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Abstract. Action language3C provides an elegant way of formalizing robotic
domains which need to be expressed using default logic as well as indiréc
recursive action effects. However, generating plans efficiently fgeldomains
using BC can be challenging, even when state-of-the-art answer set soheers a
used. In this paper, we investigate the computational gains achievedbsiibde
ing task planning domains at different abstraction levels usi@gwhere lower
levels describe more domain details by addingntsnot included in higher lev-
els and actions at different levels are formalized independently. Tvayitdghs
are presented to efficiently calculate the near-optimal short and loiplers re-
spectively. We present a case study where at least an order oftodspeedup
was achieved in a robot mail collection task using hierarchical domainaabs
tions.

1 Introduction

Action language€+ [11] was designed to formalize indirect action effects aathdit
logic, and the recently proposed languag@ [16] can also describe recursive action
effects. These languages are attractive in robotic donaaitsey solve th&tame prob-
lem[19] by formalizing the commonsense law of inertia. Actiarsdriptions written in
these languages can be automatically translated into a ppggram under the stable
model semantics [9, 10] by software suchcas . us2AsP [1], and planning can be ac-
complished using computational methods of Answer Set Rrogring (ASP) [18, 21]
through state-of-the-art answer set solvers sucbLasGo [8]. For these reasons, an-
swer set programming and action languages have been wisletiwith mobile robots
in recent years [2, 6, 13, 25].

This paper continues an existing line of research of usiddor robot task plan-
ning [13]. In that paper, an action description¢ is used to formalize a dynamic
domain where a mobile robot operates inside a building atitluasks such as col-
lecting outgoing mail intended for delivery. Given a tadke robot can generate the
shortest plan that minimizes the number of actions, or gaadhe lowest-cost plan
that minimizes expected execution time by associating &(ces time) with each in-
dividual action. Generating the lowest-cost plan can taeaibitively long time. For
instance, in a mail collection task, for a reasonably sizeshain which contains 20
rooms, 25 doors, and 10 people from whom mail needs to bectetiegenerating the
plan and verifying that this plan is minimal can take morentBahours on a modern



desktop machine. Long planning times for a mobile robot aaproblematic as a mo-
bile robot has limited battery life. Furthermore, if the oblalso frequently interacts
with humans, planning times need to be reasonable for that to be deemed useful
and accepted by humans. For these reasons, this papertprasease study where a
robot planning domain is formulated hierarchically imgrayplanning efficiency.

Instead of using a single action description to formalizedbmain, we use a list of
action descriptionsl.;, Lo, ---, L, to formalize the domain at different abstraction
levels. For two action descriptiods andL;, wherei < j, L; formalizes more domain
details tharl;, using more fluents to describe the states of the domain indgnaaular-
ity, and describing actions that can change these flueneseTaction descriptions thus
form an abstraction hierarchy, where the high-level desions are more abstract than
the low-level descriptions, although each of them is arpaddiescription irn3C.

To generate a plan for a planning query, a higher level detseniis used to generate
an abstract plan, which serves as a guideline to reducednersgpace when generating
plans at lower levels. Given a planning quélywe begin with the top-level description
Ly, and generate the most-abstract plan. Pl; is turned into a set of “domain con-
straints” which are added tb, to generate pla#®l;. This process continues until the
lowest-level planPl,, is generated using,, and the domain constraints obtained from
Pl,,_1. Pl, only contains elementary actions that can be directly exeichy a robot.
We use this idea to generate both near-optimal short plashfoancost plans.

We compare our approach against previous work [13] for a s@iéction task,
and show that the efficiency of planning improves by at leasirder of magnitude for
generating both the short and low-cost plans.

