
Evolutionary Function Approximation for

Reinforcement Learning

Shimon Whiteson and Peter Stone
Department of Computer Sciences

University of Texas at Austin
1 University Station, C0500

Austin, TX 78712-0233
{shimon,pstone}@cs.utexas.edu,

http://www.cs.utexas.edu/ ~{shimon,pstone}

Abstract. Temporal difference methods are theoretically grounded and
empirically effective methods for addressing sequential decision making
problems with delayed rewards. Most problems of real-world interest re-
quire coupling TD methods with a function approximator to represent
the value function. However, using function approximators requires man-
ually making crucial representational decisions. This paper introduces
evolutionary function approximation, a novel approach to automatically
selecting function approximator representations that enable efficient in-
dividual learning. Our method evolves individuals that are better able
to learn. We present a fully implemented instantiation of evolution-
ary function approximation which combines NEAT, a neuroevolutionary
optimization technique, and Q-learning, a popular temporal difference
method. The resulting NEAT+Q algorithm automatically learns effec-
tive representations for neural network function approximators. Empir-
ical results in a server job scheduling task demonstrate that NEAT+Q
can significantly improve the performance of TD methods.

1 Introduction

In many machine learning problems, an agent must learn a policy for selecting
actions based on its state, which consists of its current knowledge about the
world. Reinforcement learning problems are the subset of these tasks in which the
agent never sees examples of correct behavior. Instead, it receives only positive
and negative feedback for the actions it tries. Since many practical, real world
problems (such as robot control, game playing, and system optimization) fall in
this category, developing effective reinforcement learning algorithms is critical
to the progress of artificial intelligence.

The most common approach to reinforcement learning relies on temporal

difference methods (TD) [1], which use dynamic programming and statistical
sampling to estimate the long-term value of taking each possible action in each
possible state. Once this value function has been learned, an effective policy can
be trivially derived. Hence, TD methods enable an individual agent to learn
during its “lifetime” i.e. its experience interacting with the environment.

For small problems, the value function can be represented as a table. How-
ever, most problems of real-world interest require coupling TD methods with a
function approximator, which represents the mapping from state-action pairs to
values via a more concise, parameterized function and uses supervised learning

2

methods to set its parameters. Many different methods of function approxima-
tion have been used successfully, including CMACs, radial basis functions, and
neural networks [1]. However, using function approximators requires making cru-
cial representational decisions (e.g. the number of hidden units and initial weights
of a neural network). Poor design choices can result in estimates that diverge
from the optimal value function [2] and agents that perform poorly. These crucial
decisions are typically made manually, based only on the designer’s intuition.

This paper introduces evolutionary function approximation, a population-
based approach to automatically selecting function approximator representations
that enable efficient individual learning. Our method evolves individuals that are
better able to learn. This biologically intuitive combination has been applied to
computational systems in the past [3–5] but never, to our knowledge, to aid the
discovery of good function approximators.

Our approach requires only 1) an evolutionary algorithm capable of learn-
ing representations from a class of functions (e.g. neural networks) and 2) a
TD method that uses elements of that class for function approximation. In this
paper, we use NeuroEvolution of Augmenting Topologies (NEAT) [6] in con-
junction with Q-learning, a popular TD method that has been successfully cou-
pled with neural network function approximators [7, 8]. The resulting algorithm,
NEAT+Q, uses NEAT to evolve topologies and initial weights of neural net-
works that are better able to learn, via backpropagation, to represent the value
estimates provided by Q-learning.

This paper introduces and fully specifies evolutionary function approxima-
tion and NEAT+Q, and presents a detailed empirical analysis from the domain
of server job scheduling, a challenging reinforcement learning task from the bur-
geoning field of autonomic computing [9]. Our experiments demonstrate that,
in at least one domain, evolutionary function approximation can significantly
improve the performance of TD methods.

2 Background

This section reviews the two algorithms that form the building blocks of our
implementation of evolutionary function approximation: Q-learning and NEAT.

