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Abstract. Auction mechanism design has traditionally been a largely an-
alytic process, relying on assumptions such as fully rational bidders. In
practice, however, bidders behave unpredictably, making them difficult to
model and complicating the design process. To address this challenge, we
present an adaptive auction mechanism: one that learns to adjust its pa-
rameters in response to past empirical bidder behavior so as to maximize
an objective function such as auctioneer revenue. In this paper, we give an
overview of our general approach and then present an instantiation in a
specific auction scenario. The algorithm is fully implemented and tested.
Results indicate that the adaptive mechanism is able to outperform any
single fixed mechanism.

1 Introduction

Recent years have seen the emergence of numerous auction platforms that cater
to a variety of markets such as business to business procurement and consumer to
consumer transactions. Depending on factors such as bidder strategies and product
types, varying parameters of the auction mechanism can lead to widely differing
results. Common parameters include auctioneer fees, minimum bid increments,
rules governing when the auction closes, and whether sellers can set a reserve
price. This paper considers learning auction parameters to maximize auctioneer
revenue as a function of empirical bidder behavior.

Mechanism design has traditionally been largely an analytic process. Assump-
tions such as full rationality are made about bidders, and the resulting properties
of the mechanism are analyzed in this context [1]. Even in large-scale real-world
auction settings such as the FCC Spectrum auctions, game theorists have con-
vened prior to the auction to determine the best mechanism to satisfy a set of
objectives. Historically, this process has been incremental, requiring several live
iterations to iron out wrinkles, and the results have been mixed [2,3]. An im-
portant component of this incremental design process involves reevaluating the
assumptions made about bidders in light of auction outcomes. In particular, these
assumptions pertain to bidders’ intrinsic properties and to the manner by which
these properties are manifested in bidding strategies. For example, assumptions
are often made about

— Bidders’ motivating factors such as valuation distributions and risk aversion;
— Information that is available to the bidders; and
— Bidder rationality.

Even when the assumptions about bidders can be successfully modified to
explain past results, the process requires human input and is time consuming,



undermining the efficiency with which changes can be made to the mechanism.
Perhaps the biggest challenge results from the fact that, in practice, bidders are
not able to attain full rationality in complex, real-world settings [4]. Rather, they
employ heuristic strategies that are in general opaque to the seller, certainly a
priori, and often even after the auction.

To address these challenges, we propose a substantially different approach to
mechanism design: self-adaptive mechanisms that change in response to observed
bidder behavior. In previous work [5], we introduced this approach in a context
with discrete auction mechanisms, thus, from a learning perspective, reducing to
a k-armed bandit. In this paper, we extend our approach to an auction with a
continuous parameter, thus enabling a parameter optimization approach. In this
context, we propose a metalearning process by which the method of parameter
optimization is itself parameterized and optimized based on experiences with dif-
ferent populations of bidders.

The main contribution of this paper is the specification, implementation, and
empirical testing of an adaptive mechanism designed to maximize auctioneer rev-
enue in the face of an unknown population of bidders with varying degrees of
loss-aversion. We describe our approach to designing adaptive mechanisms at a
high level in the next section. Section 3 describes an auction scenario involving
loss averse bidders, and we present an illustrative application of our adaptive ap-
proach to this scenario in Section 4. We discuss how our approach compares to
related work in Section 5, and Section 6 concludes.

2 An Adaptive Approach

The strategies employed in an auction by bidders are often unknown to the seller.
Nonetheless, the effectiveness of the mechanism can vary drastically as a function
of the bidding strategies used. As a result, we view adaptive mechanism design as
an online empirical process whereby the mechanism adapts to maximize a given
objective function based on observed outcomes. Because we allow for the possibil-
ity of unexpected bidder behavior, this process must be performed online during
interactions with real bidders.

Our view of adaptive mechanisms is illustrated in Figure 1. A parameterized
mechanism is defined such that an evaluator module can revise parameters in
response to observed results of previous auctions. Upon execution, the parame-
terized mechanism clears one or more auctions involving a population of bidders
with various, generally unknown, bidding strategies. The results of the auction are
then taken as input to the evaluator as it revises the mechanism parameters in
an effort to maximize an objective function such as seller revenue. Any number
of continuous or discrete auction parameters may be considered, such as reserve
prices, auctioneer fees, minimum bid increments, and whether the close is hard or
soft. (For an extensive parameterization of the auction design space, see [6].)

