
To appear in The European Conference on Machine Learning (ECML 2009),
Bled, Slovenia, September 2009.

Compositional Models for Reinforcement

Learning

Nicholas K. Jong and Peter Stone

The University of Texas at Austin
1 University Station C0500

Austin, Texas 78712
United States

{nkj,pstone}@cs.utexas.edu

Abstract. Innovations such as optimistic exploration, function approx-
imation, and hierarchical decomposition have helped scale reinforcement
learning to more complex environments, but these three ideas have rarely
been studied together. This paper develops a unified framework that for-
malizes these algorithmic contributions as operators on learned models
of the environment. Our formalism reveals some synergies among these
innovations, and it suggests a straightforward way to compose them. The
resulting algorithm, Fitted R-MAXQ, is the first to combine the function
approximation of fitted algorithms, the efficient model-based exploration
of R-MAX, and the hierarchical decompostion of MAXQ.

1 Introduction

Research into reinforcement learning (RL) has yielded diverse techniques for
more efficiently converging to rewarding behaviors in initially unknown environ-
ments, but too often these techniques are studied in isolation. Without assem-
bling these ideas into a single algorithm, we cannot fully understand how they
synergize or even conflict. In this paper, we develop a compositional framework
that allows us easily to integrate three of the most important advances in RL.

The first of these advances is model-based RL. Early work in this direction
demonstrated that summarizing an agent’s experience into a model facilitates
the efficient reuse of data [1]. Later work investigated how the uncertainty in the
model can guide exploration, yielding the first (probabilistic) finite bounds on
the amount of data required to learn near-optimal behaviors [2, 3]. Still, these
guarantees require that the agent exhaustively explore every state. Particularly
in large domains, this exploration can be impractical.

Second, function approximation allows RL to cope with large or even infinite
state spaces by introducing generalization. It allows an algorithm to approximate
the long-term value of every action in every state using only a relatively small set
of parameters. Many state-of-the-art approaches employ model-free algorithms
and representations that attempt to estimate these values directly from data [4,
5], but they often still rely on random exploration to acquire this data.



Third, hierarchical decomposition is perhaps the most intuitively appealing
extension of the standard approach, since we would like to imbue our learn-
ing algorithms with the same awareness of structure that seems to allow us to
cope with the extraordinary complexity of the real world. Hierarchical RL has
been explored via work on temporal abstraction, in which temporally extended
abstract actions allow agents to reason above the level of primitive actions [6].
However, we still do not have a complete understanding of how hierarchy benefits
learning and therefore how to design or discover hierarchies.

One main contribution of this work is a formulation of important algorithms
from all of these branches of RL into a concise, unified notation that makes their
synergies apparent. We introduce our notation in Sect. 2 and use it to review
fitted function approximation, the model-based R-MAX algorithm, and the hi-
erarchical MAXQ framework. In Sect. 3, this powerful reformulation allows us
easily to define the first algorithm for model-based, continuous-state, hierarchi-
cal RL. This algorithm, which we call Fitted R-MAXQ, constitutes our second
main contribution, and we evaluate it empirically in Sect. 4. Finally, we discuss
future and related work in Sect. 5 before concluding in Sect. 6.

2 Model Components

A Markov decision process (MDP) 〈S,A,R, P 〉 comprises a finite set of states
S, a finite set of actions A, a |S||A| × 1 reward vector R, and a |S||A| × |S|
transition matrix P . Executing action a in state s earns reward R[sa] on average
and transitions to state s′ with probability P [sa, s′]. We define a policy π as a
|S| × |S||A| matrix,1 where π[s, sa] gives the probability of executing a in s, and
where π[s1, s2a] = 0 for s1 6= s2. The |S| × 1 value function V π maps each state
s to the expected discounted reward V π[s] of following π from that state. The
value function satisfies the Bellman equation

V π = π (R + γPV π) , (1)

where γ ∈ [0, 1] is a discount factor.
Given R and P , which comprise a model, a planning algorithm computes a

policy π that maximizes each entry of V π. The standard policy iteration and
value iteration algorithms [7] both simply alternate between updating V π and
improving π greedily. Policy iteration updates V π by solving (1) for a fixed π,
while value iteration updates V π by evaluating the right-hand side of (1) using
the fixed previous value of V π. Both algorithms converge to the optimal value
function if γ < 1.