2.1 Q-Learning

There are several different TD methods currently in use, including Q-learning,
Sarsa, and TD(λ) [1]. The experiments presented in this paper use Q-learning
because it is a canonical method and has achieved notable empirical success when
combined with neural network function approximators [7, 8]. We present it as a
representative method but do not claim it is better than other TD approaches.
In principle, evolutionary function approximation can be used with any of them.

Like other TD methods, Q-learning attempts to learn a value function that
maps state-action pairs to values. In the tabular case, the algorithm is defined
by the following update rule, applied each time the agent transitions from state
s to state s′:

Q(s, a)← (1− α)Q(s, a) + α(r + γmaxa
′Q(s′, a′)) (1)

3

where α ∈ [0, 1] is a learning rate parameter, γ ∈ [0, 1] is a discount factor, and
r is the immediate reward the agent receives upon taking action a.

Algorithm 1 describes the Q-learning algorithm when a neural network is used
to approximate the value function. S is the set of states, A is the set of actions,
and e is the number of episodes for which the algorithm runs. The inputs to
the network describe the agent’s current state; the outputs, one for each action,
represent the agent’s current estimate of the value of the associated state-action
pairs. After each state transition (line 8), the weights of the neural network are
adjusted using backpropagation (lines 9–11) such that its output better matches
the current value estimate for the state-action pair: r + γmaxa

′Q(s′, a′). This
implementation uses ǫ-greedy exploration [1] to ensure the agent occasionally
tests alternatives to its current policy (lines 6–7).

Algorithm 1 q-learn(S, A, α, γ, ǫ, e)

1: N ← init-net(S,A)
2: for i← 1 to e do
3: s← init-state(S)
4: Q[] ← eval-net(N, s)
5: while ¬terminal-state?(s) do
6: with-prob(ǫ) a← random(A)

7: else a← argmax
i<|Q|
i←0

Q[i]
8: r, s′ ← take-action(a)
9: Q[] ← eval-net(N, s′)

10: va′ ← max
i<|Q|
i←0

Q[i]
11: backprop(N, s, a, r + γva′ , α)
12: s← s′

Function approximators like neural networks allow Q-learning to be applied
to problems with more state-action pairs than can feasibly be represented in a
table. However, getting them to work requires manually selecting the network’s
topology and initial weights. The difficulty of doing so is one of the chief mo-
tivations for evolutionary function approximation, which relies on methods like
NEAT to automatically learn effective topologies. The next section describes the
NEAT algorithm.

2.2 NEAT

The implementation of evolutionary function approximation presented in this
paper relies on NeuroEvolution of Augmenting Topologies (NEAT) to automate
the search for appropriate topologies and initial weights of neural network func-
tion approximators. NEAT is an appropriate choice because of its empirical
successes on difficult reinforcement learning tasks like pole balancing [6], game
playing [10], and robot control [11], and because of its ability to automatically
learn network topologies.

In a typical neuroevolutionary system [12], the weights of a neural network
are strung together to form an individual genome. A population of such genomes

4

is then evolved by evaluating each one and selectively reproducing the fittest in-
dividuals through crossover and mutation. Most neuroevolutionary systems re-
quire the designer to manually determine the network’s topology (i.e. how many
hidden nodes there are and how they are connected). By contrast, NEAT auto-
matically evolves the topology to fit the complexity of the problem. It combines
the usual search for network weights with evolution of the network structure.

Since NEAT is a general purpose optimization technique, it can be applied
to a wide variety of problems. Section 3 below describes how we use NEAT to
learn the topology and initial weights of Q-learning’s function approximators.
Here, we describe how NEAT can be used, without the aid of Q-learning, to
tackle reinforcement learning problems, an approach that serves as one baseline
of comparison in Section 4. For this method, an example of policy search rein-
forcement learning, NEAT does not attempt to learn a value function. Instead,
it learns a policy directly by training action selectors that directly map states
to the action the agent should take in that state.

