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AD HOC TEAMWORK BEHAVIORS FOR INFLUENCING A

FLOCK
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Department of Computer Science, The University of Texas at Austin, Austin, TX, USA 78712
∗corresponding author: katie@cs.utexas.edu

Abstract. Ad hoc teamwork refers to the challenge of designing agents that can influence the
behavior of a team, without prior coordination with its teammates. This paper considers influencing
a flock of simple robotic agents to adopt a desired behavior within the context of ad hoc teamwork.
Specifically, we examine how the ad hoc agents should behave in order to orient a flock towards a
target heading as quickly as possible when given knowledge of, but no direct control over, the behavior
of the flock. We introduce three algorithms which the ad hoc agents can use to influence the flock, and
we examine the relative importance of coordinating the ad hoc agents versus planning farther ahead
when given fixed computational resources. We present detailed experimental results for each of these
algorithms, concluding that in this setting, inter-agent coordination and deeper lookahead planning
are no more beneficial than short-term lookahead planning.

Keywords: Ad Hoc Teamwork, Agent Cooperation, Coordination, Flocking.

1. Introduction

Consider a flock of migrating birds that is flying di-
rectly towards a dangerous area, such as an airport
or a wind farm. It will be better for both the flock
and the humans if the path of the migratory birds
is altered slightly such that the flock can avoid the
dangerous area but still reach their migratory point
at approximately the same time.

The above scenario is a motivating example for our
work in orienting a flock using ad hoc teamwork. We
assume that each bird in the flock dynamically ad-
justs its heading based on that of its immediate neigh-
bors. We assume further that we control one or more
ad hoc agents — perhaps in the form of robotic birds
or ultralight aircraft1 — that are perceived by the
rest of the flock as one of their own.

Flocking is an emergent behavior found in different
species in nature including flocks of birds, schools of
fish, and swarms of insects. In each of these cases,
the animals follow a simple local behavior rule that
results in a group behavior that appears well orga-
nized and stable. Research on flocking behavior has
appeared in various disciplines such as physics [1],
graphics [2], biology [3, 4], and distributed control
theory [5–7]. In each of these disciplines, the research
has focused mainly on characterizing the emergent be-
havior.

In this paper, we consider the problem of leading a
team of flocking agents in an ad hoc teamwork setting.
An ad hoc teamwork setting is one in which a team-
mate — which we call an influencing agent — must
determine how to best achieve a team goal given a
set of possibly suboptimal teammates. In this work,
we are given a team of flocking agents following a

1www.operationmigration.org

known, well-defined rule characterizing their flocking
behavior, and we wish to examine how the influencing
agents should behave. Specifically, the main question
addressed in this paper is: how should influencing
agents behave so as to orient the rest of the flock to-
wards a target heading as quickly as possible?

The remainder of this paper is organized as follows.
Section 2 introduces our problem and necessary termi-
nology for this paper. The main contribution of this
paper is the 1-step lookahead algorithm for orienting
a flock to travel in a particular direction. This algo-
rithm is presented in Section 3, while variations of
this algorithm are presented in Sections 4 and 5. We
present the results of running experiments using these
algorithms in the MASON simulator [8] in Section 6.
Section 7 situates this research in the literature, and
Section 8 concludes.

2. Problem Definition

In this work we use a simplified version of Reynolds’
Boid algorithm for flocking [2]. We assume that each
agent calculates its orientation for the next time step
to be the average heading of its neighbors. Through-
out this paper, an agent’s neighbors are the agents
located within some set radius of the agent. In or-
der to calculate its orientation for the next time step,
each agent computes the vector sum of the velocity
vectors of each of its neighbors and adopts a scaled
version of the resulting vector as its new orientation.
An agent is not considered to be a neighbor of itself,
so an agent’s current heading is not considered when
calculating its orientation for the next time step. Fig-
ure 1 shows an example of how an agent’s new veloc-
ity vector is calculated. At each time step, each agent
moves one step in the direction of its current vector

1

www.operationmigration.org
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and then calculates its new heading based on those
of its neighbors, keeping a constant speed.

