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Abstract. Action languageBC provides an elegant way of formalizing robotic
domains which need to be expressed using default logic as well as indirect and
recursive action effects. However, generating plans efficiently for large domains
usingBC can be challenging, even when state-of-the-art answer set solvers are
used. In this paper, we investigate the computational gains achieved by describ-
ing task planning domains at different abstraction levels usingBC, where lower
levels describe more domain details by addingfluentsnot included in higher lev-
els and actions at different levels are formalized independently. Two algorithms
are presented to efficiently calculate the near-optimal short and low-cost plans re-
spectively. We present a case study where at least an order of magnitude speedup
was achieved in a robot mail collection task using hierarchical domain abstrac-
tions.

1 Introduction

Action languageC+ [11] was designed to formalize indirect action effects and default
logic, and the recently proposed languageBC [16] can also describe recursive action
effects. These languages are attractive in robotic domainsas they solve theframe prob-
lem[19] by formalizing the commonsense law of inertia. Action descriptions written in
these languages can be automatically translated into a logic program under the stable
model semantics [9, 10] by software such asCPLUS2ASP [1], and planning can be ac-
complished using computational methods of Answer Set Programming (ASP) [18, 21]
through state-of-the-art answer set solvers such asCLINGO [8]. For these reasons, an-
swer set programming and action languages have been widely used with mobile robots
in recent years [2, 6, 13, 25].

This paper continues an existing line of research of usingBC for robot task plan-
ning [13]. In that paper, an action description inBC is used to formalize a dynamic
domain where a mobile robot operates inside a building and fulfills tasks such as col-
lecting outgoing mail intended for delivery. Given a task, the robot can generate the
shortest plan that minimizes the number of actions, or generate the lowest-cost plan
that minimizes expected execution time by associating a cost (i.e. time) with each in-
dividual action. Generating the lowest-cost plan can take aprohibitively long time. For
instance, in a mail collection task, for a reasonably sized domain which contains 20
rooms, 25 doors, and 10 people from whom mail needs to be collected, generating the
plan and verifying that this plan is minimal can take more than 2 hours on a modern



desktop machine. Long planning times for a mobile robot can be problematic as a mo-
bile robot has limited battery life. Furthermore, if the robot also frequently interacts
with humans, planning times need to be reasonable for that robot to be deemed useful
and accepted by humans. For these reasons, this paper presents a case study where a
robot planning domain is formulated hierarchically improving planning efficiency.

Instead of using a single action description to formalize the domain, we use a list of
action descriptions,L1, L2, · · · , Ln to formalize the domain at different abstraction
levels. For two action descriptionsLi andLj , wherei < j, Lj formalizes more domain
details thanLi, using more fluents to describe the states of the domain in finer granular-
ity, and describing actions that can change these fluents. These action descriptions thus
form an abstraction hierarchy, where the high-level descriptions are more abstract than
the low-level descriptions, although each of them is an action description inBC.

To generate a plan for a planning query, a higher level description is used to generate
an abstract plan, which serves as a guideline to reduce the search space when generating
plans at lower levels. Given a planning queryQ, we begin with the top-level description
L1, and generate the most-abstract planPl1. Pl1 is turned into a set of “domain con-
straints” which are added toL2 to generate planPl2. This process continues until the
lowest-level planPln is generated usingLn and the domain constraints obtained from
Pln−1. Pln only contains elementary actions that can be directly executed by a robot.
We use this idea to generate both near-optimal short plans and low-cost plans.

We compare our approach against previous work [13] for a mailcollection task,
and show that the efficiency of planning improves by at least an order of magnitude for
generating both the short and low-cost plans.

