRACT

The cerebellum is an integral part of the human brain and un-
derstanding its role in learning might present an opportunity for
reciprocal enrichment of the fields of artificial intelligence and
neuroscience. In this paper, we present a novel idea that the cere-
bellum’s role goes beyond functioning as a supervised learning
machine to performing model-based reinforcement learning. We
revisit the current theories about the cerebellum’s role in human
learning processes and propose a novel way of evaluating it in the
context of the simulated cerebellum. Based on the recent experi-
mental findings, we propose that the cerebellum performs model-
based reinforcement learning and we propose a way to evaluate the
hypothesis using a simulated cerebellum. Finally, we discuss the
necessary conditions to evaluate the hypothesis and the potential
implications for future research of the hypothesis holds.
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1 INTRODUCTION

Over the years, many breakthroughs in artificial intelligence were
inspired by neuro-scientific revelations about human learning pro-
cesses. In a complementary manner, techniques in reinforcement
learning have also been used to model neurological phenomena.
The introduction of temporal difference learning [31] and the re-
ward prediction error theory of dopamine [29] marked the first
point of a remarkable convergence between the two domains. This
event sparked a research line targeted at finding more correlations
between ideas from reinforcement learning and neuroscience. Some
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notable examples are using actor-critic models to develop computa-
tional models of basal-ganglia [12], and distributional reinforcement
learning was used to explain the probabilistic nature of dopamin-
ergic neurons [5]. Most of this interdisciplinary research revolves
around reward-related neural correlates, such as the basal ganglia
and the ventral tegmental area. A commonly followed methodology
is to use reinforcement learning models to explain animal behav-
ioral data or neural recordings. In the paper, we call the reinforce-
ment learning community’s attention to another highly explored
neural substrate in neuroscience, the cerebellum.

The cerebellum occupies only 10% of the human brain volume
but contains more neurons than the rest of the brain. Its cortex is
shown to consist of functionally distinct subdivisions called micro-
zones which control specific muscle groups [16]. The cerebellum is
unequivocally perceived as a brain component that plays a promi-
nent role in movement coordination and motor control [6, 30, 33].
However, a topic of controversy in the current consensus about
the cerebellum is its role in cognitive and motor learning [32]. A
majority of the previous research identifies the nature of cerebellar
learning as a supervised learning process [14, 19]. While this the-
ory holds, we conjecture that the cerebellum’s functionality goes
beyond supervised learning. We review evidence that highlights
the involvement of the cerebellum in learning the forward dynam-
ics models, reward functions, and control policies. Based on the
evidence showing these functionalities, we then present our hy-
pothesis that the cerebellum performs model-based reinforcement
learning.

In the subsequent sections, we first discuss the current neurosci-
entific understanding of the cerebellum’s role in movement coordi-
nation and motor control. Next, we review some instances where
simulated representations of the cerebellum were successfully used
in robotics and machine learning applications that validate the
cerebellum’s role in the movement. Later we analyze some recent
revelations about the cerebellum’s role in learning reward func-
tions of the environment. By combining current views and newly
discovered evidence, we then present our hypothesis about the cere-
bellum’s potential to perform reinforcement learning and propose
a way to evaluate it using a simulated cerebellum. Finally, we con-
clude by discussing the potential implications on future research
if the theory holds and some of the challenges involved in using
cerebellum simulations.
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Figure 1: Cerebellum - cart pole interface adopted from [8].
The state information was sent via the mossy fibers and two
microzones were used to control the left and right forces to
balance the cart pole.

2 BACKGROUND

Reinforcement learning is a paradigm which consists of an agent
learning to take sequential decisions to perform a task in an envi-
ronment. A task is usually modeled as a Markov Decision Process
(MDP) [31]. An MDP M is defined as a 4-tuple (S, A, p, r), where
S defines the set of the possible agent’s states in the environment,
A defines the set of actions the agent can take, p(s’|s, a) is the
transition function which defines probability of being in state s’
upon taking an action a in a state s and r (s, a) is the reward function
which determines the reward received by the agent upon taking
an action a in a state s. The transition function can also be called
a forward dynamics model. The forward dynamics model and the
reward function together define the model of an environment. At
every time-step, the agent in a state s takes action a, and the envi-
ronment responds by giving the information about the future state
s” and the reward r. We use the term reward signal to represent the
single-step reward r in the environment’s response. A policy is a
mapping from S to A and the agent’s goal is to learn a policy that
maximizes the cumulative sum of reward signals received until the
task terminates. Reinforcement learning algorithms can be broadly
classified into two types: 1) model-based algorithms in which the
learning agent has access to or learns the environment’s model and
2) model-free algorithms that do not have access to the environ-
ment’s model. In this paper, we discuss the cerebellum’s potential
to act as a model-based reinforcement learning agent.