=++ ≈

Figure 1. An example of how an agent’s new velocity
vector would be calculated. In this example, the black
dot represents the agent in question, the solid arrows
represent the velocity vectors of the agent’s neighbors,
and the dotted circle represents the area of the agent’s
neighborhood. The agent’s new velocity vector is cal-
culated as shown at the bottom of the figure — in
this calculation, the three vectors are first summed
and then scaled to maintain constant speed.

Over time, agents behaving as described above will
gather into one or more groups, and these groups
will each travel in some direction. However, in this
work we add a small number of influencing agents
to the flock. These influencing agents attempt to
influence the flock to travel in a pre-defined direc-
tion — throughout this paper we refer to this desired
direction as θ∗. Note that the challenge of design-
ing influencing agent behaviors in a dynamic flocking
system is difficult because the action space is con-
tinuous. Hence, in our work we make the simplifying
assumption of only considering a limited number (nu-
mAngles) of discrete angle choices for each influencing
agent.

2.1. Simulation Environment

We situate our research on flocking using ad hoc team-
work within the MASON simulator, a concrete sim-
ulation environment [8]. A picture of the Flockers
domain is shown in Figure 2. Each agent points and
moves in the direction of its current velocity vector.

The MASON Flockers domain is toroidal, so agents
that move off one edge of our domain reappear on the
opposite edge moving in the same direction.

We conclude that the flock has converged to θ∗

when every agent (that is not an influencing agent)
is facing within 0.1 radians of θ∗. Other stopping
criteria, such as when 90% of the agents are facing
within 0.1 radians of θ∗, could also have been utilized.

3. 1-Step Lookahead Behavior
In this section we present Algorithm 1, a 1-step looka-
head algorithm for determining the individual behav-
ior of each influencing agent. This algorithm consid-
ers all of the influences on neighbors of the influencing

(a) Start (b) Finish

Figure 2. Pictures of (a) the start of a trial and
(b) the end of a trial in the MASON Flockers simu-
lation environment. The grey agents are influencing
agents while the black agents are other members of
the flock.

agent at a particular point in time, such that the in-
fluencing agent can determine the best orientation to
adopt based on this information.

The 1-step lookahead algorithm is a greedy, myopic
approach for determining the best individual behav-
ior for each influencing agent, where ‘best’ is defined
as the behavior that will exert the most influence on
the next time step. Note that if the algorithm only
considered the current orientations of the neighbors
(instead of the influences on these neighbors) when
determining the next orientation for the influencing
agent to adopt, it would only be estimating the state
of each neighbor and hence the resulting orientation
adopted by the influencing agent would not be ‘best’.

Variable Definition
bestDiff the smallest difference found so far between the

average orientation vectors of neighOfIA and
θ∗

bestOrient the vector representing the orientation
adopted by the influencing agent to obtain
bestDiff

neighOfIA the neighbors of the influencing agent
nOrient the predicted next step orientation vector of

neighbor n of the influencing agent if the influ-
encing agent adopts iaOrient

nOrients a set of the predicted next step orientation vec-
tors of all of the neighbors of the influencing
agent, assuming the influencing agent adopts
iaOrient

Table 1. Variables used in Algorithm 1.

The variables used throughout Algorithm 1 are de-
fined in Table 1. Two functions are used in Algorithm
1: neighbor.vel returns the velocity vector of neighbor
and neighbor.neighbors returns a set containing the
neighbors of neighbor.

Note that Algorithm 1 is called on each influencing
agent at each time step, and that the neighbors of the
influencing agent at that time step are provided as a
parameter to the algorithm. The output from the al-
gorithm is the orientation that, if adopted by this in-
fluencing agent, is predicted to influence its neighbors
to face closer to θ∗ than any of the other numAngles
discrete influencing orientations considered.