We view the mechanism selection module as the key active element in this
picture. It is essentially an online machine learning module aiming to characterize
the function from mechanism parameters to expected revenue (or any other ob-
jective function). Because the learner can select its training examples and because
the target output is, in general, continuous, the problem is an active learning [7]
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Fig. 1. A high-level illustration of the concept of adaptive mechanisms. From the point
of view of the evaluator, the bidder behaviors are unknown aspects of the environment.

regression problem. A key characteristic is that the learning is all done online, so
that excessive exploration can be costly.

The bidders in Figure 1 may use a variety of different bidding strategies, in-
cluding heuristic, analytic, and learning-based approaches. For the latter to make
sense, the same bidders must interact repeatedly with the mechanism, leading to
a potential co-evolutionary scenario in which the bidders and mechanism continue
to adapt in response to each other [8]. However, our approach does not depend on
repeated interactions with the same bidders. The only required assumption about
the bidders is that their behavior is consistent in some way (e.g. bidders associated
with a particular industry tend to bid similarly) so that it is possible to learn to
predict auction results as a function of the mechanism, at least in expectation.

The use of an adaptive mechanism provides the possibility of identifying op-
timal auction parameters even without explicitly modeling the bidders. However,
when predictions can be made about the types of behavior to be expected, this
knowledge can usefully influence the method of adaptation. Specifically, one can
use a method of adaptation that is itself parameterized, and then choose the pa-
rameters that result in the best performance under expected bidder behavior.

The steps in the “metalearning” process of choosing an adaptive auction mech-
anism to maximize a particular objective function are thus as follows:

1. Choose the parameterization of the auction.

2. Make predictions about possible bidder behavior that allow for simulation.
Sources for these predictions may include analytically derived equilibrium
strategies, empirical data from past auctions in a similar setting, and learned
behaviors.

3. Choose the method of adaptation and its parameters.

4. Search the space of parameters of the adaptive method to find those that best
achieve the objective in simulation.

In the following sections, we present an illustrative application of this approach
to a particular auction scenario.



3 An Auction Scenario

We now describe the auction scenario that we will use to demonstrate our approach
to choosing an adaptive mechanism. First we introduce the concept of loss averse
bidders, then we describe the auction scenario and provide a means of simulating
bidder behavior under this scenario.

3.1 Loss averse bidders

We consider an English (ascending, open-cry) auction in which the bidders have
independent, private (i.e., unknown to other bidders) values for the goods being
sold. Bidders submit ascending bids until no incremental bids are made above
the winning bid. We assume that the seller may set a reserve price indicating
the minimum acceptable bid. In the absence of any bid higher than the reserve
price, no transaction occurs. It has been shown that when bidders are rational, the
optimal reserve price should be higher than the seller’s valuation of the item [9];
however, a reserve price of 0 is often seen in practice.

Dodonova explains this phenomenon by bidders’ loss aversion [10]. Loss aver-
sion violates the rationality assumption because the utility from a gain is lower
than the disutility from a loss of the same magnitude. Specifically, if the marginal
utility from winning an auction is x, then the marginal disutility from losing the
same object is ax, where a > 1. A bidder considers that it is “losing” an item if it
was the high bidder at some point in the auction, but then does not win the item.

We assume that the bidders are, to varying degrees, loss averse. Note that if
a = 1 we arrive at the traditional loss neutral bidders as a degenerate case. Under
these assumptions and model setup, Dodonova derives the equilibrium as follows.
Assuming two loss averse bidders, a first mover submits a bid in the beginning
of the auction if his valuation is higher than the reserve price. The second bidder
responds by submitting an increment above the current winning bid only if by
doing so the bidder can guarantee a positive expected utility. In particular, this
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where r is the reserve price, vy is the second bidder’s valuation, and f is the
(known) probability distribution function over valuations. Intuitively, the second
bidder recognizes that loss aversion may lead him to pay more than his valuation if
the first bidder’s valuation is sufficiently high, making him more reluctant to enter
the auction. With only one active bidder, the auctioneer’s revenue is decreased.
If all bidders participate, the auction continues as a standard ascending price
English auction until a bidder’s marginal utility from losing the object is less
than the (potential) winning bid, i.e, the losing bidder will bid up to « times his
valuation and then drop out. This equilibrium can cause the seller’s optimal reserve
price to be 0 under certain conditions. For instance, if f is a uniform distribution,
a reserve of 0 will maximize the seller’s revenue for values of o above 1.3. The
equilibrium can also result in a non-convex revenue as a function of reserve price,
with one maximum close to zero and another at a much higher reserve price, as
will be illustrated in Figure 2. Thus the auctioneer has potential incentives to set