2 Related Work

Previous work that has investigated ideas of macro-actionsand plan expansion using
STRIPS [15], HTN [7], Golog [17, 20], answer set programming[24, 4], and action lan-
guages [3, 12]. In these works, macro-actions (also calledcomplex actionsor composite
actions) are described as a sequence of primitive actions and possibly some imperative
constructs similar to those in procedural programming language. These macro-actions
are either macros that are directly expanded after a plan is generated, or expanded in
the reasoning process using a predefined structure. Encoding themethodsto expand
the macro-actions can be difficult and time-consuming even for domain experts [27].
In our work, each level is an action description in the syntaxof action languageBC.
We do not explicitly describe the relationship between actions in different levels. Their
correspondence is established during plan generation through the usage of state con-
straints. This method provides higher flexibility than traditional hierarchical planning,
because high-level actions are not necessarily treated as macros that can only be ex-
panded into certain forms of primitive actions. Previous work also investigated hier-
archical planning using partially observable Markov decision processes (POMDPs) on
mobile robots [26]. However, it is a challenge to use POMDPs to solve complex prob-
lems in large domains with a large number of states, even after the problems have been
decomposed hierarchically.

Planning with abstraction has been studied before [14, 23].We borrow the idea of
representing problem domains as a hierarchy of abstractions where successively finer



levels of detail are introduced. Unlike previous work that holds theordered monotonic-
ity property, which guarantees that the structure of an abstract plan is not changed in
the process of refining it [14], our approach intentionally allows low-level plans to not
strictly follow higher-level plans if lower-cost plans canbe achieved. The independence
of actions at different levels provides low levels higher flexibility in planning to reduce
the overall cost, while still being able to plan faster. Additionally, our work uses action
languageBC that allows planning with incomplete knowledge and indirect action ef-
fects in domains with dynamic changes [16]. Finally, In all previous work, individual
action costs are not considered, while we also generate low-cost plans.

3 Domain Representation

We use a mail-collection domain (that was previously presented in [13]) to describe our
hierarchical planning approach:

The robot drops by offices at 2pm every day to collect outgoingmail from the
residents. However, some people may not be in their offices atthat time, so
they can pass their outgoing mail to colleagues in other offices, and send this
information to the robot. When the robot collects the mail, it should obtain it
while only visiting people as necessary.

We use an example floor plan, illustrated in Figure 1, to describe how the domain is
formalized. In this example, we consider the objects shown below. In the following
subsections, we will use meta-variablesP, P1, P2, . . . to denote people,R,R1, R2, . . .

to denote rooms, andD,D1, D2, . . . to denote doors.

– alice, bob, carol, danielanderin are people.
– o1, o2, o3, o4 are offices,lab1 is a lab andcor is a room, where offices and labs are

sub-sorts of room.
– d1, d2, d3, d4, d5, d6 andd7 are doors.

Fig. 1: The layout of the floor plan used in experiments.

3.1 Hierarchical Domain Representation

This mail collection problem can be hierarchically described using the following three
levels of abstraction, all in the language ofBC [16]. The highest level description (L1)
abstracts out all low-level domain details, and only formalizes if each person has been
served or not. The plan generated at this level only dictatesthe order in which mail will
be collected from people in the building. In level 2 description (L2), more fluents are



added to describe the room connections through doors, so plans at this level decide not
only the order of people to be served but also how to access people. A plan generated at
level 1 is used as a guideline at level 2 by passing state constraints downward. The low-
est level description (L3) includes all domain details that are needed to select primitive
actions that can be directly executed by the mobile robot, such as approaching a door,
opening a door, going through a door, etc. Section 4 providesmore details on the plan
generation procedure. The following subsections detail these three levels.

Level 1 Formalization: L1 only describes the people inside the building and their
offices, the information about how mail was passed from one person to another, and the
robot’s location. The spatial details for navigation are completely abstracted out. This
level is described by the following fluents and laws:

– The current location of a person is expressed by the fluentinside. inside(P,R)
means that personP is located in roomR. A person can only be inside a single
room at any given time. The fluent isinertial1:

∼inside(P,R2) if inside(P,R1) (R1 6= R2). inertial inside(P,R).

– The current location of robot is represented by a multi-valued inertial fluentloc.
loc = R expresses that the robot is in roomR.

– The fluentpassto(P1, P2) describes whether a personP1 has passed mail to person
P2. By default, a personP1 has not passed mail to a personP2.

– The fluentmailcollected(P ) describes whether the robot has collected mail fromP .
This fluent is inertial. It is recursively defined as follows.The robot has collected
P1’s mail if it has collectedP2’s mail andP1 has passed his mail toP2.

mailcollected(P1) if mailcollected(P2), passto(P1, P2).