Algorithm 2 neat(S, A, p, g, e,)

1: P ← init-population(S,A, p)
2: for i← 0 to g do
3: for j ← 0 to e do
4: N ← random(P)
5: s← init-state(S)
6: Q[] ← eval-net(N, s)
7: while ¬terminal-state?(s) do

8: a← argmax
i<|Q|
i=0

Q[i]
9: r, s′ ← take-action(a)

10: Q[] ← eval-net(N, s′)
11: N.fitness← N.fitness + r

12: s← s′

13: N.episodes← N.episodes + 1
14: P ← breed-new-population(P)

Algorithm 2 contains a high-level description of the NEAT algorithm applied
to an episodic reinforcement learning problem. In this algorithm, p is the size
of the population, g is the number of generations evolution lasts, and e is the
number of episodes performed in each generation. In each episode, a member of
the population is randomly selected for evaluation (line 4). During each step,
the agent takes whatever action corresponds to the output with the highest ac-
tivation (lines 8–9). NEAT maintains a running total of the reward accrued by
the network during its evaluation (line 11). NEAT differs from other neuroevo-
lution techniques in how it creates a new generation of networks (line 14) based
on the average fitness (N.fitness/N.episodes) of each member of the previous
generation. The remainder of this section gives a brief overview of this process.
More details can be found in [6].

5

Inputs

Nodes
Hidden

Outputs

����������������������������

Mutation

Add Node

Inputs

Nodes
Hidden

Outputs

����������������������������

Mutation

Add Link

Fig. 1. Examples of NEAT’s mutation op-
erators for adding structure to networks.
At top, a hidden node is added by split-
ting a link in two. At bottom, a link, shown
with a thicker black line, is added to con-
nect two nodes.

Unlike other systems that evolve
network topologies and weights [12],
NEAT begins with a uniform popula-
tion of simple networks with no hid-
den nodes and inputs connected di-
rectly to outputs. Two special muta-
tion operators introduce new struc-
ture incrementally. Figure 1 depicts
these operators, which add hidden nodes
and links to the network. Only those
structural mutations that improve per-
formance tend to survive; in this way,
NEAT searches through a minimal num-
ber of weight dimensions and finds
the appropriate complexity level for
the problem.

These structural mutations result
in populations of networks with vary-
ing size and shape. Mating these het-
erogeneous topologies requires a mech-
anism for deciding which genes correspond to each other. To this end, NEAT
uses innovation numbers to track the historical origin of each structural muta-
tion. When new genomes are created, the genes in both parents with the same
innovation number are lined up; genes that do not match are inherited from the
more fit parent.

3 Method

This section introduces evolutionary function approximation, a new approach
that enables the automatic discovery of function approximator representations.
When evolutionary systems are applied to reinforcement learning problems, they
typically evolve a population of action selectors, each of which remains fixed
during its fitness evaluation. The central insight behind evolutionary function
approximation is that, if the evolutionary system is directed to learn value func-
tions instead, then those value functions can be updated, using TD methods,
during each fitness evaluation.

In addition to automating the search for effective representations, evolution-
ary function approximation makes it possible to exploit the Baldwin Effect, a
phenomenon whereby populations whose individuals learn during their lifetime
adapt more quickly than populations whose individuals remain static [13]. This
effect, which has been demonstrated in evolutionary computation [3, 4], results
in faster evolution because an individual does not have to be exactly right at
birth; it need only be in the right neighborhood and learning can adjust it ac-
cordingly. Hence, the Baldwin Effect results from a synergy between learning
across fitness evaluations and learning within fitness evaluations. Due to this
synergy, we expect evolutionary function approximation, in addition to improv-

6

ing the performance of TD methods, to outperform evolutionary methods that
train fixed action selectors.

The remainder of this section presents NEAT+Q, the particular implemen-
tation of evolutionary function approximation which is empirically evaluated in
this paper.

3.1 NEAT+Q

All that is required to make NEAT learn value functions instead of action selec-
tors is a reinterpretation of its output values. The structure of neural network
action selectors (one input for each state feature and one output for each action)
is already identical to that of Q-learning function approximators. Therefore, if
the weights of the networks NEAT evolves are updated during their fitness eval-
uations using Q-learning and backpropagation, they will effectively evolve value
functions instead of action selectors. Hence, the outputs are no longer arbitrary
values; they represent the long-term discounted value of the associated state-
action pairs and are used, not just to select the most desirable action, but to
update the estimates of other state-action pairs.