2 Related Work

Previous work that has investigated ideas of macro-actimsplan expansion using
STRIPS [15], HTN [7], Golog [17, 20], answer set programnii24, 4], and action lan-
guages [3, 12]. In these works, macro-actions (also catkedplex actionsr composite
actiong are described as a sequence of primitive actions and fypssitme imperative
constructs similar to those in procedural programming lagg. These macro-actions
are either macros that are directly expanded after a plasriergted, or expanded in
the reasoning process using a predefined structure. Emptittmethodsto expand
the macro-actions can be difficult and time-consuming eeerddmain experts [27].
In our work, each level is an action description in the syrdgfaction languagésC.
We do not explicitly describe the relationship betweencatiin different levels. Their
correspondence is established during plan generationghrthe usage of state con-
straints. This method provides higher flexibility than itehal hierarchical planning,
because high-level actions are not necessarily treatedaasomthat can only be ex-
panded into certain forms of primitive actions. Previougkvalso investigated hier-
archical planning using partially observable Markov decigprocesses (POMDPS) on
mobile robots [26]. However, it is a challenge to use POMDOPsalve complex prob-
lems in large domains with a large number of states, eventhaiégroblems have been
decomposed hierarchically.

Planning with abstraction has been studied before [14 \&8]borrow the idea of
representing problem domains as a hierarchy of abstractidrere successively finer



levels of detail are introduced. Unlike previous work thalds theordered monotonic-
ity property, which guarantees that the structure of an aligtfan is not changed in
the process of refining it [14], our approach intentionallpwas low-level plans to not
strictly follow higher-level plans if lower-cost plans cha achieved. The independence
of actions at different levels provides low levels highexifddity in planning to reduce
the overall cost, while still being able to plan faster. Aduially, our work uses action
language3C that allows planning with incomplete knowledge and indiraction ef-
fects in domains with dynamic changes [16]. Finally, In akyous work, individual
action costs are not considered, while we also generatedstvplans.

3 Domain Representation

We use a mail-collection domain (that was previously pressgim [13]) to describe our
hierarchical planning approach:

The robot drops by offices at 2pm every day to collect outgoiag from the

residents. However, some people may not be in their officéisaatime, so

they can pass their outgoing mail to colleagues in other effi@and send this
information to the robot. When the robot collects the maighould obtain it

while only visiting people as necessary.

We use an example floor plan, illustrated in Figure 1, to dleednow the domain is
formalized. In this example, we consider the objects shoelova In the following
subsections, we will use meta-variablesP;, P, . .. to denote peopleR, Ry, Ro, . ..
to denote rooms, anB, D, Ds, ... to denote doors.

— alice, bob, carol, danielanderin are people.

— o1, 02, 03, 04 are offices)ab; is a lab andtor is a room, where offices and labs are
sub-sorts of room.

— dy, da, ds, dy, ds, dg andd; are doors.
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Fig. 1: The layout of the floor plan used in experiments.

3.1 Hierarchical Domain Representation

This mail collection problem can be hierarchically desedlusing the following three
levels of abstraction, all in the language&¢ [16]. The highest level descriptiori()
abstracts out all low-level domain details, and only forizes if each person has been
served or not. The plan generated at this level only dicth&srder in which mail will
be collected from people in the building. In level 2 deséoipt(Z,), more fluents are



added to describe the room connections through doors, e ptahis level decide not
only the order of people to be served but also how to accegdge®plan generated at
level 1 is used as a guideline at level 2 by passing state redmist downward. The low-

est level descriptioni(3) includes all domain details that are needed to select pvieni

actions that can be directly executed by the mobile robath) &1 approaching a door,
opening a door, going through a door, etc. Section 4 provige® details on the plan
generation procedure. The following subsections detaddfthree levels.

Level 1 Formalization: L; only describes the people inside the building and their
offices, the information about how mail was passed from omggreto another, and the
robot’s location. The spatial details for navigation arenptetely abstracted out. This
level is described by the following fluents and laws:

— The current location of a person is expressed by the flirside inside P, R)
means that persoR is located in roomR. A person can only be inside a single
room at any given time. The fluentiisertial®:

~insidg P, Ry) if insidg P, Ry1) (R; # Rs). inertial insidg P, R).

— The current location of robot is represented by a multi-edlinertial fluentoc.
loc = R expresses that the robot is in rodin

— The fluentpasstd P, P,) describes whether a persdh has passed mail to person
P5. By default, a persoi; has not passed mail to a persBn

— The fluentmailcollected P) describes whether the robot has collected mail fldm
This fluent is inertial. It is recursively defined as follovihe robot has collected
Py’s mail if it has collectedP,’s mail andP; has passed his mail 18,.

mailcollected ;) if mailcollected ), passtdPy, P).