The cerebellum is well known to play an important role in the
execution of precisely-timed movements. This ability is shown to
stem from its capability to modulate the strength of motor com-
mands using a prediction of future sensory states [13, 15, 21]. The
phenomenon of predicting future sensory states was explained
via internal forward models of the body dynamics encoded in the
cerebellum. In terms of reinforcement learning, an internal model
is analogous to the environment’s forward dynamics model. In
addition to this analogy, the observation that the cerebellum can
modulate motor commands implies that it can implement control
policies as well.

We use the cart pole balancing task (Figure 1, on the right) as a
running example throughout the paper. The cart pole task consists
of a cart that can move along one dimension, and an inverted
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Figure 2: Connectivity and scale of the simulated cerebellum
adopted from [8]. Arrows and circles represent excitatory
and inhibitory connections respectively. The number of sim-
ulated cells are annotated for each region. Stars represent
sites of synaptic plasticity.

pendulum is set perpendicularly to the cart’s moving axis. Four
variables define the state space of this problem: pole angle (6), pole
angular velocity (w), cart position (x), cart velocity (v). The cart is
free to move either to the left or right depending on the net amount
of force applied to it, which defines the action space. The task is
to learn to balance the inverted pendulum by applying the right
amount of force at every time step. For the cerebellum to learn the
forward dynamics model in the cart pole balancing, it would mean
learning to predict the state variables at the next time step, when
the current state and applied force are provided as inputs.

The cerebellum is known to possess the required components
to be able to learn the forward dynamics models. Figure 2 depicts
the basic components of the cerebellum: The mossy fibers are the
primary input to the cerebellum. They directly or indirectly re-
ceive input from almost all areas of the cortex. The mossy fibers
then map onto a huge granular cell layer, thus creating an archi-
tecture capable of encoding large state-action spaces and making
the cerebellum suitable for learning forward dynamics models [35].
The climbing fibers in the cerebellum provide the necessary error
signals known as sensory prediction errors (SPE), which is the dif-
ference between the predicted future state by the cerebellum and
the actual future, and they help in encoding the forward dynamics
models. Additionally, tasks that involve simple movements like
eyelid conditioning and vestibulo-ocular reflex are known to have
direct engagement with the cerebellum, and they are often used
to validate and tune the simulated models [8, 26]. It is important
to note that the exact inputs provided to the cerebellum and the
semantics of the output signals from the cerebellar nucleus are not
entirely known, especially in the context of cognitive and motor
learning.

The cerebellum’s well-understood topology and synaptic or-
ganization make it a ripe candidate for simulation neuroscience.
Simulation neuroscience is a branch of research that studies compu-
tational simulations of neural substrates to exploit their underlying
mechanisms [7]. Simulating the cerebellum has been an active
area of research over more than a decade, with a continual evolu-
tion of increasingly detailed and accurate models [25-27]. Several
researchers have used cerebellar simulations to demonstrate its
capability to encode internal models by using them in applications
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like robotic motion control [10]. The adaptive cerebellar spiking
model was used to control a robotic arm [20], a cerebellum-inspired
neural network was used for dynamic state estimation and model
predictive control [2], and the concept of synaptic eligibility traces
was used to handle the variable temporal delays between predictive
signals and subsequent motor responses in the context of predictive
control [17, 23, 24]. The ideas discussed in this paper are based on
work done using a biologically constrained bottom-up model of a
cerebellum [3, 26] that is built based on the Marr-Albus-Ito theory
of cerebellar function [1, 11, 22].

In previous work by Hausknecht et al. [8], machine learning
capabilities of a cerebellum simulator were investigated. Their sim-
ulation had the convergence/divergence ratios of connectivity be-
tween each component layer close to the biological cerebellum.
Figure 2 shows the connectivity layout of the simulated cerebellum
used in their work. The simulator was used to perform six tasks -
eyelid conditioning, cart pole balancing, PID control, robot balanc-
ing, pattern recognition, and MNIST handwritten digit recognition.
Figure 1 shows the interface between the cart pole environment
and the simulated cerebellum. Two microzones were used to rep-
resent the left pushing and the right pushing forces. The task is
to learn to balance the pole successfully, and it was achieved by
using a handcrafted task error function for both microzones, thus
reducing the task to a supervised learning problem. This study’s
main conclusion was that the simulated cerebellum could learn to
perform supervised learning and control tasks that have a clear def-
inition of the task error. However, the simulator was unsuccessful
in reinforcement learning and temporal pattern recognition tasks.
This result was attributed to the simulated cerebellum’s inability to
handle the credit assignment problem, which determines how each
of the agent’s actions contributes to a specific future outcome.