2
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Algorithm 1 bestOrient = 1StepLooka-
head(neighOfIA)

1: bestOrient← (0, 0)
2: bestDiff←∞
3: for each influencing agent orient vector iaOrient do
4: nOrients← ∅
5: for n ∈ neighOfIA do
6: nOrient← (0, 0)
7: for n’ ∈ n.neighbors do
8: if n’ is an influencing agent then
9: nOrient← nOrient + iaOrient

10: else
11: nOrient← nOrient + n’.vel
12: nOrient← nOrient

|n.neighbors|

13: nOrients← {nOrient} ∪ nOrients
14: diff← avg diff between vects nOrients and θ∗

15: if diff < bestDiff then
16: bestDiff← diff
17: bestOrient← iaOrient
18: return bestOrient

Conceptually, Algorithm 1 is concerned with how
the neighbors of the influencing agent are influenced
if the influencing agent adopts a particular orienta-
tion at this time step. Algorithm 1 considers each of
the numAngles discrete influencing agent orientation
vectors. For each orientation vector, the algorithm
considers how each of the neighbors of the influenc-
ing agent will be influenced if the influencing agent
adopts that orientation vector (lines 3-13). Hence,
Algorithm 1 considers all of the neighbors of each
neighbor of the influencing agent (lines 7-11) — if
the neighbor of the neighbor of the influencing agent
is an influencing agent, the algorithm assumes that
it has the same orientation as the influencing agent
(even though, in fact, each influencing agent orients
itself based on a different set of neighbors, line 9). On
the other hand, if it is not an influencing agent, the
algorithm calculates its orientation vector based on
its current velocity (line 11). Using this information,
the algorithm calculates how each neighbor of the in-
fluencing agent will be influenced by averaging the
orientation vectors of the each neighbor’s neighbors
(lines 12-13). The algorithm then picks the influenc-
ing agent orientation vector that results in the least
difference between θ

∗ and the neighbors’ current ori-
entation vectors (lines 14-18).

If there are numAgents agents in the flock, the
worst-case complexity of Algorithm 1 is calculated
as follows. Line 3 executes numAngles times, line 5
executes at most numAgents times, and line 7 exe-
cutes at most numAgents. Hence, the complexity for
Algorithm 1 is O(numAngles ∗ numAgents2).

Results regarding how Algorithm 1 performs in
terms of the number of time steps needed for the flock
to converge to θ

∗ can be found in Section 6.

4. 2-Step Lookahead Behavior

Whereas the 1-step lookahead behavior presented
in the previous section optimizes each influencing
agent’s orientation to best influence its neighbors on
the next step, it fails to consider more long-term ef-
fects. Hence, in this section we present a 2-step looka-

head behavior in Algorithm 2. This 2-step lookahead
behavior considers influences on the neighbors of the
neighbors of the influencing agent, such that the in-
fluencing agent can make a more informed decision
when determining the best orientation to adopt.

The variables used in Algorithm 2 that were not
used in Algorithm 1 are defined in Table 2. Like
Algorithm 1, Algorithm 2 is called on each influencing
agent at each time step, takes in the neighbors of
the influencing agent at each time step, and returns
the orientation that, if adopted by this influencing
agent, will influence the flock to face closer to θ∗ than
any of the other numAngles influencing orientations
considered.

Variable Definition
n’Orient the predicted next step orientation vector of

a neighbor n’ of a neighbor of the influencing
agent if the influencing agent adopts iaOrient

nOrient2 the predicted ‘2 steps in the future’ orientation
vector of neighbor n of the influencing agent if
the influencing agent adopts iaOrient on the
first time step and iaOrient2 on the second
time step

nOrients2 a set containing the predicted ‘2 steps in the fu-
ture’ orientation vectors of all of the neighbors
of the influencing agent, assuming the influenc-
ing agent adopts iaOrient on the first time step
and iaOrient2 on the second time step

Table 2. Variables used in Algorithm 2 that were
not used in Algorithm 1.

Algorithm 2 bestOrient = 2StepLooka-
head(neighOfIA)

1: bestOrient← (0, 0)
2: bestDiff←∞
3: for each influencing agent orientation iaOrient do
4: nOrients← ∅
5: for n ∈ neighOfIA do
6: nOrient← (0, 0)
7: for n’ ∈ n.neighbors do
8: if n’ is an influencing agent then
9: nOrient← nOrient + iaOrient

