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Abstract. Automatically varying the number of notes in symbolic music has
various applications in assisting music creators to embellish simple tunes or to
reduce complex music to its core idea. In this paper, we formulate the problem of
varying the number of notes while preserving the essence of the original music.
Our method, VaryNote, adopts an autoencoder architecture in combination with
a masking mechanism to control the number of notes. To train the weights of the
pitch autoencoder we present a novel surrogate divergence, combining the loss of
pitch reconstructions with chord predictions end-to-end. We evaluate our results
by plotting chord recognition accuracy with increasing and decreasing number
of notes, analysing absolute and relative musical features with a probabilistic
framework, and by conducting human surveys. The human survey results indicate
humans prefer VaryNote output (with 1.5, 1.9 × notes) over the original music,
suggesting that it can be a useful tool in music generation applications. 3 4
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1 Introduction

Automating the process of varying the number of notes in a musical arrangement can
have many applications. In the case of increasing notes, we can apply this technology to
enhance compositions. This application has previously been explored, to some degree,
when discussing automatic melody harmonization, arrangement generation, or auto-
matic ornamentation [3, 4,14–16]. However most of those methods require supervision
in the form of labeled data such as Wang et al. POP909 MIDI dataset with segmented
melody, arrangement, and bridge notes [17]. The other direction of reducing the number
of notes is considered a useful research area relevant to voicing information, automatic
melody extraction, and feature extraction in general. However, similar limitations exist

3 Project page and listening examples: https://varynote.github.io
4 Code: https://github.com/varynote/varynote-code

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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for this case: all the methods require segmented data and do not allow for continuous
control over the number of notes. In the field of music theory, Schenkerian analysis, or
similar variants, can be used to uncover the underlying hierarchical structure of music
and use this information to both reduce and add notes to music. However to imple-
ment this process automatically, a corpus of analyzed examples is needed, in addition
to heuristics to determine how to add or remove notes based on the analysis [7, 13].

Fig. 1. VaryNote example usage: given a piece of MIDI music we varying the number of notes
according to a desired input-output ratio: r.

To approach the problem of varying the number of notes in symbolic music auto-
matically, we introduce VaryNote, a novel method that uses an autoencoder trained on
pitch reconstructions that preserve chord structure. This design is considering several
studies that have surveyed human listeners and discovered maintaining harmonic chord
structure, while removing other aspects can still allow human listeners to recognize the
original tune [6]. An example is the common practice of describing the chord progres-
sion I-V-vi-iii-IV-I-IV-V in terms of Pachelbel’s Canon in D. In addition, VaryNotes’
design effectively preserves rhythmic features, which we believe is beneficial as lis-
teners can recall a song based on its melody, even with different instrumentation or
tempo [2, 5, 18]. In summary, this paper makes the following contributions:

1. Formulate the task of varying the number of notes in music as an optimization
problem.

2. Introduce VaryNote, a novel deep learning method consisting of an autoencoder
trained with a combined loss of pitch reconstructions and chord predictions. We
demonstrate that VaryNote can significantly outperform a baseline based on heuris-
tics from music theory at the task of varying the number of notes on the BTL MIDI
dataset.

2 Problem Formulation and Background

In this section, we introduce a general problem formulation of varying the number of
notes. Then, in Section 3, we provide a description of our proposed strategy to solve
this problem.
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2.1 Problem Formulation

Symbolic music information is a type of sequential information. We represent music
using a piano roll representation, a frame-wise representation, where every time step is
a multi-hot encoding of the pitches that are played at time t. Assuming a time-length H ,
with P possible note pitches, we denote X = {0, 1}P×H as the input space. We define
a piano roll matrix X ∈ X , and quantify the number of notes as the sum of non-zero
elements5 in X:

Number of Notes : m := ||X||0. (1)

The goal is to learn a mapping fθ(X | r) → X̂ ∈ X parameterized by θ such that
X̂ increases or decreases the number of notes in a piano roll X , given an output-input
ratio, r ∈ R+ of notes that controls the relative sparsity of the output. Formally, we
view the problem of automatically varying the complexity of harmonies as the following
optimization problem:

min
θ

D
(
fθ(X | r), X

)
s.t.

||fθ(X | r)||0
||X||0

= r. (2)

Conceptually, D is a divergence that measures how similar the reconstructed fθ(X |
r) is to the original piece of music X . Informally, it can be characterized as the degree
to which an average human listener would consider the two passages to be ”the same
tune” and is related to cover song identification [9]. While both melodic contour and
harmonic contour can be used to quantify music similarity in music theory, they may
not provide a complete picture due to subjective differences in interpretation and other
factors. Ultimately, this divergence is based on human judgement and is not easily mea-
surable so we resort to using a surrogate loss defined in Section. 3.2 that estimates the
ability for a reconstructed piano roll to identify the original chords. We assume that
when this loss is small, people will consider the passages to be the same tune. This
assumption is considering the importance of harmonic structure in perceptual similar-
ity [5, 6, 18]. However, we are not making any claim that this surrogate loss is the best
possible quantitative estimation of the true divergence.