We formalize the actions that can lead state transitions based on the fluents at the
same level. Serving a personP results in his mail being collected, and the robot being
present in his office:

serve(P ) causesmailcollected(P ). serve(P ) causesloc = R if inside(P,R).

Level 2 Formalization: L2 includes all the fluents described inL1, and furthermore,
adds information about doors, and how these doors make a roomaccessible from the
adjacent room. The following fluents and laws are introducedin level 2:

– hasdoor(R,D): officeR has doorD, e.g.,hasdoor(o1, d1) andhasdoor(lab1, d5).
The default below expresses the closed world assumption [22] for hasdoorand
states that an officeR does not have a doorD unless it is specified.

default ∼hasdoor(R,D).

– acc(R1, D,R2): roomR1 is accessible from roomR2 via doorD. Two rooms are
not connected by a door unless specified.

acc(R1, D,R2) if hasdoor(R1, D), hasdoor(R1, D).
acc(R1, D,R2) if acc(R2, D,R1). default ∼acc(R1, D,R2).

1 An inertial fluent is a fluent whose value does not change with time by default.



This level formalizes an actioncollectmail(P ), which describes whether the robot
collected mail from personP . A robot can only collect mail from a person if both are
in the same room, if the person has not passed their mail to someone else, and if the
person’s mail has not been collected yet. Collecting mail from a personP results in the
mailcollected(P ) fluent being true, formalized as:

collectmail(P ) causesmailcollected(P ).

Action cross(D) allows the robot to cross doorD to move from roomR1 to room
R2, if R2 is accessible fromR1 through doorD, formalized as:

cross(D) causesloc = R2 if loc = R1, acc(R1, D,R2).

The next rule is a restriction on the executability ofcross(D): the robot cannot cross
a door if that door is not accessible from the robot’s currentlocation:

nonexecutablecross(D), loc = R, ∼hasdoor(R,D).

Level 3 Formalization: L3 contains all the fluents described in levelsL1 andL2, and
further introduces the following fluents2:

– facing(D) expresses that the robot is next to a doorD and is facing it. The robot
needs to face a door to sense if it is open, before going through it.

– beside(D) expresses that the robot is next to doorD. beside(D) is true if facing(D)
is true. Sincebesideis implied by facing, it will become an indirect effect of the
actions that make the fluentfacingtrue.

– open(D) expresses if the doorD is open. By default, all doors are closed.

The actions at level 3, the lowest level, are all primitive actions that are executable on
real robots.L3 includes the following actions:

– approach(D): the robot approaches doorD. The robot can only approach a door
accessible from the the robot’s current location if it is notfacing that door already.
Approaching a door causes the robot to face that door.

– gothrough(D): the robot goes through doorD. The robot can only go through a
door if the door is accessible from the robot’s current location, if it is open, and if
the robot is facing it. Executing thegothroughaction results in the robot’s location
being changed to the connecting room and the robot no longer faces the door.

– opendoor(D): the robot opens a closed doorD. The robot can only open a door
that it is facing it.

3.2 Planning Query
A planing problem includes a domain description and aplanning query. A planning
query consists of a set of conditions that describes the initial state, goal state, and pos-
sibly some intermediate states. The planning query can be written as rules in ASP,
and when merged with the ASP code obtained from the domain description will guide
CLINGO to generate answer sets that satisfy all conditions in the planning query.

2 More detailed action descriptions at this level were previously presented in[13].



Similar to previous work [13], the planner obtains the initial state from two sources.
First, it outputs the initial state from the tables where it maintains the value of fluents
insideandpassto. As an example, we consider the followingpasstorelationship where
passto(bob,alice) andpassto(daniel,bob) are true. Second, the planner polls the sen-
sors to obtain the values for fluentsbeside, facing, openandloc. The sensors guarantee
that the value forloc is always returned for exactly one location, andbesideandfacing
are returned with at most one door. If the robot is facing a door, the value ofopenfor
that door is sensed and returned as well. For instance, in theinitial state, if the robot
is in the corridor and not facing any door, the planner sensesand appends (1) to the
description as the initial state.