both a low reserve price and a high reserve price, a conflict that must be taken
into account when choosing a method of searching for the optimal reserve price.

3.2 Scenario description

We consider a scenario in which a seller interacts repeatedly with bidders drawn
from a fixed population. In particular, the seller has n identical items that will be
sold one at a time through a series of English auctions. For the sake of simplicity,
we assume that two bidders participate in each auction. The seller sets a reserve
price for each auction, thus restricting the possible bids available to the bidders and
indirectly affecting the auction’s outcome. The seller’s goal is to set the reserve
price for each auction so that the total revenue obtained from all the auctions
is maximized. If a complete model of the behavior of the population of bidders
were available, the seller could determine the optimal reserve price analytically
by solving for the reserve price maximizing expected revenue under this model.
However, as this information is not available, the seller must identify the optimal
reserve price through online experimentation guided by an adaptive mechanism.

A bidder is characterized by i) an independent, private value v for the sold item,
and ii) a degree of loss-aversion «. The seller knows that bidders have independent,
private values, and are likely loss averse. The seller is also able to estimate the
ranges of values for bidders’ valuations and degrees of loss aversion ([Umin, Vmaz)
and [Qmin, Qmaz], TeSpectively), but does not know the actual distributions from
which these values are drawn, or the strategies bidders will employ.

We assume that a given bidder assigns the same value to any one of the items
sold. In addition, the population of bidders (characterized in this case by distri-
butions over valuations and «) does not change over time. Thus, the behavior
exhibited by bidders will be the same for each auction in expectation, allowing the
seller to draw inferences from past auction results.

3.3 Bidder simulation

As described in Section 2, although the seller does not have a complete model of
the bidder behavior, it is still possible to take advantage of the partial knowledge
that is available to guide the selection of the adaptive mechanism. In order to
do so, we need a method of generating plausible bidder behavior so that we can
evaluate the adaptive mechanism in simulation.

To represent the information available to the seller, we choose the following
values: n = 1000, Vimin = 0, Vmaz = 1, amin = 1, and e = 2.5. The distributions
from which v and « are drawn, and the strategies that take these values as inputs,
are unknown. In order to simulate a set of n auctions, which we will refer to as
an episode, these unknowns must be specified, which we do as follows. For each
episode we wish to simulate, we first randomly generate an “arbitrary” distribution
for valuations by taking a Gaussian with a mean chosen uniformly from [0, 1] and
a variance of 10° with x chosen uniformly from [-2, 1], and then normalize the
function so that the portion over the range [0, 1] represents a PDF. We then
generate a distribution for « in the same way, only with a range of [1, 2.5] for both
the mean and the function.



We simulate bidder behavior by having bidders follow the equilibrium strategy
given in Section 3.1 under the assumption that the other bidder has the same «
(because this is the situation to which the equilibrium solution applies). Thus for
each auction in an episode, we draw two values from the valuation distribution,
draw a single « from the « distribution, randomly assign one bidder to be the initial
bidder, and then have both bidders bid as specified in the equilibrium strategy.

This approach to simulating bidder behavior could be viewed as specifying a
probability distribution over bidder populations, and drawing a population from
this distribution for each episode to be simulated. Essentially, we are addressing
the seller’s uncertainty about bidder behavior by training the mechanism to adapt
to a variety of bidder populations. It is important to note that the distribution over
populations need not be accurate or known to the seller. Furthermore, this distri-
bution need not be expressed explicitly as a function — it may be any algorithm
that can generate bidder behavior, such as a learning algorithm. All that mat-
ters is that the seller be able to to generate experience with a variety of different
representative bidder populations.