In the RL setting, the model is not given, but model-based algorithms esti-
mate R and P from data. We define an instance i = 〈si, ai, ri, s

′

i〉 as a record
containing a state si, the action ai executed from si, the one-step reward ri

earned, and the successor state s′i. Let D be a list of instances, and define

1 The policy may thus be interpreted as a matrix transitioning states to state-action
pairs.



Da = {i ∈ D | ai = a}. Then the maximum-likelihood reward model R̄ and
transition model P̄ are matrices defined as follows:

R̄[sa] =

∑

i∈Da

δ(s, si)ri

n(s,Da)
(2)

P̄ [sa, s′] =

∑

i∈Da

δ(s, si)δ(s
′, s′i)

n(s,Da)
, (3)

where n(s,Da) =
∑

i∈Da

δ(s, si), and δ is the Kronecker delta.
A complete RL algorithm must specify an exploration policy that guides an

agent to acquire the data used to estimate the model. The R-MAX algorithm [3]
maintains a set U of state-action pairs where insufficient data exists to esti-
mate the model accurately. For state-action pairs in U , the algorithm uses an
optimistic model in which the action terminates the trajectory after earning im-
mediate reward V max, an upper bound on the value function. In this manner,
the “unknown” state-action pairs are seen as optimal, encouraging the agent to
visit them and gather data. Otherwise, the maximum-likelihood estimate of the
state-action’s effects is used. We can express this exploration mechanism in our
matrix notation for V π as follows:

V π = π
(

UV max + (I − U)(R̄ + γP̄V π)
)

, (4)

where U is represented as a |S||A|×|S||A| diagonal binary matrix where U [sa, sa] =
1 iff sa ∈ U . R-MAX has some appealing theoretical properties, such as a proba-
bilistic polynomial bound on the number of times it departs from a near-optimal
policy [8]. However, in practice, its thorough exploration behavior is impractical,
and it only directly applies to finite MDPs where it is reasonable to gather ample
data for every reachable state-action pair.

2.1 Function Approximation

Function approximation scales RL to environments where exhaustive exploration
is infeasible or impossible (such as any domain with a continuous or otherwise
infinite state space) by introducing the idea of generalization. A function approx-
imator defines a family of value functions with some finite parameterization. In
this paper, we focus on averagers, which approximate the value of a given state
as a weighted average of the values of a finite subset X ⊂ S. In particular, it ap-
proximates V π[s] as a weighted average

∑

x∈X Φ[s, x]V π[x], for a given |S| × |S|
matrix Φ. Fitted Value Iteration [9] uses this approach by performing value it-
eration using the following approximation of V π:

V π = π (R + γPΦV π) . (5)

Some recent algorithms have also applied function approximation to the es-
timated reward and transition models. The instance-based Kernel-Based Rein-
forcement Learning algorithm [10] estimates a value function using the equations:

V π = π
(

R̂ + γP̂V π
)

(6)



R̂[sa] =

∑

i∈Da

δ̂(s, si)ri

n̂(s,Da)
(7)

P̂ [sa, s′] =

∑

i∈Da

δ̂(s, si)δ(s
′, s′i)

n̂(s,Da)
, (8)

where n̂(s,Da) =
∑

i∈Da

δ̂(s, si) tallies the weights given by the kernel function

δ̂ : S × S → [0, 1]. The kernel function determines the degree δ̂(s, si) to which
data at state si generalizes to the model at state s. The experiments in this
paper use a Gaussian kernel, as specified in Sect. 4.1. Note that the kernel-based
approximate model in (7) and (8) modify the maximum-likelihood model in (2)

and (3) only by substituting weights δ̂(s, si) ∈ [0, 1] in place of the exact binary
indicator function δ(s, si) ∈ {0, 1}.