0: loc = cor, 0:∼beside(D), 0:∼facing(D). (1)

The goal (2) indicates that the planner should find a plan at most maxLengthin
steps that satisfies this goal. In order to use the answer set solver CLINGO to generate a
short plan, the solver is repeatedly called with increasingvalues ofmaxLengthtrying to
search for a plan, up to a user definedupper-bound, until a plan is found.

maxLength:mailcollected(P ). (2)

WhileBC can be automatically translated to ASP usingCPLUS2ASP, we follow the
translation to ASP [16] manually to produce more optimized code.

4 Algorithms

This section will present two algorithms for efficiently generating near-optimal short
and low-cost plans respectively. The latter problem generalizes the former by associat-
ing each action with a different cost. We will first describe the algorithm for generating
short plans and then focus on the more challenging problem ofgenerating low-cost
plans. The goal is to enable robots to calculate plans efficiently while compromising on
the optimality at a minimal degree.

4.1 Generating Short Plans
In the case of 3 levels of hierarchical domain abstraction, ashort plan is generated as
follows. Assuming that the query contains the following initial conditions:

0:∼mailcollected(P ), 0: loc = cor, (3)

and goal state (2), this query is combined withL1, tabular information aboutpassto
andinside, and relevant portions (onlyloc) of the sensor information (1) and then sent
to CLINGO. CLINGO returns the plan withmaxLengthas 2, as shown in (4), which
indicates thatserve(alice) is executed at time 0, andserve(carol) is executed at time 1.

0:serve(alice), 1:serve(carol). (4)

The output fromCLINGO also contains the expected values of the fluents at each
time step. For instance, the expected state after collecting mail from Alice at level 1 is
shown in (5). Similarly, the expected values of fluents at time 2 are shown in (6).

1:mailcollected(alice), 1:mailcollected(bob),
1:∼mailcollected(carol), 1:mailcollected(daniel), 1: loc = o1,

(5)



Algorithm 1 Generating Near-optimal Short Plan

Require: domain description at leveli, Di, i ∈ {1, . . . , N}
Require: planning queryQ
1: call CLINGO to generate answer setA1 usingD1 andQ for the smallest value of

maxLength≥ 0.
2: extract fromA1 the sequence of statesS = (0 : s0, . . . , k : sk) and sequence of

actionsP = (0:a0, . . . , k − 1:ak−1).
3: for level i, i ∈ {2, . . . , N} do
4: for j ∈ {0, . . . , length(P )− 1} do
5: if aj is a non-primitive actionthen
6: define queryQij that contains initial condition0 : sj−1 and goal condition

maxLength:sj
7: call CLINGO to generate the answer setAij usingDi andQij for the small-

est value ofmaxLength≥ 0
8: extract fromAij the sequence of statesSij (0 : s0, . . . , l : sl) and sequence

of actionsPij = (0:a0, . . . , l − 1:al−1).
9: elaborateP usingPij , elaborateS usingSij

10: end if
11: end for
12: end for
13: return P

2:mailcollected(alice), 2:mailcollected(bob),
2:mailcollected(carol), 2:mailcollected(daniel), 2: loc = o3.

(6)

To calculate a plan at level 2, the state (3) before executingactionserve(alice) be-
comes the new initial state, and the state (5) after executing actionserve(alice) becomes
the goal state as shown in (7). The query, (3) and (7), combined with the level 2 formal-
ization, is processed byCLINGO, which generates a short plan whenmaxLength= 2 as
shown in (8).

maxLength:mailcollected(alice),maxLength:mailcollected(bob),
maxLength:∼mailcollected(carol),
maxLength:mailcollected(daniel),maxLength: loc = o1,

(7)

0:cross(d1), 1:collectmail(alice). (8)

Executing this plan achieves the same effect of executing action serve(alice), which
can be verified by ensuring that the state described byCLINGO after executingcollectmail(alice)
is identical to (5). Similarly, as shown in (9) actionserve(carol) can be elaborated us-
ing (5) as the initial state, and the following goal state from (6). CLINGO generates
the plan (maxLength= 3) as shown in (10), which is the elaboration corresponding to
serve(carol).

maxLength:mailcollected(alice),maxLength:mailcollected(bob),
maxLength:mailcollected(carol),maxLength:mailcollected(daniel),
maxLength: loc = o3.