We formalize the actions that can lead state transitionsdas the fluents at the
same level. Serving a perséhresults in his mail being collected, and the robot being
present in his office:

servé P) causesmailcollectedP). servéP) causesloc = R if insidg P, R).

Level 2 Formalization: L. includes all the fluents described in, and furthermore,
adds information about doors, and how these doors make a agoassible from the
adjacent room. The following fluents and laws are introdunddvel 2;

— hasdoo( R, D): office R has doorD, e.g.,hasdoofo;, d;) andhasdooflab;, ds).
The default below expresses the closed world assumptiohf¢2zhasdoorand
states that an offic& does not have a dodp unless it is specified.

default ~hasdoo(R, D).

— acq Ry, D, Ry): room R, is accessible from roork, via doorD. Two rooms are
not connected by a door unless specified.

acq Ry, D, Ry) if hasdoo(R;, D), hasdoofR;, D).
acq Ry, D, Ry) if acdRs, D, Ry). default ~acd Ry, D, Rs).

! Aninertial fluent is a fluent whose value does not change with time bytiefa



This level formalizes an actiooollectmail P), which describes whether the robot
collected mail from persor. A robot can only collect mail from a person if both are
in the same room, if the person has not passed their mail te@oenelse, and if the
person’s mail has not been collected yet. Collecting maitfia persorP results in the
mailcollected P) fluent being true, formalized as:

collectmail P) causesmailcollectedP).

Action crosg D) allows the robot to cross dodp to move from roomR; to room
Rs, if Ro is accessible fronR; through doorD, formalized as:

crosg D) causesloc = R, if loc = Ry, acq R1, D, Ry).

The next rule is a restriction on the executabilitycaisg D): the robot cannot cross
a door if that door is not accessible from the robot’s curlecation:

nonexecutablecrosg D), loc = R, ~hasdoofR, D).

Level 3 Formalization: L5 contains all the fluents described in levélsand L,, and
further introduces the following fluerfts

— facing(D) expresses that the robot is next to a déband is facing it. The robot
needs to face a door to sense if it is open, before going thrdug

— besid¢ D) expresses that the robot is next to débbesidé€ D) is true if facing(D)
is true. Sincebesideis implied byfacing, it will become an indirect effect of the
actions that make the fluefacingtrue.

— opern(D) expresses if the dodp is open. By default, all doors are closed.

The actions at level 3, the lowest level, are all primitivéi@ts that are executable on
real robots.L3 includes the following actions:

— approach{D): the robot approaches dodr. The robot can only approach a door
accessible from the the robot’s current location if it is famting that door already.
Approaching a door causes the robot to face that door.

— gothrough{D): the robot goes through dodp. The robot can only go through a
door if the door is accessible from the robot’s current lmegtif it is open, and if
the robot is facing it. Executing thgothroughaction results in the robot’s location
being changed to the connecting room and the robot no loagesfthe door.

— opendoofD): the robot opens a closed dobr. The robot can only open a door
that it is facing it.

3.2 Planning Query

A planing problem includes a domain description anplanning query A planning
query consists of a set of conditions that describes thialisitate, goal state, and pos-
sibly some intermediate states. The planning query can ligewras rules in ASP,
and when merged with the ASP code obtained from the domairrigéen will guide
CLINGO to generate answer sets that satisfy all conditions in therjhg query.

2 More detailed action descriptions at this level were previously presenfég]in



Similar to previous work [13], the planner obtains the aditate from two sources.
First, it outputs the initial state from the tables where &intains the value of fluents
insideandpassto As an example, we consider the followipgsstarelationship where
passtgboh, alice) and passtgdaniel bob) are true. Second, the planner polls the sen-
sors to obtain the values for flueriigside facing openandloc. The sensors guarantee
that the value foloc is always returned for exactly one location, dresideandfacing
are returned with at most one door. If the robot is facing ardibe value ofopenfor
that door is sensed and returned as well. For instance, imitied state, if the robot
is in the corridor and not facing any door, the planner seaselsappends (1) to the
description as the initial state.