2.2 Hierarchy

Given the structure we perceive in the real world, it seems natural to apply hier-
archy to reinforcement learning. The MAXQ decomposition [11] and options [12]
are the two most popular frameworks for hierarchical RL, which defines tem-
porally abstract actions that represent sequences of primitive actions. MAXQ
decomposes an overall learning problem using a given task hierarchy, where each
abstract action is a task that induces its own individual learning problem. In
contrast, the options framework formalizes an abstract action as a partial pol-
icy, which can be construed as a solution to a task. We will find it convenient to
interpret an abstract action o in both ways, depending on context.

A task o =
〈

T o, Ao, R̃o
〉

comprises a set of terminal states T o ⊂ S, a set of

child actions or tasks Ao, and a “pseudoreward” (goal) function R̃o : T o → IR.
It imposes an objective onto the system defined by the state space S and the
child actions Ao, which may include both other tasks and primitive actions such
as those assumed by the preceding sections.2 The task terminates upon reaching
a state s ∈ T o and then awards itself an artificial goal value R̃o[s], where R̃o is
a |S| × 1 vector. We can also represent T o as a |S| × |S| diagonal binary matrix
such that T o[s, s] = 1 iff o terminates upon entering s.

The optimal policy πo for task o maximizes

Ṽ o = T oR̃o + (I − T o)πo
(

Ro + γP oṼ o
)

, (9)

where Ro and P o are the (abstract) reward and transition matrices, respectively,
for the actions in Ao. This policy πo chooses children c ∈ Ao in a way that
maximizes a combination of one-step rewards during execution and goal values
upon termination. The task value function Ṽ o captures this combined value, but

2 We will index the child actions Ao using c instead of a to emphasize that c ∈ Ao

may be either a task/option or a primitive action.



it’s also possible to compute the value function V o that only includes the one-
step rewards (and is not “contaminated” with the goal rewards). In particular,
V o is given by solving

V o = πo (Ro + γP o(I − T o)V o) . (10)

A key insight of MAXQ is that V o can be interpreted as the reward model
for the option3 o = 〈T o, Ao, πo〉 that, when initiated in a state s /∈ T o, simply
selects actions according to πo until reaching a state s′ ∈ T o. Suppose that
o ∈ Ap for some parent task p. Then we can capture the insight of MAXQ as
Rp[so] = V o[s]. In other words, we can use V o to construct part of the reward
vector for any MDP learning task p that includes o as an executable action.

The same recursive approach can also apply to the transition function. Just
as the abstract reward function for an option specifies the expected (discounted)
sum of one-step rewards earned before reaching a terminal state, the abstract
transition function for an option should specify the expected (discounted) prob-
ability of terminating in each terminal state. To this end, we define the |S| × |S|
terminal-state matrix Ωo for an option o with the following Bellman-like equa-
tion:

Ωo = πo (P oT o + γP o(I − T o)Ωo) . (11)

Note intuitively that each column of Ωo can be interpreted as a value function
for a task which gives a reward of 1 upon terminating in the state corresponding
to that column. As a result, Ωo can be computed using standard MDP planning
algorithms. Finally, we observe that if o ∈ Ap for some parent task p, then
P p[so, s′] = Ωo[s, s′]. Here, P p is a multi-time model [12], so its rows may not
sum to 1, reflecting the effect of the discount factor over time. This representation
thus folds the duration of actions (typically represented explicitly in the standard
SMDP formalism) into the discounted transition probabilities.

Our hierarchical decomposition thus specifies how to construct the reward
and transition matrices for a task p recursively given the value functions and
terminal-state matrices of the options o ∈ Ap. To complete this recursive spec-
ification, we need only give the base case. For a primitive action a, the value
function V a and terminal-state matrix Ωa correspond exactly to the reward and
transition models for that action.