Algorithm 3 summarizes the resulting NEAT+Q method. Note that this
algorithm is identical to Algorithm 2, except that, each time the agent takes
an action, the network is backpropagated towards Q-learning targets (lines 11–
13) and ǫ-greedy exploration occurs just as in Algorithm 1 (lines 8-9). If α and
ǫ are set to zero, this method degenerates to regular NEAT.

Algorithm 3 neat+q(S, A, p, g, e, α, γ, ǫ)

1: P ← init-population(S,A, p)
2: for i← 0 to g do
3: for j ← 0 to e do
4: N ← random(P)
5: s← init-state(S)
6: Q[] ← eval-net(N, s)
7: while ¬terminal-state?(s) do
8: with-prob(ǫ) a← random(A)

9: else a← argmax
i<|Q|
i←0

Q[i]
10: r, s′ ← take-action(a)
11: Q[] ← eval-net(N, s′)

12: va′ ← max
i<|Q|
i←0

Q[i]
13: backprop(N, s, a, r + γva′ , α)
14: N.fitness← N.fitness + r

15: s← s′

16: N.episodes← N.episodes + 1
17: P ← breed-new-population(P)

Hence, NEAT+Q combines the power of TD methods with the ability of
NEAT to learn effective representations. Traditional neural network function

7

approximators put all their eggs in one basket by relying on a single manu-
ally designed network to represent the value function. NEAT+Q, by contrast,
explores the space of such networks to increase the chance of finding a represen-
tation that will perform well.

In NEAT+Q, the weight changes caused by backpropagation accumulate in
the current population’s networks throughout each generation. When a network
is selected for an episode, its weights begin exactly as they were at the end of its
last episode. At the end of a generation, those changes are not written back into
the networks’ genomes. This Darwinian approach contrasts with a Lamarckian

one in which an individual’s learning affects its genome and is inherited by its
offspring. Comparing our approach to a Lamarckian one is an important part of
our ongoing research.

4 Experiments

In this section, we apply NEAT+Q to a challenging task motivated by a real-
world application and compare it to Q-learning with several manually designed
function approximator topologies. We test whether NEAT+Q can automatically
find networks that perform as well as or better than the best networks resulting
from a manual search. We also test whether NEAT+Q can outperform regular
NEAT, as predicted by the Baldwin Effect.

-160

-140

-120

-100

-80

-60

-40

-20

0

0 50 100 150 200

U
til

ity

Completion Time

Utility Functions for All Four Job Types

Job Type #2

Job Type #3

Job Type #4

Job Type #1

Fig. 2. The four utility functions

As a test domain, we use
the autonomic computing task
of server job scheduling. The
goal of autonomic computing [9]
is to develop computer systems
that automatically optimize their
performance and diagnose and
repair their own failures. In server
job scheduling [14], a server, such
as a website’s application server
or database, must determine in
what order to process the jobs
currently waiting in its queue.
Its goal is to maximize the ag-
gregate utility of all the jobs it processes. A utility function for each job type
maps the job’s completion time to the utility the derived by the user. The prob-
lem of server job scheduling becomes challenging when these utility functions are
non-linear and/or the server must process multiple types of jobs. Since selecting
a particular job for processing necessarily delays the completion of all other jobs
in the queue, the scheduler must weigh difficult trade-offs to maximize aggregate
utility.

Our experiments were conducted in a Java-based simulator. During each
timestep, the server removes one job from its queue and completes it. During
the first 100 timesteps, a new job of a randomly selected type is added to the end
of the queue. The simulation begins with 100 jobs preloaded into the server’s

8

queue and ends when the queue becomes empty at timestep 200. For each job
that completes, the scheduling agent receives an immediate reward determined
by that job’s utility function. Our experiments use four different job types, whose
utility functions are shown in Figure 2. Users who create jobs of type #1 or #2
do not care about their jobs’ completion times so long as they are less than 100
timesteps. Beyond that, they get increasingly unhappy. The rate of this change
differs between the two types and switches at timestep 150. Users who create jobs
of type #3 or #4 want their jobs completed as quickly as possible. However, once
the job becomes 100 timesteps old, it is too late to be useful and they become
indifferent to it. As with the first two job types, the slopes of job types #3 and
#4 differ from each other and switch, this time at timestep 50. Note that all
these utilities are negative functions of completion time. Hence, the scheduling
agent strives to bring aggregate utility as close to zero as possible.