10: else
11: nOrient← nOrient + n’.vel
12: nOrient← nOrient

|n.neighbors|

13: nOrients← {nOrient}∪ nOrients
14: for each influencing agent orientation iaOrient2 do
15: nOrients2← ∅
16: for n ∈ neighOfIA do
17: nOrient2← (0, 0)
18: for n’ ∈ n.neighbors do
19: n’Orient← (0, 0)
20: for n” ∈ n’.neighbors do
21: if n” is an influencing agent then
22: n’Orient← n’Orient + iaOrient
23: else
24: n’Orient← n’Orient + n”.vel
25: n’Orient← n’Orient

|n’.neighbors|

26: if n’ is an influencing agent then
27: nOrient2← nOrient2 + iaOrient2
28: else
29: nOrient2← nOrient2 + n’Orient
30: nOrient2← nOrient2

|n.neighbors|

31: nOrients2← {nOrient2} ∪ nOrients2
32: diff ← the avg diff between vects nOrients and θ∗ and

between vects nOrients2 and θ∗

33: if diff < bestDiff then
34: bestDiff← diff
35: bestOrient← iaOrient
36: return bestOrient

Conceptually, Algorithm 2 is concerned with (1)

3
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how the neighbors of each neighbor of the influencing
agent are influenced if the influencing agent adopts
a particular orientation at this time step (lines 5-13
in Algorithm 2) and (2) how the neighbors of the
neighbors of each neighbor of the influencing agent
are influenced if the influencing agent adopts a par-
ticular orientation at this time step (lines 19-25 in
Algorithm 2), since they will influence the neighbors
of each neighbor of the influencing agent on the next
time step (lines 16-31 in Algorithm 2).

Algorithm 2 starts by considering each of the nu-
mAngles discrete influencing agent orientation vectors
and considering how each of the neighbors of the influ-
encing agent will be influenced if the influencing agent
adopts that particular orientation vector. For each
neighbor of the influencing agent, this requires con-
sidering all of its neighbors and calculating how each
neighbor of the influencing agent will be influenced
on the first time step (lines 5-13). Next, Algorithm 2
considers the effect of the influencing agent adopting
each of the numAngles influencing agent orientation
vectors on a second time step (lines 14-31). As be-
fore, this requires considering all of the neighbors of
each neighbor of the influencing agent, and calculat-
ing how each neighbor of the influencing agent will be
influenced (lines 18-31). However, in order to do this
the algorithm must first consider how the neighbors
of the neighbors of the influencing agent were influ-
enced by their neighbors on the first time step (lines
20-25). Finally, Algorithm 2 selects the first step in-
fluencing agent orientation vector that results in the
least difference between θ

∗ and the neighbors’ orien-
tation vectors after both the first and second time
steps (lines 32-36).

In Algorithm 2 we make the simplifying assump-
tion that agents do not change neighborhoods within
the horizon of our planning. Due to the fact that
movements are relatively small with respect to each
agent’s neighborhood size, the effects of this simplifi-
cation are negligible for the relatively small number
of future steps that the 2-step lookahead behavior
considers.

The complexity of Algorithm 2 can be calculated
as follows. Line 3 executes numAngles times, line 14
executes at most numAngles times, line 16 executes
at most numAgents times, line 18 executes at most
numAgents times, and line 20 executes at most nu-
mAgents times. Hence, the complexity for Algorithm
2 is O(numAngles2

∗ numAgents3).

5. Coordinated Behavior

The influencing agent behaviors presented in Sections
3 and 4 were for individual influencing agents, where
each influencing agent calculated its behavior inde-
pendent of any other influencing agents. In this sec-
tion, we consider whether influencing agents can exert
more influence on the flock by working in a coordi-
nated fashion. In particular, coordination is poten-

tially useful in cases where a flocking agent is in the
neighborhoods of multiple influencing agents.

Ideally, all of the influencing agents would coordi-
nate their behaviors to influence the flock to reach
θ∗ as quickly as possible. However, due to compu-
tational considerations, in this work it is infeasible
due to the complexity of such a calculation. Instead,
we pair influencing agents that share some neighbors.
These pairs then work in a coordinated fashion to
influence their neighbors to orient towards θ∗. We
opted to use pairs for simplicity and for computa-
tional considerations, but our approach could also be
applied to larger groups of influencing agents that
share neighbors.

We select the influencing agents to pair by first
finding all pairs of influencing agents with one or
more neighbors in common. Then we do a brute-force
search and find every possible disjoint combination of
these pairs. For each such combination, we calculate
the sum of the number of shared neighbors across all
the pairs and select the combination with the greatest
sum of shared neighbors. This combination of chosen
pairs is called the selectedPairs. Note that selected-
Pairs is recalculated at each time step.