3 Method

The general problem presented in Eq. (2), is to conditionally generate music based on
r. A straightforward approach is to first apply representation learning on the music and
then reconstruct it conditioned on r, similar to autoencoder style models in machine
learning. In this section, we introduce a novel autoencoder, named VaryNote. Specif-
ically, VaryNote consists of two parts. The first is a pitch autoencoder (Section 3.1)
where the encoder compresses a piece of music into a latent representation and the de-
coder reconstructs music from the latent representation. The second is a threshold mask
(Section 3.1) that controls the sparsity in the output music. To train the weights of the
pitch autoencoder we define a novel divergence in Section 3.2. This divergence is a
combination of error on reconstruction and error on symbolic chord predictions.

5 This definition is not exactly aligned with the music theory concept of a note, since we are
ignoring note length, but it captures the amount of pitch information and is simple to calculate.
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3.1 Architecture

Pitch Autoecoder An autoencoder is a model that seeks to learn a compressed repre-
sentation of an input. It does so by passing the input through an information bottleneck
of lower dimensionality than the original input. We apply an autoencoder to a piano roll
Xt. We first breakdown the piano roll matrix by time-step, defining a sequence of pitch
vectors such as:

Xt ≜ xt−H:t = [xt−H , . . . , xt−1] . (3)

The goal is to learn to reconstruct a pitch vector xt at time t using the encoder with
d = 32: Eϕ : RX → Rd and decoder Dθ : Rd → RX , parameterized by ϕ and θ
respectively. In addition we test several non-linear activations λ:

– ReLU: rectified linear activation function.
– k-WTA: the k-largest neurons in the autoencoder’s hidden layer (or code) is kept

and the rest, as well as their derivatives, are set to zero [11]

λWTA(y | k)j =

{
yj , yj ∈ {k-th largest elements of y}
0, Otherwise.

(4)

– Lifetime sparsity: this is the same as k-WTA constraints Eq. (4) except we apply
percent sparsity %k of the hidden layer across the entire mini-batch. This encour-
ages a wider range of neurons to be active [12].

We encapsulate the autoencoder in a function A, and define the autoencoder recon-
struction as X̂t:

X̂t ≜ Aϕ,θ(Xt) = Dθ ◦ λ[Eϕ(Xt)]. (5)

Thresholding Piano Rolls After training the autoencoder, VaryNote reduces or in-
creases the number of notes in a piano roll using a threshold mask. This mask essen-
tially zeros out everything except the top-k values in the autoencoder output. Specifi-
cally, consider the autoencoder output of size S = P ×H with X̂t ∈ RS as defined in
Eq. (5). Denote the k-th smallest element of X̂t as x̂(k). We define a mask M :

M(X̂t) = 1(x̂i,j ≥ x̂(k)). (6)

For any desired output-input ratio r, and m number of notes in the original piano
roll Xt, we find a k-th order that achieves r:

k(r) = ⌊S − rm⌋. (7)

Now we can write Eq. (6) using a target r:

M(X̂t | r) = 1(x̂i,j ≥ x̂(k(r))). (8)

Applying the mask defined in Eq. (8) on X̂t assures we end up with rm number of
notes:

||M(X̂t | r)||0 = S − k ≈ rm. (9)
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VaryNote Architecture At this point we have described all the required components
of VaryNote. We have slightly different treatment for increasing or decreasing notes.
Increasing Number of Notes: to apply a relative increase in number of notes (output-
input ratio r ≥ 1), we add the pitch autoencoder output with the original music and
apply the mask in Eq. (8) that assures we meet the desired output-input ratio constraints.
Decreasing Number of Notes: to apply a relative decrease in number of notes (output-
input ratio r < 1), we multiply, element-wise, the pitch autoencoder output with the
original music and apply the mask in Eq. (8) that assures we meet the desired output-
input ratio constraints. In summary:

Fvc(X | r) =

{
M(Aϕ,θ(X) +X | r), if r ≥ 1

M([X +Aϕ,θ(X)] ∗X | r), if r < 1.
(10)

Fig. 2. During training VaryNote combines MSE loss and softmax cross entropy loss. Note the
mask requires an output-input ratio r. During training we can fix r; or train without masking, and
apply the mask during inference. During inference, r controls the number of notes.