A primary obstacle to applying reinforcement learning methods to this do-
main is the size of the state and action spaces. A complete state description
includes the type and age of each job in the queue. The scheduler’s actions con-
sist of selecting jobs for processing; hence a complete action space includes every
job in the queue. To render these spaces more manageable, we discretize them.
The range of job ages from 0 to 200 is divided into four sections and the scheduler
is told, at each timestep, how many jobs in the queue of each type fall in each
range, resulting in 16 state features. The action space is similarly discretized.
Instead of selecting a particular job for processing, the scheduler specifies what
type of job it wants to process and which of the four age ranges that job should
lie in, resulting in 16 distinct actions.

Using this setup, we conducted 10 runs in which NEAT attempts to learn a
scheduler. In these runs, the population size p was 100, the number of generations
g was 100, and the number of episodes per generation e was 10,000. Hence, each
individual was evaluated for 100 episodes on average. Then we performed 10 runs
using NEAT+Q with the same parameter settings. In addition, the learning rate
α was 0.1, the discount factor γ was 0.95, and the exploration rate ǫ was 0.05.
To test Q-learning alone, we selected three different network topologies: feed-
forward networks with 0, 4, or 8 hidden nodes. For each topology, we tested
three different values of α: 0.01, 0.05, and 0.1. For each value of α, we tested
Q-learning with and without an annealing schedule. When the schedule was
used, α decayed linearly until reaching zero after 250,000 episodes. The other
parameters, γ and ǫ were set to 0.95 and 0.05 respectively, just as with NEAT+Q.
Each of these 18 configurations were evaluated for 10 runs. In addition, we
experimented informally with higher values of γ, slower linear annealing, and
exponential annealing, though none performed as well as the results presented
here.

Figure 3 shows the results of these experiments. For each method, the cor-
responding line in the graph represents a uniform moving average over the ag-
gregate utility received in the past 1,000 episodes, averaged over all 10 runs.
For the sake of clarity, only the highest performing configuration of Q-learning
(4 hidden nodes and α = 0.01) is included in the figure. The graph also shows

9

the performance of two heuristic schedulers, averaged over 10,000 episodes. The
random scheduler, which is included to establish a baseline of comparison, ran-
domly selects jobs for processing. The insertion scheduler [14] uses a simple, fast
heuristic: it always selects for processing the job at the head of the queue but
it keeps the queue ordered in a way it hopes will maximize aggregate utility.
Every time a new job is created, the insertion scheduler tries inserting it into
each position in the queue, settling on whichever position it estimates will yield
the highest aggregate utility.

-15500

-15000

-14500

-14000

-13500

-13000

-12500

-12000

-11500

-11000

-10500

 0 200 400 600 800 1000

S
co

re

Episode (x1000)

Uniform Moving Average of Score Per Episode

-15500

-15000

-14500

-14000

-13500

-13000

-12500

 0 20 40 60 80 100 120 140

S
co

re

Episode (x1000)

Uniform Moving Average of Score Per Episode

(b) Close−up of first 150,00 episodes(a) Performance over 1 million episodes of learning

Random Scheduler

NEAT+Q

NEATQ−learning

Insertion Scheduler

Random Scheduler

Insertion Scheduler
Q−learning

NEAT+Q
NEAT

Fig. 3. A comparison of the performance of NEAT, Q-learning, and NEAT+Q in the
server job scheduling domain.

Note that the progress of NEAT+Q consists of a series of 10,000-episode inter-
vals. Each of these intervals corresponds to one generation and the changes within
them are due to learning via Q-learning and backpropagation. Although each in-
dividual learns for only 100 episodes on average, NEAT’s system of randomly
selecting individuals for evaluation causes that learning to be spread across the
entire generation: each individual changes gradually during the generation as it
is repeatedly evaluated. Figure 3b, which shows a close-up of the early part of
the same runs, reveals that these changes are actually harmful in early genera-
tions of NEAT+Q but, over time, begin to improve performance as NEAT+Q
learns appropriate topologies and initial weights for Q-learning.