The behavior of each influencing agent depends on
whether it is part of a pair in selectedPairs or not. If it
is part of a pair, it follows Algorithm 3 and coordinate
with a partner influencing agent. If it is not part of
a pair, it follows Algorithm 1 and performs a 1-step
lookahead search for the best individual behavior.

Only one new variable and one new function are
used in Algorithm 3 that are not used in Algorithm 1
or Algorithm 2. The variable is “nOrientsP”, which is
a set used to hold the predicted next step orientation
vectors of all the neighbors of the influencing agent’s
partner, assuming the influencing agent adopts iaOri-
ent and the influencing agent’s partner adopts iaOri-
entP. The function is neighbors.get(x), which returns
the xth element in the set neighbors.

Algorithm 3 is called on influencing agents that are
part of a pair in selectedPairs at each time step. Algo-
rithm 3 takes in the neighbors of the influencing agent
and the neighbors of the partner of the influencing
agent, and returns the orientation that, if adopted
by the influencing agent, is guaranteed to influence
the flock to face closer to θ∗ than any of the other
numAngles influencing agent orientations considered
for both the influencing agent and its partner.

Conceptually, Algorithm 3 considers each of the
numAngles influencing agent orientations for the in-
fluencing agent and for the influencing agent’s part-
ner and performs two 1-step lookahead searches. The
main difference between Algorithm 1 and Algorithm
3 is that the coordinated algorithm takes into ac-
count that another influencing agent is also influenc-
ing all of the agents that are in both the influencing
agent’s neighborhood and in the influencing agent’s
partner’s neighborhood. Hence, the influencing agent
may choose to behave in a way that influences the

4
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Algorithm 3 bestOrient = 1StepCoordi-
nated(neighOfIA, neighOfP)

1: bestOrient← (0, 0)
2: bestDiff←∞
3: for each influencing agent orient iaOrient do
4: for each influencing agent orient iaOrientP do
5: nOrients← ∅
6: for n ∈ neighOfIA do
7: nOrient← (0, 0)
8: for n’ ∈ n.neighbors do
9: if n’ is the influencing agent then

10: nOrient← nOrient + iaOrient
11: else if n’ is the influencing agent’s partner then
12: nOrient← nOrient + iaOrientP
13: else
14: nOrient← nOrient + n’.vel
15: nOrient← nOrient

|n.neighbors|

16: nOrients← {nOrient} ∪ nOrients
17: nOrientsP← ∅
18: for n ∈ neighOfP do
19: nOrient← (0, 0)
20: for n’ ∈ n.neighbors do
21: if n’ is the influencing agent then
22: nOrient← nOrient + iaOrient
23: else if n.neighbors.get(n’) is influencing agent’s

partner then
24: nOrient← nOrient + iaOrientP
25: else
26: nOrient← nOrient + n’.vel
27: nOrient← nOrient

|n.neighbors|

28: if n 6∈ neighOfIA then
29: nOrientsP← {nOrient} ∪ nOrientsP
30: diff← the avg diff between vectors nOrients and θ∗ and

between vectors nOrientsP and θ∗

31: if diff < bestDiff then
32: bestDiff← diff
33: bestOrient← iaOrient
34: return bestOrient

other agents in its neighborhood closer to θ∗ while
relying on its partner to more strongly influence the
agents that exist in both of the paired influencing
agents’ neighborhoods towards θ∗.

Specifically, Algorithm 3 executes as follows. For
each potential influencing agent orientation, the al-
gorithm considers how each of the neighbors of the
influencing agent will be influenced if the influencing
agent adopts that orientation (lines 6-16). Then Al-
gorithm 3 considers how each of the neighbors of the
influencing agent’s partner will be influenced if the
influencing agent’s partner adopts each potential in-
fluencing agent partner orientation (lines 18-29). Fi-
nally, the algorithm selects the influencing agent ori-
entation that results in the least difference between θ

∗

and the current orientations of the neighbors of both
the influencing agent and the influencing agent’s part-
ner (lines 30-34). Note that agents that are neighbors
of both the influencing agent and its partner are only
counted once (lines 28-29).