(9)



0:cross(d1), 1:cross(d3), 2:collectmail(carol) (10)

Next, the plan generated from the level 2 formalization is obtained by replacing
actions in (4) by their corresponding elaborated action sequences (8) and (10):

0:cross(d1), 1:collectmail(alice), 2:cross(d1), 3:cross(d3),
4:collectmail(carol).

(11)

Plan (11) can be similarly elaborated using the level 3 formalization. It should be
noted that when elaborating taskcross(d1), the complete initial sensor state (1) and
tabular information is used. The final elaborated short planthat is produced as below:

0:approach(d1), 1:opendoor(d1), 2:gothrough(d1), 3:collectmail(alice),
4:approach(d1), 5:opendoor(d1), 6:gothrough(d1), 7:approach(d3),
8:opendoor(d3), 9:gothrough(d3), 10:collectmail(carol).

This plan only consists of primitive actions that can be executed by the robot. The
complete algorithm for generating the near-optimal short plan over multiple levels of
hierarchy is described in Algorithm 1, assuming the planning query is satisfiable.

4.2 Generating Low-Cost Plans

In this section, we will adapt lowest cost plan generation using BC [13] to work with
hierarchical domain abstractions toward near-optimal low-cost plans.

Costs of Actions: All actions in the hierarchical formalization can be associated with
costs. Intuitively, the cost of an action represents its execution time. While the actual
cost values used in this paper are not relevant to demonstrate the computational ad-
vantage of using a hierarchical domain abstraction, it is still necessary to investigate
how costs can be incorporated in this framework. In our example, actionsopendoor,
gothrough, andcollectmailhave fixed costs of 1, and the costs ofapproach, crossand
serveare determined both by the argument of the action constant and the state before
the action. Following the architecture proposed in previous work [13], the cost can be
estimated using a dedicated low-level navigation module external toCLINGO. While
solving,CLINGO makes external procedure calls to compute this cost.

In our domain, the cost ofapproachis computed in two different ways:

– When the robot approaches doorD1 from door D2 while in room R, the flu-
ents uniquely identify the start and finish physical locations of the robot in the
environment. The cost of actionapproach(D1) is specified by an external term
@cost(D1,D2,R), and computed by the external module.

– When the robot is not beside a door and begins to approach to a door, the logical
abstraction cannot sufficiently capture the true location of the robot at the start
of the action. However, this situation only occurs at the start of a plan, when the
external module knows the true location of the robot. Approaching doorD initially
can be computed using the external term@initialcost(D,R).



The cost for executing actionserve(P ) also depends on the physical location of
the robot. When the robot servesP located in officeR1, and the robot itself is cur-
rently located in roomR2, the cost of actionserve(P ) is specified by an external term
@costserve(P,R1,R2). Similar to approach, the external module can estimate
the cost of this action. It should be noted that the location abstraction provided to the
external module for computing the cost ofserveis at the room level, different fromap-
proachwhere proximity to a door was much more suitable for uniquelyidentifying the
robot’s location. As a result, cost estimates ofservemay not be extremely accurate. In
a similar fashion, the cost of actioncross(D) can be computed using the external term
@costcross(D,R).

Estimating Upper-Bounds: When costs are used withCLINGO, unlike the case of
short plan generation, it is no longer possible to callCLINGO repeatedly with increas-
ing values ofmaxLength, as the shortest plan may not be the one that has the lowest
cost. While searching for low-cost plans,maxLengthis directly set to the user-specified
upper-bound [13]. An upper-bound exponential relative to the number of grounded flu-
ents can produce the provably correct low-cost plan [5]. Significant domain-specific
knowledge is used to estimate this upper-bound which reaches a reasonable compro-
mise between optimality and efficiency.

When planning across different levels of formalization in hierarchical domain ab-
straction, it is possible to supply an arbitrarily loose upper-bound toCLINGO at each
level to ensure that the optimal plan is found. Instead, we’ll improve computational
efficiency by providing more appropriate upper-bounds at each level using knowledge
about the hierarchy.