Bi-LSTM Architecture for Chord Recognition To train the weights of the autoen-
coder Aϕ,θ, VaryNote temporarily attaches a Bi-LSTM [1] that uses the output of the
autoencoder to make chord predictions as a downstream task. This addition helps our
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pitch reconstructions maintain the original chord structure. The task is to find a mapping
from Xt = [xt−H , . . . , xt−1] ∈ {0, 1}P×H to a corresponding chord sequence per time
step Yt = [yt−H , . . . , yt−1] ∈ ZC where C is the number of symbolic chord classes.
The output sequence is passed through a softmax layer that generates the probability
for each pitch vector.

3.2 VaryNote Surrogate Loss: MSE and Chord Recognition

Ideally we want a differential metric, D, that measures music similarity across different
arrangement representations as described in Eq. (2). This divergence is not easily quan-
tifiable, so we resort to designing a combined loss that preserves chord structure during
pitch reconstructions. Specifically, we propose a combined loss of mean-square error
on the pitch autoencoder reconstruction and cross entropy on symbolic chord targets
between the Bi-LSTM output ot ∈ RC×H and target sequence. In our study we reduce
the number of pitches to P = 64 and predict N = 24 possible chords. The total loss
can be described as:

D = Ltotal = LMSE + cLCE

=
1

P

P∑
t=1

(xt − x̂t)
2 − c

N

N∑
i=1

log
exp

(
ot[yi]

)∑K
y=1 exp

(
ot[y]

) . (11)

Finally, VaryNote trains with the presented Ltotal

min
θ,ϕ

Ltotal

(
Fvc(X | r), X

)
s.t.

||Fvc(X | r)||0
||X||0

= r. (12)

The constraints are automatically met by the mask M . During training we can fix r.
Alternatively, VaryNote can train without a mask by using the autoencoder output with
no threshold, and then apply a mask during inference.

3.3 Music Theory Baseline

VaryNote enables varying the number of notes along a continuous spectrum from very
sparse to very dense orchestration. There are no existing rule-based methods that can
similarly control the number of notes in the same way. There are relevant examples of
music algorithms based on theory rules such as voice leading applied to automatic har-
monization. However, none of these methods provide a comparison as we increase or
decrease notes. So we designed a method that can automatically generate harmonic in-
tervals and automatically remove notes. To add notes, the algorithm requires two steps.
First we sample harmonic intervals from a probability distribution computed from ag-
gregating music theory rules used in prior work [10]. Table 3 in the Appendix summa-
rizes the weighted probabilities of harmonic intervals. To remove notes, we randomly
find a note with probability proportional to the density of notes at each time step.
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4 Experiment

We conduct experiments to compare the original music with the output of VaryNote
variants and the baseline method, using three different criteria. Section 4.3 examines
the impact on chord structure when notes are added or removed, Section 4.4 compares
various musical features using a probabilistic framework, and Section 4.5 evaluates the
perception of VaryNote’s output through a human survey. To verify that the surrogate
loss in Eq. (11) is superior to a standard MSE loss, we compare VaryNote variants
with a standard autoencoder. We also test k-WTA and Lifetime sparsity constraints on
the autoencoders with the expectation they will achieve better generalization on pitch
reconstructions. In more detail:

– Lifetime: VaryNote with Lifetime (k = 3) sparsity constraints, described in Sec-
tion 3.1.

– k-WTA: VaryNote with k-WTA (k = 3) sparsity constraints, described in Sec-
tion 3.1

– Ordinary: VaryNote with no sparsity constraints, using a standard ReLU activa-
tion, described in Section 3.1

– AE: VaryNote with no sparsity constraints, trained only with LMSE . That is c = 0
in Eq. (11).

– Rules: This is the Music Theory baseline: a simple algorithm that can generate
harmonic intervals sampled from weighted probabilities in Table 3 in the Appendix,
see Section 3.3 for more details.

4.1 Dataset

We use the BPS-FH dataset with 32 movements of Beethoven Piano Sonatas [1]. The
musical pieces in the repertoire are represented as binary piano rolls with the time reso-
lution of one 16th note. A sliding window of length 128 time-steps (equal to 32 quarter
notes) with a hop size of 16 is applied to the piano rolls to generate the instances for
recognition. For chord recognition, we use the maj-min chord vocabulary (including 24
major and minor chords plus an additional ‘others’ class which is excluded from eval-
uation). We only consider 64 pitches, excluding the lowest and highest octave of the
standard 88 key piano notes.