The complexity of Algorithm 3 can be calculated
as follows. Line 3 executes numAngles times, line
4 executes numAngles times, line 6 executes at most
numAgents times, line 8 executes at most numAgents,
line 18 executes at most numAgents times, and line 20
executes at most numAgents. Hence, the complexity
for Algorithm 3 is O(numAngles2

∗ numAgents2).

Results for how Algorithm 3, as well as Algorithms
1 and 2, performed in our experiments can be found
in the next section.

6. Experiments
In this section we describe our experiments testing
the three influencing agent behaviors presented in Sec-
tions 3, 4, and 5 against some baseline methods de-
scribed in this section. Our original hypothesis was
that Algorithms 1, 2, and 3 would all perform signif-
icantly better than the baseline methods. We also
believed that Algorithms 2 and 3 would perform bet-
ter than Algorithm 1.

6.1. Baseline Ad Hoc Agent Behaviors

In this subsection we describe two behaviors which
we use as comparison baselines for the lookahead and
coordinated influencing agent behaviors presented in
Sections 3, 4 and 5.

6.1.1. Face Desired Orientation Behavior

When following this behavior, the influencing agents
always orient towards θ∗. Note that under this be-
havior the influencing agents do not consider their
neighbors or anything about their environment when
determining how to behave.

This behavior is modeled after work by Jadbabaie,
Lin, and Morse [6]. They show that a flock with a con-
trollable agent will eventually converge to the control-
lable agent’s heading. Hence, the Face Desired Ori-
entation influencing agent behavior is essentially the
behavior described in their work, except that in our
experiments we include multiple controllable agents
facing θ∗.

6.1.2. Offset Momentum Behavior

Under this behavior, each influencing agent calculates
the vector sum V of the velocity vectors of its neigh-
bors and then adopts an orientation along the vector
V ′ such that the vector sum of V and V ′ points to-
wards θ∗. See Figure 3 for an example calculation.
In Figure 3, the velocity vectors of each neighbor are
summed in the first line of calculations. In the second
line of calculations, the vector sum of the influencing
agent’s orientation and the results of the first line
must equal θ∗, which in this example is pointing di-
rectly south. From the equation on the second line
of calculations, the new influencing agent orientation
vector can be found by vector subtraction. This vec-
tor is displayed and then scaled to maintain constant
velocity on the third line of calculations.

This influencing agent behavior was inspired by our
previous work [9]. In this work, we showed how to
optimally orient a stationary agent to a desired ori-
entation using a set of stationary influencing agents.
In particular, we presented an algorithm which the
influencing agents could utilize to orient the agent to
the desired orientation in the least number of steps
possible. Our Offset Momentum influencing agent
behavior implements this algorithm. However, this
algorithm assumes that the agent is only influenced
by influencing agents within its neighborhood. Hence,
it is not optimal in our experimental setting because
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Figure 3. An example of how the Offset Momen-
tum influencing agent behavior works. The influenc-
ing agent is the black dot, the circle represents the
influencing agent’s neighborhood, and the three ar-
rows inside the circle represent the influencing agent’s
neighbors.

each agent being influenced by an influencing agent
is usually also being influenced by other agents.

6.2. Experimental Setup

We utilize the MASON simulator [8] for our experi-
ments in this paper. The MASON simulator was in-
troduced in Section 2.1, but in this section we present
the details of the environment that are important for
completely understanding our experimental setup.

We use the default simulator setting of 150 units
for the height and width of our experimental domain.
Likewise, we use the default setting in which each
agent moves 0.7 units during each time step.

The number of agents in our simulation (numA-
gents) is 200, meaning that there are 200 agents in
our flock. 10% of the flock, or 20 agents, are influ-
encing agents. The neighborhood for each agent is
20 units in diameter. numAgents and the neighbor-
hood size were both default values for MASON. We
chose for 10% of the flock to be influencing agents
as a trade-off between providing enough influencing
agents to influence the flock and keeping the influenc-
ing agents few enough to require intelligent behavior
in order to influence the flock effectively.