3 Compositional Algorithms

The algorithms described in Sect. 2 generate exploration policies by solving mod-
ified forms of the standard Bellman equation (1). However, each of the modified
equations (4), (5), and (9) share the same general form of (1): we can construe
the right-hand side as π multiplied by the sum of a |S| × 1 vector (that doesn’t
depend on V π) and a |S| × |S| matrix multiplied by V π. These equations are

3 It is straightforward to support the stochasic termination of the standard options
framework by defining the diagonal entries of T as the termination probabilities.



therefore equivalent to the standard Bellman equations for a modified version of
the original Markov decision process.4

We formalize such modifications as follows. For a given set of states S and
primitive actions A, let D be the space of all possible lists of instances, R be the
space of all possible |S| × 1 reward vectors, and P be the space of all possible
|S| × |S| transition matrices. The |S||A| × 1 reward vector for a given learning
task o is then obtained by composing the reward vectors for each child action
c ∈ Ao in the appropriate way. Similarly, the |S||A| × |S| task transition matrix
is composed from the |S| × |S| action transition matrices. We now define a
model generator G : D → R × P as a mapping from a list of instances to a
reward and transition model for a given primitive action, and a model operator

M : R × P → R × P as a mapping from one reward and transition model to
another.

We can formalize the maximum-likelihood model as a family of model gen-
erators mlea for each primitive action a:

mlea(D) =
(

V̄ a, Ω̄a
)

, (12)

where V̄ a[s] and Ω̄a[s, s′] are given by the right-hand sides of (2) and (3), re-
spectively. The R-MAX algorithm then generates an exploration policy by using
a standard planning algorithm on the learning task composed with the action
models r-maxa(MLEa(D)), where

r-maxa(R,P ) = (UaV max + (I − Ua)R, (I − Ua)P ) , (13)

where Ua is the |S|× |S| submatrix of U such that Ua[s, s] = 1 iff sa is unknown.
Note that the R-MAX operator is defined as a function of the data D, which are
required to define U .

The Fitted R-MAX algorithm, which extends R-MAX using the model ap-
proximation of KBRL and fitted planning [13], can now be seen as planning with
the action models fvi(r-maxa(kbrla(D))), where

fvi(R,P ) = (R,PΦ) (14)

encapsulates Fitted Value Iteration for a given Φ, and

kbrla(D) =
(

V̂ a, Ω̂a
)

, (15)

where V̂ a[s] and Ω̂a[s, s′] are given by the right-hand sides of (7) and (8), re-
spectively.

R-MAXQ, another recent extension to R-MAX, incorporates the MAXQ-
based model decomposition described in Sect. 2.2 [14]. For a given task o, the
computation of the option policy πo requires planning with modified action mod-
els maxqo(V c, Ωc) for each child c ∈ Ao, where

maxqo(R,P ) =
(

T oR̃o + (I − T o)R, (I − T o)P
)

. (16)

4 Equation (9) can be rewritten into this form by handling termination after applying
the policy, but the representation of T o and R̃o is then less intuitive.



Given the option policy πo, as well as policies for each descendent of o, the
MAXQ decomposition also defines a model (V o, Ωo) of o. In this sense, each task
o defines a model generator (since each option policy is a function of D).

Algorithm 1 Model(c)

if c is a (primitive) action then

a← c

(V a, Ωa)← Ga(D)
Return (V a, Ωa)

else {c is a (composite) task/option}
o← c

(πo, Ro, P o)← Plan(o)
V o ← solution to V o = πo(Ro + γP o(I − T o)V o)
Ωo ← solution to Ωo = πo(P oT o + γP o(I − T o)Ωo)
Return (V o, Ωo)

end if

Algorithm 1 precisely defines this model generator. Note that Algorithms 1
and 2 are mutually recursive, and they assume the following global parameters:
a set of instances D, model generators Ga for each primitive action a, and model
operators Mo for each task o. Algorithm 2 constrains the planning algorithm to
only execute an option in states not in the option’s termination set. In other
words, for all options o and parent tasks p, pip[s, so] > 0 implies s /∈ T o. (The
option’s initiation set is the complement of its set of terminal states.)