All the experimental findings and simulated cerebellum studies
discussed so far align with an established notion that the cerebellum
performs supervised learning [14, 28]. However, some of the recent
studies [4, 34] aimed to understand the cerebellum’s role in addic-
tion and social behavior have uncovered a previously unappreciated
functionality. Experiments on rodents have revealed that the cere-
bellum has direct excitatory projections onto the ventral tegmental
area (VTA), otherwise known as the brain’s rewarding center. VTA
is part of multiple dopaminergic pathways in the brain which have
projections onto the cortex and ventral striatum in basal ganglia.
External stimulation of the ventral tegmental area has revealed that
the cerebellum’s excitatory projections are rewarding in nature.
Two more studies [9, 18] revealed that the climbing fibers located
in fore-limb controlling areas of the cerebellar-cortex in mice were
found to modulate their activity in response to the external rewards.
The climbing fibers’ activity was shown to closely resemble the
reward prediction error (RPE), which is the difference between the
predicted reward and the actual reward received in the next state
is thought to be important for reinforcement learning in the brain.
These new revelations indicate the cerebellum possibly learns the
external reward functions along with the forward dynamics models.

So far, we have discussed evidence that shows that the cerebel-
lum learns forward dynamics models and reward functions. These
two functions together constitute the definition of a model of the
environment in a reinforcement learning system. Therefore, we
can summarize the following points about learning processes in the
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Figure 3: An example supervised learning framework for
learning the forward dynamics and reward functions using
the simulated cerebellum for the cart pole balancing task.

cerebellum: 1) The cerebellum learns models of the environment,
and 2) It is involved in modulation of the action commands that con-
trol the muscle movements in the body, which can also be explained
as implementing a control policy. Based on these two points, we
hypothesize that model-based reinforcement learning could be one
of the cerebellum’s functionalities. In the next section, we discuss a
possible way to test this hypothesis using a cerebellum simulation.

3 METHODOLOGY

We propose to use a simulated cerebellum to test if it can sponta-
neously optimize a policy given that it is provided the necessary
error signals to learn a forward dynamics function and reward
function. We do not assume that the simulated cerebellum acts as
a reinforcement learning agent and evaluate its performance. We
instead wish to check if the cerebellum can act as a reinforcement
learning agent by creating an appropriate environment guided by
our hypothesis. We first explain how learning forward dynamics
models and reward functions can be modeled in the cerebellum
simulation. We then present a possible way to implement the policy
learning process.

3.1 Model Learning

The learning of the forward dynamics models and reward functions
can still be modeled as a supervised learning process and do not
require an RL agent’s decision-making component, namely, a policy.
The mossy fiber signals can be used to represent the input variables,
and the climbing fiber signals can be used to deliver the error signal,
which will act as the SPE and RPE for the forward dynamics model
and the reward function, respectively. Following the configuration
in [8], Figure 3 shows an example for implementing this approach
using the simulated cerebellum for the cart pole balancing task. The
four state variables and two action outputs are provided as inputs to
the simulation. Since the simulated cerebellum output is typically
inferred from the modeled nucleus neurons’ firing rates, which can
only be positive values, we use two microzones to represent the
positive and negative ranges of every output that the simulation
needs to learn. For example, a* for the amount of left pushing force
to be applied on the cart and a~ for the amount of right pushing
force. The output would then be the difference in firing rates of



In Proceedings of the Adaptive Learning Agents Workshop (as part of AAMAS),

Virtual, May 2021

Policy Error
St At
PolicyM T

o - A It Forn

s Model™ | S . Policy’ ‘s‘geps or
t

Model" | 5 Termination
St

Figure 4: Policy learning framework showing the interac-
tion between the model microzone and policy learning mi-
crozones in the proposed n-step update mechanism.

the two microzones of the corresponding output feature. Following
this model, for the cart pole task, we would need eight microzones
to predict each of the four state variables and two microzones to
represent the reward as shown in Figure 3.