5 Discussion

Figure 3a demonstrates that all three learning methods outperform the heuris-
tic schedulers, including one that performed best in a previous study in this
domain [14]. The graph also shows that NEAT+Q achieves the highest per-
formance of all the methods tested. Indeed, a Student’s t-test confirms, with

10

95% confidence, that the difference between NEAT+Q and the other methods
is statistically significant after 350,000 episodes.

For the particular problem we tested and network configurations we tried,
NEAT+Q substantially improves performance over Q-learning with manually
designed networks. Of course, the possibility remains that additional engineer-
ing of the network structure, the feature set, or the learning parameters would
significantly improve Q-learning’s performance. In particular, when Q-learning
is started with the best network discovered by NEAT+Q and the learning rate
is annealed aggressively, Q-learning matches NEAT+Q’s performance without
directly using evolution. However, it is unlikely that this successful topology,
which contains irregular and partially connected hidden layers, would be discov-
ered through a manual search process, no matter how extensive.

Figure 3b reveals that even in early episodes NEAT+Q learns at approxi-
mately the same rate as Q-learning. After about 100,000 episodes, Q-learning
plateaus while NEAT+Q continues to improve.1 While it may be possible to
improve Q-learning’s peak performance with further manual tuning, NEAT+Q
achieves that improvement via additional computation.

NEAT+Q also substantially outperforms regular NEAT, which highlights
the value of temporal difference methods on challenging reinforcement learning
problems. Even when NEAT is employed to learn effective representations, the
best performance is achieved only when TD methods are used to estimate a
value function. Hence, the relatively poor performance of Q-learning is not due
to some weakness in the TD methodology but merely to the failure to find a
good representation.

Note that the advantage of NEAT+Q over NEAT is not directly explained
just by the learning that occurs via backpropagation within each generation.
By generation 20, NEAT+Q clearly performs better even at the beginning of
each generation, before such learning has occurred. Just as predicted by the
Baldwin Effect, evolution proceeds more quickly in NEAT+Q because the weight
changes made by backpropagation, in addition to improving that individual’s
performance, alter selective pressures and more rapidly guide evolution to useful
regions of the search space.

6 Related Work

Some previous research has aimed, as does this paper, at automatically learning
representations for function approximators. For example, Smith [15] uses self-
organizing maps to automatically learn non-linear skewing functions for state-
action spaces. However, unlike our work, this approach relies on the heuristic
assumption that more resolution should be given to regions of the space that
are more frequently visited. Another approach is to train function approxima-
tors using supervised methods that also learn representations, as Rivest and

1 After 250,000 episodes, Q-learning’s learning rate has annealed to zero and no ad-
ditional learning is possible. However, in our experiments, running Q-learning with
slower annealing or no annealing at all consistently led to inferior and unstable
performance.

11

Precup [16] do with cascade-correlation networks. The primary complication
is that cascade-correlation networks, like many representation-learning super-
vised methods, require a large and stable training set, which TD methods do
not provide. Rivest and Precup address this problem using a novel caching sys-
tem. While this approach delays the exploitation of the agent’s experience, it
nonetheless represents a promising way to marry representation-learning super-
vised algorithms with TD methods.

Furthermore, many researchers have tried to exploit the Baldwin Effect by
combining evolutionary computation with other learning methods. Most of these
results, such as [4], are in supervised problems where it is straightforward to syn-
thesize evolution with standard techniques. In reinforcement learning problems,
it is less clear how to generate the target values necessary for learning during
an individual’s lifetime. While this paper uses value estimates generated by TD
methods as targets, Nolfi et al. [5] train state predictors and use the actual states
as targets, while Stanley et al. [17] use unsupervised methods that do not require
targets [17] and Ackley and Littman [3] use reinforcement learning techniques
that do not learn value functions.