0:loc = cor, 0:~besidéD), 0:~facing D). (1)

The goal (2) indicates that the planner should find a plan atmaxLengthin
steps that satisfies this goal. In order to use the answeolser SLINGO to generate a
short plan, the solver is repeatedly called with increasaiges ofmaxLengttirying to
search for a plan, up to a user definggper-bounduntil a plan is found.

maxLength mailcollected P). 2

While BC can be automatically translated to ASP usirgj. us2AsP, we follow the
translation to ASP [16] manually to produce more optimizedec

4  Algorithms

This section will present two algorithms for efficiently geating near-optimal short
and low-cost plans respectively. The latter problem gdizexathe former by associat-
ing each action with a different cost. We will first describe algorithm for generating
short plans and then focus on the more challenging problegenérating low-cost
plans. The goal is to enable robots to calculate plans effigigvhile compromising on

the optimality at a minimal degree.

4.1 Generating Short Plans

In the case of 3 levels of hierarchical domain abstractisshat plan is generated as
follows. Assuming that the query contains the followingdiadiconditions:

0:~mailcollected P), 0:loc = cor, (3)

and goal state (2), this query is combined with, tabular information aboypassto
andinside and relevant portions (onlpc) of the sensor information (1) and then sent
to CLINGO. CLINGO returns the plan witmaxLengthas 2, as shown in (4), which
indicates thaservealice) is executed at time 0, arggrvécarol) is executed at time 1.

0:servéalice), 1:servécarol). 4)

The output fromCLINGO also contains the expected values of the fluents at each
time step. For instance, the expected state after coltpatiail from Alice at level 1 is
shown in (5). Similarly, the expected values of fluents attBrare shown in (6).

1:mailcollectedalice), 1: mailcollectedbob),
1:~mailcollectedcarol), 1 : mailcollecteddaniel), 1:loc = oy,

()



Algorithm 1 Generating Near-optimal Short Plan

Require: domain description at leveé| D;,i € {1,...,N}
Require: planning quen®@
1: call CLINGO to generate answer sdt using D; and@ for the smallest value of
maxLength> 0.

2: extract fromA; the sequence of statés = (0: so, ...,k : sx) and sequence of
actionsP = (0:ag, ...,k — l:ag_1).
3: for leveli,i € {2,...,N} do
4: for j € {0,...,length P) — 1} do
5: if a; is a non-primitive actiothen
6: define queryQ;; that contains initial conditiol : s;_; and goal condition
maxLengths;
7 call CLINGO to generate the answer s&f; usingD; and@;; for the small-
est value ofnaxLength> 0
8: extract fromA4;; the sequence of statés; (0:so,...,1:s;) and sequence
of actionsP;; = (0:ag,...,l —1:a;_1).
9: elaborateP using F;;, elaborateS usingS;;
10: end if
11:  end for
12: end for
13: return P

2: mailcollectedalice), 2: mailcollectedboby),
2:mailcollectedcarol), 2: mailcollecteddaniel), 2:loc = os.

(6)

To calculate a plan at level 2, the state (3) before execuattignservealice) be-
comes the new initial state, and the state (5) after exegatitionservealice) becomes
the goal state as shown in (7). The query, (3) and (7), cordbinth the level 2 formal-
ization, is processed hyLINGO, which generates a short plan wheaxLength= 2 as
shown in (8).

maxLengthmailcollectedalice), maxLengthmailcollectedbob),
maxLength~ mailcollectedcarol), @)
maxLengthmailcollecteddaniel), maxLengthloc = oy,

0:crosgdy ), 1: collectmailalice). (8)

Executing this plan achieves the same effect of executitigreservealice), which
can be verified by ensuring that the state describetiliyG o after executingollectmailalice)
is identical to (5). Similarly, as shown in (9) actiservécarol) can be elaborated us-
ing (5) as the initial state, and the following goal staterfr¢6). CLINGO generates
the plan fnaxLength= 3) as shown in (10), which is the elaboration corresponding to
servécarol).

maxLengthmailcollectedalice), maxLengthmailcollectedbob),
maxLengthmailcollectedcarol), maxLengthmailcollecteddaniel), 9)
maxLengthloc = 03.