To illustrate the task faced by the seller, we generated 10,000 bidder popula-
tions as described, and found the average revenue over all populations for each
reserve price between 0 and 1 at intervals of 0.01. The average revenue for each
choice of reserve is shown by the solid line in Figure 2. A reserve price of 0.54 yields
the highest average revenue, 0.367. If we were required to select a single reserve
price for the seller to use, we would chose this price. However, for each individual
bidder population there is a distinct choice of reserve that yields the highest aver-
age revenue. In particular, the dotted line in Figure 2 shows the number of times
that each reserve was optimal. Two important observations can be made: i) despite
the variety in bidder populations, the optimal reserve price is frequently in one
of two small regions (including near
zero, as is expected with loss averse
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4 Implementation and Results

As specified at the end of Section 2, for the auction scenario with the specific
goal of maximizing revenue over n auctions, we have now 1) chosen the auction
parameterization (the reserve price represents a single, continuous parameter), and
2) described a means of generating bidder behavior. In this section, we complete
the remaining tasks of 3) specifying our adaptive method and its parameters,
and 4) presenting a means of identifying the parameters that result in optimal



performance We then present the results of applying the approach described to
the auction scenario.

4.1 Method of adaptation

For clarity, we begin by describing a somewhat simplified version of the adaptive
method we will implement. In this approach, we discretize the problem by restrict-
ing the seller to choosing one of k choices for the reserve price at each step, where
the ith choice is a price of (i — 1)/(k — 1). The resulting problem can be viewed
as an instance of the k-armed bandit problem, a classic reinforcement learning
problem [11]. In k-armed bandit problems, the expected value of each choice is as-
sumed to be independent, and the goal of maximizing the reward obtained presents
a tradeoff between exploring the choices, in order to increase the knowledge of each
choice’s result, and exploiting the choice currently believed to be best.

The approach to solving k-armed bandit problems that we use is sample av-
eraging with softmax action selection using the Boltzmann distribution. In this
approach, the average revenue for each choice, avg;, is recorded, and at each step
the probability of choosing i is (e‘“’gi/T)/(Zf:l €9 /7 where T represents a tem-
perature determining the extent to which exploitation trumps exploration. The
temperature is often lowered over time to favor increasing exploitation due to the
fact that estimates of the result of each choice improve in accuracy with experience.

Softmax action selection has parameters controlling the temperature and con-
trolling the initial weight of each choice. We vary the temperature throughout an
episode by choosing starting and ending temperatures, Tstqrt and Tenqd, and inter-
polating linearly. To calculate the average revenue for each choice, we require for
each choice a record of both the average revenue, avg;, and the number of times
that choice has been tried, count;. Although the straightforward approach would
be to initialize the averages and counts to zero, one common technique, known as
optimistic initialization [11] is to set all initial averages to a value higher than the
predicted value of the largest possible revenue. Each choice is therefore likely to be
explored at least once near the beginning of the episode. We employ a variation on
this technique in which we choose values for the averages and counts that encour-
age heavy initial exploration of those choices believed most likely to be optimal
given the predictions of bidder behavior. For instance, if the revenue from a par-
ticular choice is expected to be high on average but have a high variance, assigning
a high initial count and average to that choice would ensure that it is explored
sufficiently: several trials resulting in low revenue would be needed to significantly
lower the computed average. This approach amounts to starting out with what we
will call initial experience. The choice of initial experience and temperatures are
made by the search procedure we will describe shortly. Thus for a given choice of
k, this will be a search over 2k + 2 parameters (including Tsiqrt and Tenq)-

The approach just described, which we will call the bandit approach, has one
significant limitation: the assumption that the expected revenue of each choice
is independent. Because the choices we are considering represent points chosen
along a continuous range of reserve prices, it is likely that the expected revenues
of nearby choices will be similar, and thus experience could be profitably shared
between choices. To address this issue, we now introduce an enhanced approach



we will call the regression approach. As the name suggests, we perform regression
over past auction results to derive a function mapping the reserve price to the
expected revenue. In particular, we perform locally weighted quadratic regression
(LWQR) [12], a form of instance-based regression. To predict the expected revenue
for a given reserve price, the weight of each existing data point is determined
by taking its distance from the given price and applying a Gaussian weighting
function. Parameters are then found specifying the quadratic that minimizes the
weighted sum of squared errors. This process is repeated for each price for which
we want an estimate of expected revenue.