Finally, VAPS [18] is an algorithm that, like NEAT+Q, integrates TD and
policy search methods. It yields impressive convergence guarantees but does not
address the problem of learning appropriate representations for value functions
or policies.

7 Ongoing and Future Work

Though space restrictions prevent their full presentation here, we have tested
Sarsa, NEAT+Sarsa, and a Lamarckian version of NEAT+Q in the server schedul-
ing domain. Sarsa and NEAT+Sarsa perform similarly to, though not as well as,
their Q-learning counterparts. Surprisingly, Lamarckian NEAT+Q performs dra-
matically worse than the Darwinian version presented here. More investigation
is necessary to determine why, though we suspect it is related to the difficulty
of finding network weights that remain stable over the long term.

Future research will focus on implementing evolutionary function approxima-
tion with different constituent learning methods. Many other TD methods could
be used in place of Q-learning and Sarsa. Also, we hope to employ evolutionary
systems other than NEAT, as doing so could enable the automatic configuration
of function approximators other than neural networks. Furthermore, we hope to
evaluate evolutionary function approximation on additional domains to further
establish the scope of its efficacy.

8 Conclusion

The primary contribution of this paper is evolutionary function approximation,
which uses evolution to automate the search for effective representations for TD
function approximators. A particular implementation called NEAT+Q automat-
ically discovers effective topologies for neural network function approximators for
Q-learning. Empirical results in server job scheduling, an autonomic computing
domain, demonstrate that NEAT+Q performs significantly better than both

12

NEAT and Q-learning, even after an extensive manual search for effective func-
tion approximators. Hence, evolutionary function approximation can eliminate
the need for manually specifying function approximator representations.

Acknowledgments

Thanks to Richard Sutton for helpful discussions and insights. This research
was supported in part by NSF CAREER award IIS-0237699 and an IBM faculty
award.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

2. Baird, L.: Residual algorithms: Reinforcement learning with function approxima-
tion. In: Proceedings of the Twelfth International Conference on Machine Learning,
Morgan Kaufmann (1995) 30–37

3. Ackley, D., Littman, M.: Interactions between learning and evolution. Artificial
Life II, SFI Studies in the Sciences of Complexity 10 (1991) 487–509

4. Boers, E., Borst, M., Sprinkhuizen-Kuyper, I.: Evolving Artificial Neural Networks
using the “Baldwin Effect”. Technical Report TR 95-14 (1995)

5. Nolfi, S., Elman, J.L., Parisi, D.: Learning and evolution in neural networks.
Adaptive Behavior 2 (1994) 5–28

6. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10 (2002) 99–127

7. Crites, R.H., Barto, A.G.: Elevator group control using multiple reinforcement
learning agents. Machine Learning 33 (1998) 235–262

8. Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural Computation 6 (1994) 215–219

9. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1)
(2003) 41–50

10. Stanley, K.O., Miikkulainen, R.: Evolving a roving eye for go. In: Proceedinngs of
the Genetic and Evolutionary Computation Conference. (2004)

11. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary
complexification. Journal of Artificial Intelligence Research 21 (2004) In press.

12. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87 (1999)
1423–1447

13. Baldwin, J.M.: A new factor in evolution. The American Naturalist 30 (1896)
441–451

14. Whiteson, S., Stone, P.: Adaptive job routing and scheduling. Engineering Appli-
cations of Artificial Intelligence 17(7) (2004) 855–869

15. Smith, A.J.: Applications of the self-organizing map to reinforcement learning.
Journal of Neural Networks 15 (2002) 1107–1124

16. Rivest, F., Precup, D.: Combining td-learning with cascade-correlation networks.
In: Proceedings of the Twentieth International Conference on Machine Learning,
AAAI Press (2003) 632–639

17. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Evolving adaptive neural networks
with and without adaptive synapses. In: Proceeedings of the 2003 Congress on
Evolutionary Computation (CEC 2003). Volume 4. (2003) 2557–2564

18. Baird, L., Moore, A.: Gradient descent for general reinforcement learning. In:
Advances in Neural Information Processing Systems 11, MIT Press (1999)