0:crosgd;), 1:crosgds), 2: collectmail carol) (10)

Next, the plan generated from the level 2 formalization itaoted by replacing
actions in (4) by their corresponding elaborated actiomierges (8) and (10):

0:crosgd; ), 1:collectmailalice), 2: crosgd; ), 3: crosgds),

4:collectmail carol). (11)

Plan (11) can be similarly elaborated using the level 3 féimaton. It should be
noted that when elaborating taskosgd; ), the complete initial sensor state (1) and
tabular information is used. The final elaborated short ghanis produced as below:

0:approach{d, ), 1:opendoofd; ), 2: gothroughd, ), 3: collectmailalice),
4:approach{d; ), 5:opendoo(d; ), 6 : gothroughd, ), 7: approachds),
8:opendoo(ds), 9:gothroughds), 10: collectmail carol).

This plan only consists of primitive actions that can be exed by the robot. The
complete algorithm for generating the near-optimal shtah mver multiple levels of
hierarchy is described in Algorithm 1, assuming the plagmjnery is satisfiable.

4.2 Generating Low-Cost Plans

In this section, we will adapt lowest cost plan generationgi$C [13] to work with
hierarchical domain abstractions toward near-optimatdéost plans.

Costs of Actions: All actions in the hierarchical formalization can be asaten with
costs. Intuitively, the cost of an action represents itcatien time. While the actual
cost values used in this paper are not relevant to demoagtratcomputational ad-
vantage of using a hierarchical domain abstraction, itilsretcessary to investigate
how costs can be incorporated in this framework. In our exejrgrtionsopendoor
gothrough andcollectmailhave fixed costs of 1, and the costsapfproach crossand
serveare determined both by the argument of the action constahtrenstate before
the action. Following the architecture proposed in presiaork [13], the cost can be
estimated using a dedicated low-level navigation moduteraal tocLINGO. While
solving, CLINGO makes external procedure calls to compute this cost.
In our domain, the cost approachis computed in two different ways:

— When the robot approaches doby from door D, while in room R, the flu-
ents uniquely identify the start and finish physical locasiaf the robot in the
environment. The cost of actioapproach{D;) is specified by an external term
@ost (D1, D2, R), and computed by the external module.

— When the robot is not beside a door and begins to approach toratte logical
abstraction cannot sufficiently capture the true locatibthe robot at the start
of the action. However, this situation only occurs at thetstha plan, when the
external module knows the true location of the robot. Apphirag doorD initially
can be computed using the external te@mi ti al cost (D, R) .



The cost for executing actioservé P) also depends on the physical location of
the robot. When the robot servéslocated in officeRR;, and the robot itself is cur-
rently located in roon,, the cost of actiorserve P) is specified by an external term
@ost serve( P, RL, R2). Similar to approach the external module can estimate
the cost of this action. It should be noted that the locatiostraction provided to the
external module for computing the costs#rveis at the room level, different frorap-
proachwhere proximity to a door was much more suitable for uniqueédntifying the
robot’s location. As a result, cost estimatesefvemay not be extremely accurate. In
a similar fashion, the cost of actiamosg D) can be computed using the external term
@ostcross(D, R).

Estimating Upper-Bounds: When costs are used withLINGO, unlike the case of
short plan generation, it is no longer possible to caliNGo repeatedly with increas-
ing values ofmaxLengthas the shortest plan may not be the one that has the lowest
cost. While searching for low-cost plamsaxLengthis directly set to the user-specified
upper-bound [13]. An upper-bound exponential relativeheortumber of grounded flu-
ents can produce the provably correct low-cost plan [5]nfitgant domain-specific
knowledge is used to estimate this upper-bound which reaahreasonable compro-
mise between optimality and efficiency.

When planning across different levels of formalization ierarchical domain ab-
straction, it is possible to supply an arbitrarily loose eppound toCcLINGO at each
level to ensure that the optimal plan is found. Instead, weiprove computational
efficiency by providing more appropriate upper-bounds ahdavel using knowledge
about the hierarchy.