Algorithm 2 Plan(o)

for all children c ∈ Ao do

(V c, Ωc)←Mo(Model(c))
end for

Ro ← choose so that Ro[sc] = V c[s]
P o ← choose so that P o[sc, s′] = Ωc[s, s′]

πo ← optimize Ṽ o = πo

“

Ro + γP oṼ o

”

{subject to initiation constraints}

Return (πo, Ro, P o)

Given these subroutines, Algorithm 3 describes a broad family of model-based
RL algorithms parameterized by a task hierarchy, model generators attached to
each primitive action, and model operators attached to each task. For example,
suppose that for a given task hierarchy we define Ga = r-maxa ◦mlea for each
primitive action a and Mo = maxq, for each task o. Then running Execute on
the root task of this hierarchy is exactly equivalent to R-MAXQ. Note that this
algorithm uses the same model (Ro, P o) to compute both the “contaminated”
value function Ṽ o and the real value function V o. It can use this model for



both purposes, since the additional goal-reward values only affect the reward
vector at terminal states. Equation (10) disregards values of terminal states,
and Algorithm 2 prevents the execution of the option at terminal states.

These procedures can also implement non-hierarchical algorithms by using a
“flat” hierarchy. Let A be the set of available primitive actions and define the
task Root such that ARoot = A and T Root = 0. If we define Ga = r-maxa ◦mlea

and MRoot = i, the identity operator, then Execute(Root) is exactly equivalent
to the original R-MAX algorithm. If we instead define Ga = r-maxa ◦ kbrla

and MRoot = fvi, then we obtain the Fitted R-MAX algorithm.

Algorithm 3 Execute(c)

if c is a (primitive) action then

a← c

Execute action a in the environment
r ← reward
s′ ← successor state
D ← D ∪ {〈s, a, r, s′〉}

else {c is a (composite) task/option}
o← c

repeat

s← current state
(πo, V o, Ωo)← Plan(o) {V o and Ωo ignored}
c← choose child action/option according to πo

Execute(c)
until T c[s′, s′] = 1

end if

3.1 Fitted R-MAXQ

Our compositional approach to model-based RL immediately suggests a novel
algorithm, obtained by applying all of our available model operators. We define
Ga = r-maxa ◦ kbrla, to obtain the optimistic exploration of R-MAX and the
instance-based generalization of primitive action models of Kernel-Based Rein-
forcement Learning. We define Mo = maxq◦fvi to obtain the subtask decompo-
sition of MAXQ and the value function approximation of Fitted Value Iteration.
In keeping with prior algorithms extending R-MAX, we refer to this novel al-
gorithm as Fitted R-MAXQ. For concreteness, we specify Fitted R-MAXQ in
Algorithm 4, which also optimizes the computation of Algorithms 1–3 by using
dynamic programming to unroll the mutual recursion. Note that Algorithm 4
assumes a continuing task, but the modifications for episodic tasks are straight-
forward.5

5 The T Root matrix should remain zero even in episodic tasks, since it is the environ-
ment and not the agent terminating.



To our knowledge, Fitted R-MAXQ is the first model-based RL algorithm to
combine function approximation and hierarchical decomposition. Interestingly,
a close inspection reveals notable structural similarities among the operators
that comprise Fitted R-MAXQ, which creates opportunities for synergies. For
example, consider the r-max and maxq operators, (13) and (16). Both modify
a model by changing the rewards at a subset of the states, which also become
terminal. In the case of r-max, this subset is the set of unknown states Ua;
for maxq, it is the set of terminal states T o. Entering this set terminates the
trajectory (by assigning zero probability to every successor) but earns a final
reward given by the upper bound V max or the pseudoreward function R̃o. The
net effect of these operators is to bias the exploration policy of the algorithm,
towards leaving the known set and towards manually specified subgoal states,
respectively. This characterization leads us to conjecture that one important role
of hierarchy is to focus the otherwise too thorough exploration of R-MAX by
requiring the optimistic value of exploration to overcome the perceived subgoal
rewards.