Furthermore, as we’ll show in the next section, for generating the low-cost plans we
recompute the entire plan at each level of the hierarchy using the plan at a higher level
as a guide, instead of simply elaborating high-level actions. This recomputation makes
it difficult to prespecify reasonable upper-bounds withoutknowledge of the plan gen-
erated in the level above. For this reason, in our framework,we provide a parametrized
heuristic approach to estimate these upper-bounds. This heuristic allows users to pro-
vide domain knowledge independent of the planning query, which can then be used to
compute the upper-bounds at runtime. In experiments, the upper-bounds estimated by
this approach lead to a good compromise between optimality and efficiency.

To estimate the upper-bounds for the three levels at runtime, we need to prespecify
three values(e1, e2, e3):

– The valuee1 denotes the upper-bound of plans in level 1. In our case, at level 1,
there exists only one macro-actionserve. In order to serve 4 people, no plan should
ever be more than 4 steps. Therefore, it is reasonable to assigne1 to be 4.

– The valuee2 denotes the upper-bound on the elaborations of macro-actions from
level 1. In our case, we need to estimate the upper-bound of a plan that achieves the
same effect asserve(P ). Consider the worst case of elaboratingserve(P ), where
the robot is located ino1, and needs to collect mail fromcarol. In this situation, the
longest plan thatserve(carol) can be elaborated to without crossing a door twice is
cross(d1), cross(d5), cross(d6), cross(d3) andcollectmail(carol). Therefore, it is
reasonable to assigne2 to be 5.



– The valuee3 denotes the upper-bound of the elaborations of macro-actions from
level 2. In our case, we need to estimate the upper-bound of a plan that achieves
the same effect ofcross(D). The worst case is that the robot executes three actions
to cross a closed doorD: approach(D), opendoor(D), gothrough(D). Therefore,
it is reasonable to assigne3 to be 3.

Given the value ofe1, e2, e3, we can determine the value of the upper-bounds for
the overall plan at all three levels:

– e1 is the upper-bound in level 1. Denote it asB1: B1 = e1.
– Let l1 be the total steps in the low-cost plan generated in level 1 and lservedenotes

the number of actionsserveoccurring in that plan. Then the upper-bound in level
2, denoted asB2, is

B2 = e2 × lserve+ (l1 − lserve). (12)

– Let l2 be the total steps of the low-cost plan generated in level 2 and lcrossdenotes
the number of actionscrossoccurring in that plan. Then the upper-bound in level 3,
denoted asB3, is

B3 = e3 × lcross+ (l2 − lcross). (13)

These three upper-bounds are used during low-cost plan generation at each level. We
will generalize this approach from the case study presentedin this paper to an abstract
framework in the future.

Illustrative Example: Consider the following planning query: initially the robotis
located inlab1, and the goal of the robot is to collect mail from all 4 people.At level 1,
we use the optimization statement,#minimize{X,Y:costserve(X,Y)}, to guide
CLINGO to generate the lowest cost plan atmaxLength= B1 = 4. The robot only needs
to collect mail from Alice and Carol, as Alice has Bob’s and Dan’s mail. There are a
total of 12 plans that can satisfy this query, asCLINGO returns plans with no-operation
for 2 of 4 timesteps. Plan (4) is one such plan. Another possible plan is:

1:serve(carol), 3:serve(alice).

Between all the 12 plans, there may be at most only 2 unique cost values. 6 equiv-
alent plans will serve Alice first, and 6 equivalent plans will serve Carol first. Depend-
ing on the value of external cost termcostserve, the plan that serves one of them
first may have lower cost. One is arbitrarily selected from these 6 lowest cost plans by
CLINGO. Let’s assume for simplicity that(4) is returned. Recall that once(4) is gener-
ated, the states before and after executing each level-1 action are also given as part of
the answer set. In this case, we have the initial state (3), the state (5) at time 1 (after
serving Alice), and the state (6) at time 2 (after serving Carol). These three states will
be passed downward to the next level as state constraints.