Let s be a signal to be learned, and s* and s~ be the outputs of
microzones associated with positive and negative ranges of signal s.
Let p(s*) and p(s™) represent the probability of delivering an error
signal to positive and negative microzones of s. If s;41 is the signal
value at time step t+1, the error probabilities to learn the signal s
can be defined as follows:

If st — s~ < gactual

t+1
p(s =1 (1)
p(s7)=0 (2
Ifst—s > s;‘f{”“l
p(sT)=1 (3
p(sH=0 4)

The error probabilities defined above represent the probability for
delivering a climbing fiber signal which increases the output of
the corresponding microzone. This error function ensures that
whenever a predicted state variable is less than its actual value, a
deterministic error signal is delivered to increase the value of the
corresponding state variable and vice-versa. This error definition
applies for both state feature microzones and reward microzones. So
far, we have discussed how the cerebellum can be used as a model
learning architecture. This approach is in line with the previous
section’s neuroscientific evidence and does not require any special
assumptions.

3.2 DPolicy Learning

This section proposes a mechanism for policy learning in a simu-
lated cerebellum, which is the second step in testing our hypothesis
that the cerebellum can act as a reinforcement learning agent. In the
implementation by Hausknecht et al. [8], the control policy was di-
rectly learned for the cart pole balancing task using a hand-crafted
error function. The error function was carefully defined for the two
microzones whose outputs represent the left-ward and right-ward
forces. However, to evaluate if the simulated cerebellum performs
model-based reinforcement learning, it is essential to show that it
can learn an optimal control policy spontaneously, using the learned
reward function and forward model. As a start, we present a ver-
sion of such a potential policy learning mechanism, as outlined in
Figure 4. The current state features and reward signal are provided
as inputs to the policy microzones to get an output representing
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the action. These microzones were not part of previous simulated
architectures. However, the simulated cerebellum structure can
very well support them, just as it can support other microzones.
The input-output pairs of the policy microzones are then provided
as inputs to the model microzones to get the predicted next state
and reward, which are fed back to the policy microzones, and the
process is repeated. An error is delivered to the policy microzones
if the task terminates or fails after n steps. The entire process can be
thought of as a finite step look-ahead using the forward dynamics
and reward microzones. This way, no particular error function for
learning the optimal policy is defined in advance. The success of
the approach relies on how learning the forward model and re-
ward function influence the policy microzones in the simulated
cerebellum internally.

4 DISCUSSION

To summarize, we combine the cerebellum’s established function-
alities with some recent discoveries to hypothesize that the cere-
bellum possibly performs model-based reinforcement learning. We
then propose a two-stage method to test this hypothesis using a
simulated cerebellum. The first step is to learn the model of the
environment consisting of forward dynamics and reward functions.
The next step is to perform the n-step look-ahead on policy mi-
crozones using the model microzones. This way, we test if the
simulated cerebellum can optimize the policy by itself without a
perfectly defined task error. This proposed architecture is only one
possible approach to test the cerebellum functionality as a rein-
forcement learning agent. Still, it has the advantage of leveraging a
realistic simulation instead of tackling the challenges involved in
experiments on natural cerebella and noisy environments. On the
other hand, the outcome of the testing approach dramatically de-
pends on the biological accuracy of the simulated cerebellum used
to test and the underlying assumptions used in its construction.
For example, in the proposed policy learning mechanism, the only
possible way for the policy microzones to optimize their output
is through their internal interaction with the model microzones.
If the simulator’s architecture constrains this phenomenon, then
the proposed approach will always fail. Another potential issue
comes from parameter tuning. In artificial agents, the learning out-
come often depends on the choice of the hyperparameters such as
discount factors, learning rates, and exploration/exploitation trade-
offs. Simulated cerebellum models can also have similar sensitivities
to hyperparameter tuning. In practice, simulated cerebellum models
are tuned to match their performance to fit the observations from
biological experiments like eyelid conditioning and vestibulo-ocular
reflex. However, a single set of hyperparameters might not gen-
eralize to all applications, especially when used in non-biological
tasks like cartpole balancing. There is also a risk of divergence
because the model is iteratively fed with its own outputs, especially
when used simulations are modeled imperfectly. These risks can be
minimized by using a validated cerebellum simulator, such as the
one introduced by Medina and Mauk [26].

If the proposed theory holds, and the cerebellum is shown to
perform as a reinforcement learning agent, it could offer many
insights to both the Al and neuroscience communities. The Al com-
munity’s main benefit would stem from disentangling the policy
learning from the model and reward learning in the cerebellum
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at an algorithmic level. This understanding will help explain how
the cerebellum handles the credit assignment problem and reward
maximization. It could inspire building more sample-efficient and
human-like learning agents inspired by the cerebellum’s architec-
ture. For neuroscientists, the confirmation of this theory would help
create more accurate simulated representations of the cerebellum
and pave a path for benchmarking and tuning the simulated repre-
sentations on reinforcement learning tasks with longer horizons.
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