Algorithm 4 Fitted-R-maxq(Root)

Initialize stack to [Root]
loop

s← current state
c← top of stack

while c is a task, not a primitive action do

o← c

c← choose child in Ao using πo

Push c onto stack

end while

a← c

Execute action a

r ← one-step reward
s′ ← successor state
D ← D ∪ {〈s, a, r, s′〉}
V a ← UaV max + (I − Ua)V̂ a {V̂ a[s] equals right-hand side of (7)}
Ωa ← (I − Ua)Ω̂a {Ω̂a[s, s′] equals right-hand side of (8)}
for all tasks o do {bottom-up}

Ro ← construct so that Ro[sc] = V c[s]
P o ← construct so that P o[sc, s′] = Ωc[s, s′]
πo ← optimize Ṽ o = T oR̃o + (I − T o)πo(Ro + γP oΦV o)
V o ← solve V o = πo(Ro + γP o(I − T o)V o)
Ωo ← solve Ωo = πo(P oT o + γP o(I − T o)Ωo)

end for

repeat {stack begins with a primitive on top}
Pop stack

o← top of stack

until T o[s′, s′] = 0 {s′ not terminal}
end loop



We have already seen that some model operators modify the transition ma-
trix by forcing some states to be terminal, but the fvi operator (14) instead
“redirects” transitions into a relatively small subset X ⊂ S. By construction, at
most |X| of the columns of Φ are nonzero. Since this matrix is multiplied to the
right of the original transition matrix, at most |X| of the rows of V π affect the
Bellman equation. Even when S is infinite, this property permits our implemen-
tation to employ a sparse representation of the matrices involved. In general, in
any one time step, the algorithm must store only |X| + 1 rows of each matrix,
one for the current state and the rest for X.

Interestingly, the MAXQ decomposition can have a similar effect on planning
efficiency. Note that (11) defines the abstract transition matrix for an option o
in such a way that the nonzero columns correspond to the terminal states in
T o. Since many tasks achieve subgoal states that comprise a small fraction of
the state space, planning at the abstract level of tasks may permit a compact
representation of the value function which compounds with any reductions due
to fitted function approximation.

4 Experiments

In order to exercise the full capabilities of Fitted R-MAXQ, we introduce a new
domain modeled after the RL benchmark environment Puddle World. Puddle
World already has a continuous state space, and no modifications are necessary
to enable model-based reasoning (which is purely an algorithmic issue), but we
introduce a task hierarchy that enables hierarchical reasoning. We intend our
extensions to give the overall task more structure of the sort found in real-world
tasks.

First, we describe the original Puddle World environment, depicted in Fig. 1.
The agent must navigate the unit square to reach a goal state in the upper-right
corner, which terminates each episode. Four primitive actions move the agent
0.05 in each of the four cardinal directions, with some Gaussian noise (σ = 0.01)
added to each of the two state variables after every action. Each action incurs a
−1 penalty until reaching the goal, but each time step spent in a puddle incurs
an additional penalty between 0 and −40, depending on the proximity to the
middle of the puddle.

We modify this environment by removing the goal state in the corner and
instead giving the agent a set of four different resources it must harvest in each
episode, as shown in Fig. 2. Each resource can only be collected in the neighbor-
hood (within distance 0.1) of a specific spot in the unit square, which is initially
unknown. For each resource, a binary state variable tracks whether the resource
has been collected, and a distinct primitive action allows the agent to search the
current location for the resource and harvest it if present. In each episode, the
agent begins in a random location, so over time it must learn the locations of
the resources, the locations of the costly puddles, and how to harvest all four
resources as cheaply as possible. This environment has six state variables, two



Goal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fig. 1. A trajectory in the original Puddle World environment.

continuous and four binary, and eight primitive actions, four movement actions
and the four collection actions.