4.2 Model Training

We train VaryNote, Eq. (12), without a threshold mask M and apply the mask dur-
ing inference. All VaryNote models are trained with the same train-validation BPS-FH
dataset. We train each method for 20 epochs using Adam optimizer, and use c = 1

3 for
our loss Eq. (11) (i.e: MSE + 1

3 CE). In the interest of reproducibility, all experimental
parameters are stored in the code repository.6

6 See the README.md file in the code repository
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4.3 Recovering Chord Information

To verify that the added or reduced notes do not significantly affect the harmonic struc-
ture of music we test if we can recover ground truth chords from the original piano
roll (Fig. 3). To accomplish this, first we train each method. Then we transform the
validation data using note multiples: r ∈ [0.3, 0.5, 0.7, 1, 1.3, 1.5, 1.9]. Finally, using a
separate and isolated Bi-LSTM model trained on the original data, we predict symbolic
chords for each note multiple.

4.4 Music Similarity with Kullback-Leibler Divergence

To get a sense of the music similarity without using a human analyst, we apply Lerch
e.t. multi-criteria evaluation metrics based on probabilistic measures of musical fea-
tures [8]. We compare the original MIDI music datasets against every method with 1.5
× notes by applying kernel density estimation (Gaussian kernel) to find a Probability
Density Function (PDF) for each musical feature, and plot them in Fig. 4. Related to
harmony, we measure Pitch Count (PC): the number of different pitches within a sam-
ple, Pitch Range (PR): the difference of the highest and lowest used pitch in semitones,
and Average Pitch Interval (PI): the average value of the interval between two consecu-
tive pitches in semitones. Related to rhythm, we measure Average Inter-Onset-Interval
(IOI): the time between two consecutive notes.

4.5 Human Evaluations

In order to evaluate the practical use of this method, we conduct a small survey de-
signed to understand how human listeners, musically trained and untrained, judge re-
duced/added note transformations7. The goal is to understand if the transformations
sound realistic, pleasant, and match our expectation of complexity. 11/30 participants
self-report knowing how to play an instrument. We test results for VaryNote Lifetime
since it is the best performing method. The survey has three sections. The first is Mu-
sical Preference: the participants are asked to score VaryNote output from 1-5, 1 being
the lowest appeal, and 5 being the highest appeal. The second is Perceived Musical
Complexity: the participants are asked to score VaryNote output from 1-5, 1 being the
lowest complexity, and 5 being the highest complexity8. The final is Music Turing Tests
(MTT): the participants are given two examples, VaryNote output, and the original mu-
sic and are asked to identify the piece of music that was fully composed by a human–we
do this for piano, and multi-instrument output. The piece the participant selects as being
composed by a human receives a score of 1. We sum the total scores and divide by the
total number of participants to get a proportion of times humans select the VaryNote
output over the original music. To generate a multi-instrument output we simply isolate
the notes from the VaryNote output and synthesize the MIDI with a new instrument. Re-
sults are summarized in Table 1 and Table 2, the best mean for each question is shown
in bold.

7 The survey form is available in the code repository.
8 This question is intended to provide insight into how listeners perceive and differentiate be-

tween music with different note multiples. It is worth noting that the use of the term ”com-
plexity” was chosen to align with a previous version of the paper.
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Fig. 3. Symbolic chord prediction accuracy using a Bi-LSTM model trained on the original data
as we transform our validation data using VaryNote

Fig. 4. We extract certain features and use kernel density estimation (Gaussian kernel) to find
a probability density function for specific dataset generated by a model. ”Intra” refers to com-
parisons made within a single group of the orignal music. ”Inter,” on the other hand, refers to
comparisons made between two different groups or categories, in this case comparisons made
between the altered music and the original music.
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Table 1. Human survey results for preference and complexity. Participants are asked to rate the
VaryNote output based on preference on a scale of 1-5, 1 being the lowest appeal, and 5 being the
highest appeal. Participants also rate complexity from 1-5, 1 being the lowest complexity, and 5
being the highest complexity. There were 30 total participants; 11/30 participants self-reported
knowing how to play an instrument. The highest mean for each question is shown in bold.

Experiment Score Report

Original ×0.5 Notes ×0.7 Notes ×1.5 Notes ×1.9 Notes

Preference Mean 3.09 2.15 2.73 3.62 3.41

Std. Deviation 1.33 1.23 1.23 1.11 1.35

Complexity Mean 3.25 1.62 2.52 3.92 3.85

Std. Deviation 1.61 1.21 1.46 1.24 1.32

Table 2. This table includes results for Music Turing Tests (MTT). The participants are given
two examples, VaryNote output, and the original music, and are asked to identify the piece of
music that is fully composed by a human. The piece the participant selects as being composed
by a human receives a score of 1. We sum the total scores and divide by the total number of
participants to get a proportion of times humans select the VaryNote output over the original
music. The multi-instrument question uses string and woodwind MIDI instruments.