Because we can now predict the expected revenue of any reserve price, even
if we have no experience at that price, we are no longer restricted to considering
a finite number of choices as in the bandit approach. We continue to discretize
the range of prices for computational reasons — doing so allows us to implement
an incremental version of LWQR and also to use softmax action selection without
modification. However, we are able to effectively use much finer discretizations
than before. In fact, we observed no benefit from increasing beyond 100 choices,
so we treat the degree of discretization as a fixed parameter for the regression
approach, and reinterpret k as described below.

The parameters for the regression approach are almost the same as those of
the bandit approach. We allow the temperature to vary as before, and the concept
of initial experience remains similar. We still use k pairs of parameters avg; and
count;, with each pair now representing a data point for reserve price (i—1)/(k—1)
and revenue avg; that will be used during regression as if it represented count;
such data points. It should be noted that in the regression approach, k is used only
to specify the number of points used as initial experience, and is independent of
whatever degree of discretization is used for selection of reserve prices. The only
additional parameter is the kernel width used in the weighting function. We use a
single kernel width, and ignore for now the possibility of having the kernel width
vary as a function of the reserve price.

4.2 Parameter search

Now that we have chosen a method of adaptation and have a means of generating
bidder behavior, we are ready to search for the set of parameters that results in
the best expected performance. For any given set of parameters, we can obtain an
estimate of the expected revenue from an episode by generating a population of
bidders as described in Section 3.3 and running an episode using those parameters.
This estimate will be highly noisy, due to the large number of random factors
involved in the process, and so we are faced with a stochastic optimization task.

To solve this task, we use Simultaneous Perturbation Stochastic Approxima-
tion (SPSA) [13], a popular method of stochastic optimization based on gradient
approximation. At each step, two estimates of the expected episode revenue are
taken for slight perturbations of the current parameters (the same bidder pop-
ulation is used for each estimate), a gradient approximation is found, and the
parameters are updated in the direction of the gradient.

For initial parameters, we use a somewhat optimistic value of 0.6 for each
avg; and a value of 1 for each count;. Tsiart and Tenq are set to 0.1 and 0.01,



respectively, and a kernel width of 0.1 is used. The search results appear stable in
that repeated runs result in parameters that are fairly similar and provide nearly
identical expected revenue per episode. Modest changes to the initial parameters
do not affect the quality of the outcome.

Ideally, the parameter k& would be part of the search process as well, but as
our search method requires a fixed number of parameters, we have chosen what
appear to be the best values after running searches with several values of k.

4.3 Results

To evaluate our adaptive methods, we first searched for the best possible set of
parameters, including k, as described above, for both the bandit and regression
approaches. For the bandit approach, a value of 13 was optimal for k, while in-
creasing k beyond 11 gave no apparent benefit in the regression case. The learned
parameters are presented in Figures 3 and 4. Initial experience is displayed visually
by plotting a circle for each avg; with area proportional to count;. Both sets of
initial experience appear reasonable given Figure 2. For the bandit approach, the
values of avg are mostly similar and fairly high, but the values of count are much
higher for the choices in the more promising regions. As a result, it will take longer
for the computed average revenue of these choices to fall, and so these choices will
be explored more heavily in the beginning of an episode. For the regression ap-
proach, the values of count are similar in most cases, but the values of avg are
higher in the more promising regions, again encouraging initial exploration. The
reasons for such small count values at 0.7 and 0.8 are not immediately clear.

We next generated a set of 10,000 bidder populations, and found the average
revenue per episode for both approaches using both the initial and the learned
parameters. The average revenues per auction are shown in Table 1, while a plot
of the average revenue for each auction over an entire episode is shown in Figure 5.
The average total revenue in each case is higher than the revenue resulting from
using the best fixed reserve price, 0.54, indicating that the use of an adaptive mech-
anism is indeed worthwhile in this scenario. The difference observed between each
pair of methods is statistically significant at the 99% confidence level according to
paired t-tests comparing results for the same bidder population. From Figure 5 we
can see that while all methods approach the same revenue by the last auction in an
episode, using learned parameters leads to much higher revenues during the early
part of an episode, especially with the regression approach. For instance, the aver-
age revenue reached on the 100th auction by the regression approach with learned
parameters is not reached until after at least 500 auctions with other approaches.
Thus, the learned parameters are effective at focusing initial exploration; provid-
ing sufficient initial experience to permit a higher initial degree of exploitation; or
both.