Furthermore, as we’ll show in the next section, for geneggtine low-cost plans we
recompute the entire plan at each level of the hierarchygusia plan at a higher level
as a guide, instead of simply elaborating high-level astidtis recomputation makes
it difficult to prespecify reasonable upper-bounds withkmbwledge of the plan gen-
erated in the level above. For this reason, in our framewsekprovide a parametrized
heuristic approach to estimate these upper-bounds. Thigskie allows users to pro-
vide domain knowledge independent of the planning querjchvban then be used to
compute the upper-bounds at runtime. In experiments, therdpounds estimated by
this approach lead to a good compromise between optimailiyefficiency.

To estimate the upper-bounds for the three levels at runtirveeneed to prespecify
three valuege , es, €3):

— The valuee; denotes the upper-bound of plans in level 1. In our caseyet le
there exists only one macro-actisearve In order to serve 4 people, no plan should
ever be more than 4 steps. Therefore, it is reasonable rassio be 4.

— The valuees denotes the upper-bound on the elaborations of macroractiom
level 1. In our case, we need to estimate the upper-boundlahelpat achieves the
same effect aserve P). Consider the worst case of elaboratseyve P), where
the robot is located in;, and needs to collect mail froparol. In this situation, the
longest plan thaservécarol) can be elaborated to without crossing a door twice is
crosgds ), crosgds), crosgdg), crosgds) andcollectmailcarol). Therefore, it is
reasonable to assign to be 5.



— The valuees denotes the upper-bound of the elaborations of macrorectrom
level 2. In our case, we need to estimate the upper-bound Eratpat achieves
the same effect afrosg D). The worst case is that the robot executes three actions
to cross a closed dodp: approach{ D), opendoofD), gothroughi{ D). Therefore,
it is reasonable to assigs to be 3.

Given the value oy, es, e3, we can determine the value of the upper-bounds for
the overall plan at all three levels:

— e; isthe upper-bound in level 1. Denote it Bs: By = e;.

— Let!; be the total steps in the low-cost plan generated in leveblIggtyedenotes
the number of actionserveoccurring in that plan. Then the upper-bound in level
2, denoted a®3,, is

By = e x Iserve+ (i — lserve. (12)

— Letl; be the total steps of the low-cost plan generated in levetZ @pssdenotes
the number of actionsrossoccurring in that plan. Then the upper-bound in level 3,

denoted a$3s, is
Bs = e3 x Icross+ (l2 — lcross. (13)

These three upper-bounds are used during low-cost plarragjereat each level. We
will generalize this approach from the case study presantdds paper to an abstract
framework in the future.

lllustrative Example: Consider the following planning query: initially the robist
located inlab,, and the goal of the robot is to collect mail from all 4 peo@lelevel 1,
we use the optimization statemetiiri ni m ze{X, Y: cost serve( X Y) }, to guide
CLINGO to generate the lowest cost plamadxLength= B; = 4. The robot only needs
to collect mail from Alice and Carol, as Alice has Bob’s andnB@amail. There are a
total of 12 plans that can satisfy this query@sNGo returns plans with no-operation
for 2 of 4 timesteps. Plan (4) is one such plan. Another pésgilan is:

1:servécarol), 3:servealice).

Between all the 12 plans, there may be at most only 2 uniquevetses. 6 equiv-
alent plans will serve Alice first, and 6 equivalent pland sdlrve Carol first. Depend-
ing on the value of external cost termost ser ve, the plan that serves one of them
first may have lower cost. One is arbitrarily selected froesth6 lowest cost plans by
CLINGO. Let’s assume for simplicity thdtl) is returned. Recall that onge) is gener-
ated, the states before and after executing each leveidnaate also given as part of
the answer set. In this case, we have the initial state (8)state (5) at time 1 (after
serving Alice), and the state (6) at time 2 (after servingaDailhese three states will
be passed downward to the next level as state constraints.