We only consider numAngles discrete angle choices
for each influencing agent. In all of our experiments,
numAngles is 50, meaning that the unit circle is
equally divided into 50 segments beginning at 0 ra-
dians and each of these orientations is considered as
a possible orientation for each influencing agent. nu-
mAngles=50 was chosen after some experimentation
using the 1-step lookahead algorithm in which nu-
mAngles=20 resulted in a higher average number of
steps for the flock to converge to θ

∗ and numAn-
gles=100 and numAngles=150 did not require sig-
nificantly fewer steps for convergence than numAn-
gles=50.

In all of our experiments, we run 50 trials for each
experimental setting. We use the same 50 random

seeds to determine the starting positions and orien-
tations of both the flocking agents and influencing
agents for each set of experiments for the purpose of
variance reduction.

6.3. Experimental Results

Table 3 shows the number of time steps needed for the
flock to converge to θ∗ for the two baseline algorithms,
the 1-step lookahead algorithm presented in Algo-
rithm 1, the 2-step lookahead algorithm presented
in Algorithm 2, and the coordinated algorithm pre-
sented in Algorithm 3 using the experimental setup
described in Section 2.1.

Algorithm Time Steps 95% CI (±)
Face Desired Orientation 34.82 3.85
Offset Momentum 36.70 4.63
1-Step Lookahead 26.02 3.10
2-Step Lookahead 25.94 3.16
Coordinated 25.76 3.15

Table 3. The number of time steps required for the
flock to converge to θ

∗ using the experimental setup
described in Section 2.1. CI stands for confidence
interval.

The results shown in Table 3 clearly show that the
1-Step Lookahead Behavior, the 2-Step Lookahead
Behavior, and the Coordinated Behavior all perform
significantly better than the two baseline methods.
However, these results did not show the 2-Step Looka-
head Behavior and the Coordinated Behavior per-
forming significantly better than the 1-Step Looka-
head Behavior as we expected. Hence, we present
additional experimental results below in which we al-
ter the percentage of the flock that are influencing
agents and the number of agents in the flock (numA-
gents) one by one to further investigate the dynamics
of this domain.

6.3.1. Altering the Composition of the
Flock

Now we consider the effect of decreasing the percent-
age of influencing agents in the flock to 5% as well
as increasing the percentage of influencing agents in
the flock to 20%. In both cases, the remainder of
the experimental setup is as described in Section 2.1.
Altering the percentage of influencing agents in the
flock clearly alters the amount of agents we can con-
trol, which affects the amount of influence we can ex-
ert over the flock. Hence, as can be seen in Figure 4,
flocks with higher percentages of influencing agents
will, on average, converge to θ∗ in a lesser number
of time steps than flocks with lower percentages of
influencing agents.

6.3.2. Altering the Size of the Flock

In this section we evaluate the effect of changing the
size of the flock while keeping the rest of the exper-
imental setup as presented in Section 2.1. Chang-
ing the flock size will alter the number of influenc-
ing agents, but not the ratio of influencing agents to
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Figure 4. Results from experiments using the exper-
imental setup described in Section 2.1, except that
we varied the percentage of influencing agents in the
flock. The values in the table are averaged over 50
trials and the error bars represent the 95% confidence
interval.

non influencing agents. We expected that increasing
the flock size would lead to the Coordinated Behav-
ior performing better comparatively, as with a larger
flock, more agents are likely to be in multiple influ-
encing agents’ neighborhoods at any given time. How-
ever, the coordinated behavior did not perform signif-
icantly differently than the lookahead behaviors, and
actually performed slightly worse in the experiment
with a larger flock size. The results of our experi-
ments in altering the flock size can be seen in Figure
5.

Figure 5. Results from experiments using the exper-
imental setup described in Section 2.1, except that
we varied number of agents in the flock. The values
in the table are averaged over 50 trials and the error
bars represent the 95% confidence interval.

The difference between the 1-Step Lookahead Be-
havior, the 2-Step Lookahead Behavior, and the Co-
ordinated Behavior versus the baseline behaviors was
not significant in the experiment utilizing a smaller
flock. This may have been caused by the agents be-
ing more sparse in the environment, and hence having
less of an effect on each other.

6.4. Discussion

Our hypothesis was that Algorithms 1, 2, and 3
would all perform significantly better than the base-
line methods. This was indeed the case in all of our
experiments except when the flock size was decreased

from 200 agents to 100 agents. Apparently having 100
agents in a 150 by 150 unit environment resulted in
the agents being too distributed for our lookahead
and coordinated behaviors to be effective.