5 Related Work

To our knowledge, only a few recent articles have begun to explore the subject of
adapting auction mechanisms in response to bidder behavior. In this section, we
briefly survey that work and relate it to our own.
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Table 1. Average revenue per auction for each adaptive method. Differences

| Adaptive method

|T0ta1 Revenue|

best fixed reserve price (0.54) 0.367
bandit, initial parameters 0.374
bandit, learned parameters 0.394
regression, initial parameters 0.385
regression, learned parameters 0.405

are statis-

tically significant at the 99% confidence level according to paired t-tests.
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Cliff [14] explores a continuous space of auction mechanisms defined by a pa-
rameterized continuous double auction, where the parameter represents the prob-
ability that a seller will make an offer during any time slice. The mechanism
parameter and the parameters of the simulated bidding agents used are evolved
simultaneously using a genetic algorithm. For different underlying supply and de-
mand schedules, the system converges to different values of the auction parameter.
Phelps et al. [8] also address continuous double auctions, using genetic program-
ming to co-evolve buyer and seller strategies and auction rules from scratch.

Byde [15] takes a similar approach in studying the space of auction mecha-
nisms between the first and second-price sealed-bid auction. The winner’s pay-



ment is determined as a weighted average of the two highest bids, with the weight-
ing determined by the auction parameter. For a given population of bidders, the
revenue-maximizing parameter is approximated by considering a number of pa-
rameter choices over the allowed range, using a genetic algorithm to learn the
parameters of the bidders’ strategies for each choice, and observing the result-
ing average revenues. For different bidder populations (factors considered include
variable bidder counts, risk sensitivity, and correlation of signals), different auction
parameter values are found to maximize revenue.

The primary difference between these previous approaches and the method
advocated in this paper is that these approaches use simulation to produce fixed
mechanisms, while our aim is to develop mechanisms that are self-adapting in
an online setting. (The methods used to learn bidder strategies, however, could
possibly be applied in our approach to generate the bidder behavior needed during
the search for optimal adaptive parameters.) Although the auction mechanisms
developed by these approaches may work well under the assumed conditions, when
they are used in real-life settings the same problem may arise as with analytical
mechanism design: bidders’ goals, beliefs, and strategies may be different from
those assumed, leading to unexpected results. While the adaptive measures used
in these approaches could be applied in an online setting, they would likely be
found unsuitable. For example, evolutionary methods frequently explore highly
suboptimal solutions that could be disastrous if actually tried. Our goal is to
design adaptive mechanisms that are both safe to use and capable of quickly
finding the parameters best suited to the participating bidders, all while making
as few assumptions as necessary about the behavior of these bidders.

Dittrich et al. [16] present a different take on adaptation involving loss averse
bidders, analyzing the effect that loss aversion has on the learning dynamics ex-
hibited by bidders adapting in response to experience.

The process of identifying the parameters of the adaptive mechanism can be
viewed as an instance of metalearning [17]. In metalearning, the goal is to improve
the performance of a learning system for a particular task through experience
with a family of related tasks. In our case, the learning system is the adaptive
mechanism, and the family of related tasks is the set of different bidder populations
generated during simulation.

6 Conclusions and Future Work

In this paper, we have presented a novel approach to mechanism design. Instead of
relying on analytical methods that depend on specific assumptions about bidders,
our approach is to create a self-adapting mechanism that adjusts auction parame-
ters in response to past auction results. We have analyzed and experimented with
a specific auction scenario involving loss averse bidders and varying seller reserve
prices. We have shown how information about potential bidder behavior can guide
the selection of the method of adaptation and significantly improve auctioneer
revenue.

There are several directions in which this work could be extended. Many auc-
tion parameters are available for tuning, ranging from bidding rules to clearing



policies. The problem becomes more challenging in the face of multidimensional
parameterizations.

Our on-going research agenda also includes examining the effects of including
some adaptive bidders in the economies that are treated by adaptive mechanisms.
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