Different from the short plan generation, whereiNGo is called multiple times to
elaborate high-level actions one by one, the low-cost phalevel 2 is computed by
calling CLINGO just once. To reduce the search space in planning at levet2sq5)
and (6) are added to the planning query as state constraind® this, their time stamps
will be shifted to reflect their places in a longer plan getestat this levelCLINGO



Algorithm 2 Generating Low-cost Plan

Require: domain description at levélD;,: € {1,..., N}

Require: planning queny) and user-specified parametéfs= {e; : i =1,..., M}
1: call CLINGO to generate the low-cost answer ggtusingD,, @Q andB; = e;.
2: for leveli,i € {2,...,N} do
3:  extract fromA,_, the sequence of statés_; = (0: sg,...,k : sx) and plan

P = (02@()7 . .7]6 - 1:ak,1)

for each statg:s; € S;_; do

compute shifted time stamj using P andE
addj’:s; into planning queryy

end for

compute upper-bound; usingP andE

call cCLINGO to generate the low-cost answer getusingD;, @, andB;

10: if ¢is N then

© N gk

11 return the plan extracted from
12:  endif
13: end for

then solves this planning query with intermediate stataireqents using upper-bound
= B, computed a8 x 5 = 10.

The shifted time stamp is computed as follows. t.éie the time stamp of a state
generated in level Igeryvedenotes the number of actiossrvebefore that state, then
the shifted time stamgd is

t' = lservex ez + t — Iserve

In the case of state (5), its timestamp shifts from 1 to 5, &rsdadded as part of the
planning query for level 2 as follows:

5:mailcollectedalice), 5: mailcollectedbob),

5:~mailcollectedcarol), 5: mailcollecteddaniel), 5:loc = oy, (14)

Similarly, the state (6) is shifted from 2 to 10 and the folipg/conditions are added
into the query:

10: mailcollectedalice), 10: mailcollectedboby), (15)
10: mailcollectedcarol), 10: mailcollecteddaniel), 10:loc = o5,

Altogether with the initial state (3), using the optimizati statement for action
cross(D)#m ni m ze{X, Y: cost cross( X, Y) }, CLINGO generates a low-cost plan
that satisfies initial condition (3), intermediate staté)(@nd goal state (15):

0:crosgds), 1:crosgd; ), 2: collectmailalice), 5: crosgd; )

6:crosgds), 7: collectmailcarol). (16)

Note that the above plan exactly follows the order of seryiagple:Aliceis served
first, andCarol second, which corresponds to the plan generated at levatthedfmore,
in this plan (16)5 rather thanig or d- is chosen while leavingub; to visiting Alice’s
office, as the cost of navigating to Alice’s office throughis lower due to a shorter



navigation distance. There are some time instances wheaaetioms are executed, such
as time instances 3, 4, 8, and 9. These no-operations octhe apper-bound specified
for level 2 is loose. The true length of the above plan is 6.

Plan (16) can be further elaborated at level 3 in a similar. Weym (16), we observe
thatly, = 6, Icross= 4, so according to (13), the upper-bouBd for level 3 is 14. The
complete algorithm that describes this low-cost plan gatiear procedure is given in
Algorithm 2, where we assume the planning query is satigiabl

5 Experiments

Experiments were designed to compare our proposed apptioathas multiple lev-
els of domain descriptions with a baseline approach thattyr describes the domain
without high-level abstractions. The latter formalizatimorresponds to the domain de-
scription used in previous work [13], and is equivalent te tomain description at
level 3. We compare the performances of these two approdudtesfor generating
short plans and for generating low-cost plans.

The framework described in this paper has been implemersied the newly re-
leased state-of-the-art answer set sotveiNGO 4.3.CLINGO 4.3 complements ASP’s
declarative input language by offering additional conthmbugh an embedding script-
ing language (Python or Lua), such that the complex reagopincess is achieved
within a single integrated ASP grounding and solving sclipbur experimentGLINGO
4.3 is run with 6 parallel threads on a desktop machine witBB.bf memory and 2
Intel Xeon CPUs (6 cores each at 2.67GHz).

5.1 Generating Short Plans

=40
To test short plan generation, we g
used the simulation domain used in 3300 |m Hierarchica
previous work [13]. This domain & @ Flat
consists of 10 people, 20 rooms and £20
25 doors inside a building. 2
In our experiments, mail needs £ 10
o

to be collected from everyone inside
the building. However we vary how > 4 6 8 10

mail is passed from one person to an- Number of people who need to be visited
other such that the number of peo-

ple that need to be visited to collecfi9- 2: Time needed to c_alculate the short plan using
all the mail varies from 1 to 10. Thethe proposed and baseline approaches.

length of the plan is proportional to

the number of people that need to be visited.