Different from the short plan generation, whereCLINGO is called multiple times to
elaborate high-level actions one by one, the low-cost plan in level 2 is computed by
calling CLINGO just once. To reduce the search space in planning at level 2, states (5)
and (6) are added to the planning query as state constraints.To do this, their time stamps
will be shifted to reflect their places in a longer plan generated at this level.CLINGO



Algorithm 2 Generating Low-cost Plan

Require: domain description at leveli Di, i ∈ {1, . . . , N}
Require: planning queryQ and user-specified parametersE = {ei : i = 1, . . . ,M}
1: call CLINGO to generate the low-cost answer setA1 usingD1, Q andB1 = e1.
2: for level i, i ∈ {2, . . . , N} do
3: extract fromAi−1 the sequence of statesSi−1 = (0 : s0, . . . , k : sk) and plan

P = (0:a0, . . . , k − 1:ak−1)
4: for each statej :sj ∈ Si−1 do
5: compute shifted time stampj′ usingP andE
6: addj′ :sj into planning queryQ
7: end for
8: compute upper-boundBi usingP andE
9: call CLINGO to generate the low-cost answer setAi usingDi, Q, andBi

10: if i is N then
11: return the plan extracted fromAN

12: end if
13: end for

then solves this planning query with intermediate state requirements using upper-bound
= B2 computed as2× 5 = 10.

The shifted time stamp is computed as follows. Lett be the time stamp of a state
generated in level 1,lservedenotes the number of actionsservebefore that state, then
the shifted time stampt′ is

t′ = lserve× e2 + t− lserve.

In the case of state (5), its timestamp shifts from 1 to 5, and it is added as part of the
planning query for level 2 as follows:

5:mailcollected(alice), 5:mailcollected(bob),
5:∼mailcollected(carol), 5:mailcollected(daniel), 5: loc = o1,

(14)

Similarly, the state (6) is shifted from 2 to 10 and the following conditions are added
into the query:

10:mailcollected(alice), 10:mailcollected(bob),
10:mailcollected(carol), 10:mailcollected(daniel), 10: loc = o3,

(15)

Altogether with the initial state (3), using the optimization statement for action
cross(D),#minimize{X,Y:costcross(X,Y)}, CLINGO generates a low-cost plan
that satisfies initial condition (3), intermediate state (14) and goal state (15):

0:cross(d5), 1:cross(d1), 2:collectmail(alice), 5:cross(d1)
6 :cross(d3), 7:collectmail(carol).

(16)

Note that the above plan exactly follows the order of servingpeople:Alice is served
first, andCarol second, which corresponds to the plan generated at level 1. Furthermore,
in this plan (16),d5 rather thand6 or d7 is chosen while leavinglab1 to visiting Alice’s
office, as the cost of navigating to Alice’s office throughd5 is lower due to a shorter



navigation distance. There are some time instances where noactions are executed, such
as time instances 3, 4, 8, and 9. These no-operations occur asthe upper-bound specified
for level 2 is loose. The true length of the above plan is 6.

Plan (16) can be further elaborated at level 3 in a similar way. From (16), we observe
thatl2 = 6, lcross= 4, so according to (13), the upper-boundB3 for level 3 is 14. The
complete algorithm that describes this low-cost plan generation procedure is given in
Algorithm 2, where we assume the planning query is satisfiable.

5 Experiments

Experiments were designed to compare our proposed approachthat has multiple lev-
els of domain descriptions with a baseline approach that directly describes the domain
without high-level abstractions. The latter formalization corresponds to the domain de-
scription used in previous work [13], and is equivalent to the domain description at
level 3. We compare the performances of these two approachesboth for generating
short plans and for generating low-cost plans.

The framework described in this paper has been implemented using the newly re-
leased state-of-the-art answer set solverCLINGO 4.3. CLINGO 4.3 complements ASP’s
declarative input language by offering additional controlthrough an embedding script-
ing language (Python or Lua), such that the complex reasoning process is achieved
within a single integrated ASP grounding and solving script. In our experiments,CLINGO

4.3 is run with 6 parallel threads on a desktop machine with 11GB of memory and 2
Intel Xeon CPUs (6 cores each at 2.67GHz).

5.1 Generating Short Plans
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Fig. 2: Time needed to calculate the short plan using
the proposed and baseline approaches.

To test short plan generation, we
used the simulation domain used in
previous work [13]. This domain
consists of 10 people, 20 rooms and
25 doors inside a building.