Our original research question, which was to deter-
mine how influencing agents should behave so as to
orient the rest of the flock towards a target heading
as quickly as possible, was partially answered by this
work. Although it is possible that better algorithms
could be designed, given the algorithms and experi-
mental setting presented in this paper, we found that
it is best for influencing agents to perform the 1-step
lookahead behavior presented in Algorithm 1. This
behavior is more computationally efficient than the
other two algorithms presented, and performed sig-
nificantly better than the baseline methods in most
cases.

In many cases, the coordinated behavior and the 1-
step lookahead behavior led the flock to converge to
θ∗ in the same number of time steps. This is because
the behaviors were identical when no agents were in
the neighborhoods of two paired influencing agents
at the same time. Additionally, even when a pair
of influencing agents shared one or more neighbors,
these influencing agents were often behaved similarly,
and hence did not exert significantly different types
of influence.

There are, of course, cases in which each of the
lookahead and coordinated behaviors perform notice-
ably better than the others. For example, when the
flock size is decreased to 100, the 2-step lookahead
only takes 44 time steps to converge to θ∗ when a
particular random seed (93) is used in the simulator,
but the 1-step lookahead takes 67 steps and the coor-
dinated approach takes 61 steps.

7. Related Work

Although there has been a significant amount of work
in the field of multiagent teamwork, there has been
relatively little work towards getting agents to col-
laborate with teammates that can not be explicitly
controlled. Most prior multiagent teamwork research
requires explicit coordination protocols or communi-
cation protocols (e.g. SharedPlans, STEAM, and
GPGP) [10–12]. However, in our work we do not
assume that any protocol is known by all agents.

Han, Li and Guo studied how one agent can influ-
ence the direction in which an entire flock of agents is
moving [5]. Similarly to our work, in their work each
agent follows a simple control rule based on its neigh-
bors. However, unlike our work, they only consider
one influencing agent with unlimited, non-constant
velocity. This allows their influencing agent to move
to any position in the environment within one time
step, which we believe is unrealistic.

As we mention in Section 2, Reynolds introduced
the original flocking model [2]. However, his work
focused on creating graphical models that looked and
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behaved like real flocks, and hence he did not address
adding controllable agents to the flock like we do.

Vicsek et al.considered just the alignment aspect
(also called flock centering) of Reynolds’ model [1].
Hence, like in our work, they use a model where all
of the particles move at a constant velocity and adopt
the average direction of the particles in their neigh-
borhood. However, like Reynolds’ work, they were
only concerned with simulating flock behavior and
not with adding controllable agents to the flock.

Jadbabaie, Lin, and Morse build on Vicsek et al.’s
work [6]. They use a simpler direction update than
Vicsek et al.and they show that a flock with a con-
trollable agent will eventually converge to the con-
trollable agent’s heading. Like us, they show that a
controllable agent can be used to influence the be-
havior of the other agents in a flock. However, they
are only concerned with getting the flock to converge
eventually, whereas we attempt to do so as quickly as
possible. Su, Wang, and Lin also present work that
is concerned with using a controllable agent to make
the flock converge eventually [7].

8. Conclusion

In this work, we set out to determine how influenc-
ing agents should behave in order to orient a flock
towards a target heading as quickly as possible. Our
work is situated in a limited ad hoc teamwork domain,
so although we have knowledge of the behavior of the
flock, we are only able to influence them indirectly
via the behavior of the influencing agents within the
flock. This paper introduces three algorithms that
the influencing agents can use to influence the flock

— a greedy lookahead behavior, a deeper lookahead
behavior, and a coordinated behavior. We ran ex-
tensive experiments using these algorithms in a simu-
lated flocking domain, where we observed that in such
a setting, a greedy lookahead behavior is an effective
behavior for the influencing agents to adopt.

Although we begin to consider coordinated algo-
rithms in this work, there is room for more extensive
coordination as well as different types of coordination.
Additionally, as this work focused on a limited version
of Reynolds’ flocking model, a promising direction for
future work is to extend the algorithms presented in
this work to Reynolds’ complete flocking model. Fi-
nally, it would be interesting to empirically consider
the effect of influencing agent placement.
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