The planning time is plotted in Figure 2. The two curves iatkcthat our pro-
posed approach of using hierarchical domain abstractigeterate short plans leads
to reduced planning time over the baseline flat approacheMoportantly, this figure
indicates that with the increase of the domain size and tae gize (in terms of the
number of people to be visited), the planning time usingdrigrical domain abstrac-
tion increasepolynomially while the planning time using the baseline formalization
increasegxponentially We attribute this phenomenon to both a well-designed hiera
chy and the inherent hierarchical nature of the domain.
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Fig. 3: (a) Time needed to calculate the low-cost plan using the proposed aglthbagpproaches
in logarithmic scale; (b) Time needed to calculate the low-cost plan usingdipeged approach
in different sized domains.

5.2 Generating Low Cost Plans

We compare the efficiency of generating low-cost plans usieghierarchical and flat
approaches. We use the same costs foraygroachaction in both methods. When
using hierarchical domain abstraction, we further comfiiéss that contain estimated
costs for theserveandcrossactions.

First, we investigate how complex a planning query can begesbby both ap-
proaches, and the corresponding planning time for bothcoheplexity of the planning
query can be expressed in terms of the number of people thdttade physically vis-
ited to collect everyone’s mail. This number directly affethe length of the low-cost
plan and also affects the estimation of the upper-boundeihaver levels of the hierar-
chy. With more people that need to be visited, the number s$ipte plans to explore
will increase exponentially and significantly affect theemadl planning time. Figure 1
shows the domain used for evaluating low-cost plan geroerati

The robot is initially placed in the corridor and asked toseezveryone. The base-
line flat approach needs a upper-bound on plan length undehvithwill solve for
the low-cost plan. We assign this upper-bound as 1.75 tifmesatimber of actions
in the shortest plan based on our empirical knowledge. Itkshbe noted that 1.75
is a relatively tight upper-bound for the baseline approdch it makes it easier for
the baseline approach to be solved within a predefined titrefdihours. Figure 3(a)
shows the time needed to calculate the low-cost plan usiagitbposed hierarchical
approach and the baseline approach without abstractioneW#liculating long plans,
e.g., to serve more than 2 people, our hierarchical appneatites the time needed to
calculate the low-cost by at least 2 orders of magnitude tR®itask of serving four
people, the flat approach terminates at the end of 6 hoursutitlerifying that the best
plan found so far minimizes the cost. Similar to the case oégating the near-optimal
short plan, planning with hierarchical domain abstraclt&aus to faster planning times.
Finally, the plan where the robot individually obtains nfailm all 5 people cannot be
generated and verified by either approach within 6 hourscaticig the limit of han-
dling complex planning queries. Indeed, when serving 4 [ggiogividually, the length
of the optimal plan was found to have 31 steps in this experime



Finally, we investigate the scalability of our approachamdile reasonably complex
planning queries in a large domain based on a real buildirgk¥ép the number of
people from whom mail needs to be collected fixed at 3, and trayotal number of
people in the building from 4 to 10, rooms from 10 to 20 and ddoom 14 to 25.
Figure 3(b) plots the planning time as the size of the domaireiases.

Increasing the number of objects in the domain does notfgignily change plan-
ning time. In particular, changing the number of people dugishave any substantial
effect. Adding more rooms and doors has a stronger effechanging planning times,
since it provides more possible routes for navigating frame office to another. Fur-
thermore, the top rightmost point in the figure correspondké simulation experiment
problem in [13]. Using our new approach, the near-optimattmst plan is generated
in around 20 seconds. This indicates that for a reasonabiyplex planning query, our
new approach can be applicable in large domains.

6 Conclusions

In this paper we proposed a framework of robotic task plagoising action language
BC with hierarchical domain abstraction that addresses effayi and scalability while
generating plans in large robotic domains. We perform a sasty where this idea
is implemented and evaluated in a mail collection task. Gpegments show that by
using hierarchical domain abstraction, solving times fothbnear-optimal short and
low-cost plans have been improved by at least an order of iafgnfor reasonably
sized domains.
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