In our experiments, mail needs
to be collected from everyone inside
the building. However we vary how
mail is passed from one person to an-
other such that the number of peo-
ple that need to be visited to collect
all the mail varies from 1 to 10. The
length of the plan is proportional to
the number of people that need to be visited.

The planning time is plotted in Figure 2. The two curves indicate that our pro-
posed approach of using hierarchical domain abstraction togenerate short plans leads
to reduced planning time over the baseline flat approach. More importantly, this figure
indicates that with the increase of the domain size and the plan size (in terms of the
number of people to be visited), the planning time using hierarchical domain abstrac-
tion increasespolynomially, while the planning time using the baseline formalization
increasesexponentially. We attribute this phenomenon to both a well-designed hierar-
chy and the inherent hierarchical nature of the domain.
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Fig. 3: (a) Time needed to calculate the low-cost plan using the proposed and baseline approaches
in logarithmic scale; (b) Time needed to calculate the low-cost plan using the proposed approach
in different sized domains.

5.2 Generating Low Cost Plans

We compare the efficiency of generating low-cost plans usingthe hierarchical and flat
approaches. We use the same costs for theapproachaction in both methods. When
using hierarchical domain abstraction, we further compilefiles that contain estimated
costs for theserveandcrossactions.

First, we investigate how complex a planning query can be solved by both ap-
proaches, and the corresponding planning time for both. Thecomplexity of the planning
query can be expressed in terms of the number of people that need to be physically vis-
ited to collect everyone’s mail. This number directly affects the length of the low-cost
plan and also affects the estimation of the upper-bound in the lower levels of the hierar-
chy. With more people that need to be visited, the number of possible plans to explore
will increase exponentially and significantly affect the overall planning time. Figure 1
shows the domain used for evaluating low-cost plan generation.

The robot is initially placed in the corridor and asked to serve everyone. The base-
line flat approach needs a upper-bound on plan length under which it will solve for
the low-cost plan. We assign this upper-bound as 1.75 times the number of actions
in the shortest plan based on our empirical knowledge. It should be noted that 1.75
is a relatively tight upper-bound for the baseline approach, but it makes it easier for
the baseline approach to be solved within a predefined timeout of 6 hours. Figure 3(a)
shows the time needed to calculate the low-cost plan using the proposed hierarchical
approach and the baseline approach without abstraction. While calculating long plans,
e.g., to serve more than 2 people, our hierarchical approachreduces the time needed to
calculate the low-cost by at least 2 orders of magnitude. Forthe task of serving four
people, the flat approach terminates at the end of 6 hours without verifying that the best
plan found so far minimizes the cost. Similar to the case of generating the near-optimal
short plan, planning with hierarchical domain abstractionleads to faster planning times.
Finally, the plan where the robot individually obtains mailfrom all 5 people cannot be
generated and verified by either approach within 6 hours, indicating the limit of han-
dling complex planning queries. Indeed, when serving 4 people individually, the length
of the optimal plan was found to have 31 steps in this experiment.



Finally, we investigate the scalability of our approach to handle reasonably complex
planning queries in a large domain based on a real building. We keep the number of
people from whom mail needs to be collected fixed at 3, and varythe total number of
people in the building from 4 to 10, rooms from 10 to 20 and doors from 14 to 25.
Figure 3(b) plots the planning time as the size of the domain increases.

Increasing the number of objects in the domain does not significantly change plan-
ning time. In particular, changing the number of people doesnot have any substantial
effect. Adding more rooms and doors has a stronger effect on changing planning times,
since it provides more possible routes for navigating from one office to another. Fur-
thermore, the top rightmost point in the figure corresponds to the simulation experiment
problem in [13]. Using our new approach, the near-optimal low-cost plan is generated
in around 20 seconds. This indicates that for a reasonably complex planning query, our
new approach can be applicable in large domains.

6 Conclusions
In this paper we proposed a framework of robotic task planning using action language
BC with hierarchical domain abstraction that addresses efficiency and scalability while
generating plans in large robotic domains. We perform a casestudy where this idea
is implemented and evaluated in a mail collection task. Our experiments show that by
using hierarchical domain abstraction, solving times for both near-optimal short and
low-cost plans have been improved by at least an order of magnitude for reasonably
sized domains.
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