Experiment ×0.5 Notes ×1.5 Notes ×1.9 Notes

Music Turing Test (MTT) - Piano 0.22 0.36 0.17

MTT - Multi-Instrument N/A 0.57 N/A

5 Discussion

As we vary the note multiple r, the Ordinary and Lifetime methods achieve the highest
accuracy in chord recognition according to Fig. 3. We also measure similarity between
the original music and 1.5 × note outputs using KL-divergence. All methods have very
similar IOI values. Other harmonic features such as PC, PR, and PI, closely match the
original music for all VaryNote methods, and the Rules method is clearly inferior at
matching the distribution of the original music.

The human survey results in Table 1 indicate humans prefer VaryNote output, with
1.5, 1.9 × notes, over the original music. Table 2 indicates humans perceive increased
complexity with higher note multiples, except that 1.5× notes seems to be perceived
with higher complexity than 1.9× notes. On the MTT-Piano, participants identify the
original music 64% of the time. In comparison, participants only identify MTT-Multi-
instrument pieces 43% of the time.
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6 Conclusion

In summary, we have introduced the task of automatic note variation in music and pro-
posed a novel method, VaryNote, that outperforms a music theory baseline. The pro-
posed method offers significant advantages over traditional approaches by generating
a coherent range of outputs for any given note multiple. Notably, our method requires
only a corpus of chord labels for training, and it can be easily extended to other diver-
gence metrics beyond chord predictions. Moreover, our results indicate that VaryNote’s
output is preferred over the original music, suggesting that VaryNote can be a useful
tool in music generation applications.
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3. Kemal Ebcioğlu. An expert system for harmonizing four-part chorales. Computer Music
Journal, 12(3):43–51, 1988.

4. Benjamin Evans, Satoru Fukayama, Masataka Goto, Nagisa Munekata, Tetsuo Ono, et al.
Autochoruscreator: Four-part chorus generator with musical feature control, using search
spaces constructed from rules of music theory. In ICMC, 2014.

5. Andrea R. Halpern, James C. Bartlett, and W. Jay Dowling. Perception of Mode, Rhythm,
and Contour in Unfamiliar Melodies: Effects of Age and Experience. Music Perception,
15(4):335–355, 07 1998.

6. Ivan Jimenez and Tuire Kuusi. Connecting chord progressions with specific pieces of music.
Psychology of Music, 46:716–733, 9 2018.

7. Phillip B. Kirlin and Jason Yust. Analysis of analysis: Using machine learning to evaluate
the importance of music parameters for schenkerian analysis. Journal of Mathematics and
Music, 10(2):127–148, 2016.

8. Li-chia Lerch and Alexander Yang. On the evaluation of generative models in music. Neural
Computing and Applications, 32:4773–4784, 2020.

9. Elad Liebman, Peter Stone, Supervisor Kristen, Grauman Scott, Niekum Maytal, Saar-
Tsechansky Roger, and B Dannenberg. Sequential decision making in artificial musical
intelligence.



12 J. Huerta et al.

10. Chien-Hung Liu and Chuan-Kang Ting. Polyphonic accompaniment using genetic algorithm
with music theory. In 2012 IEEE Congress on Evolutionary Computation, pages 1–7. IEEE,
2012.

11. Alireza Makhzani and Brendan Frey. Winner-take-all autoencoders. In Proceedings of
the 28th International Conference on Neural Information Processing Systems - Volume 2,
NIPS’15, page 2791–2799, 2015.

12. Alireza Makhzani and Brendan J. Frey. k-sparse autoencoders. CoRR, abs/1312.5663, 2013.
13. Alan Marsden. Software for schenkerian analysis. In ICMC, 2011.
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Appendix

A Weighted Probabilities of Harmonic Intervals

To add notes using the Rules approach, we sample harmonic intervals from a probability
distribution computed from aggregating music theory rules used in prior work. The
harmonic intervals are summarised in Table 3 below.

Table 3. Assigned probabilities p for intervals according to music theory rules from prior work
[10]. To add a new note, a random note from the original music is selected uniformly and harmo-
nized with a random interval drawn with probability p.

Assigned Prob. (p)
p = 0.19 p = 0.10 p = 0.003

Perfect fourth Minor third Minor second
Perfect fifth Major third Major second

Minor sixth Minor seventh
Major sixth Major seventh

Perfect octave Augmented interval
Perfect unison Diminished interval