We ran each algorithm tested for 50 independent trials, using for each algo-
rithm the same set of 50 configurations of resource locations, generated uniformly
at random but with no location inside of a puddle. For each configuration, we
generated a fixed sequence of 500 start states, again uniformly at random. Each
trial lasted for 500 episodes, and we limited each episode to 1000 time steps.

4.1 Algorithm Configurations

We compare several different instantiations of our compositional framework for
model-based RL. In this section, we describe the precise configuration of each
model generator and model operator used. We use value iteration with prioritized
sweeping [1] both to compute the optimal policy πo given a model (Ro, P o) and
also to evaluate πo to obtain the abstract model (V o, Ωo). We used a discount
factor of γ = 1, since the task is episodic.

The maximum-likelihood model generator mle has no parameters, but to
apply finite algorithms in PuddleWorld we used a discretization of the unit
square into a 16× 16 grid. This discretization seems quite coarse, but finer grids
only lead to more excessive exploration without a concomitant increase in policy
quality.

For the instance-based model approximation of kbrl, we adopted a Gaussian
kernel function:

δ̂(s1, s2) = e−(d(s1,s2)/b)2 , (17)

where d(s1, s2) is the Euclidean distance between s1 and s2, and b = 1
16 is a

bandwidth parameter that controls the breadth of generalization, chosen using
coarse optimization. To compute δ̂ efficiently, we stored the instances in a cover



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C

A

D

B

Fig. 2. A trajectory in the modified Puddle World environment. The agent gathers
resources D, B, A, then C, but any order is permissible.

tree [15] and rounded down to zero any value of δ̂(s1, s2) < 0.01. Finally, we
adopt the “relative transition model” of [13], which modifies (8) by using the
vector displacement observed at instance i instead of the absolute successor state
observed:

P̂ [sa, s′] =

∑

i∈Da

δ̂(s, si)δ(s
′, s + (s′i − si))

n̂(s,Da)
. (18)

All of the algorithms we tested rely on the R-MAX approach to exploration.
We set V max = 0, since all the immediate rewards in Puddle World are negative.
When used with mle, we defined Ua = {s ∈ S | n(s,Da) < 2}. Since the stochas-
ticity in Puddle World is relatively benign, gathering more data for each state-
action didn’t improve the final policy quality but resulted in much more expen-
sive exploration. When used with kbrl, we defined Ua = {s ∈ S | n̂(s,Da) < 1}.
This low threshold seemed adequate since KBRL must typically generalize from
several instances to reach a kernel weight of 1.

For fvi, we defined the averager Φ using linear interpolation over a uni-
formly spaced grid, with a resolution of 1

16 . This function approximation scheme
therefore approximates the value of a point in the unit square (for a particular
setting of the binary state variables) as an interpolation between the four sur-
rounding points. Again, increasing the resolution did not improve the quality of
the learned policy, but it did increase the computational burden of planning.

For the hierarchical algorithms, we defined a simple task hierarchy for our
modified Puddle World that corresponds to the prior knowledge that the four
resource collection actions are independent of one another.6 For each resource,

6 This hierarchy therefore imparts less domain knowledge than the hierarchy Diet-
terich provided for learning in the Taxi domain [11], where the possible passenger
coordinates were all known a priori.



we define a task o such that the children actions Ao include the four movement
primitives and the action that collects that resource. The terminal set T o includes
all states where the resource’s boolean flag is set, and R̃o = 0. The root of the
hierarchy has these four tasks as children; it cannot execute any primitive actions
directly.

Finally, all the algorithms benefitted from state abstraction. The four prim-
itive movement actions neither depend on nor affect the boolean state variables
for the four activities. Similarly, each activity only depends on the coordinates
and only affects the corresponding boolean state variable. Due to limitations on
space, we omit the details of these state abstractions, which were implemented
in the obvious way.

4.2 Results

Figure 3 shows learning curves for four algorithms: R-MAX, R-MAXQ, Fitted
R-MAX, and our combination of these algorithms, Fitted R-MAXQ. All four
algorithms converge to statistically the same policy quality after only 25-30
episodes, but they incur very different exploration costs before getting there.

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0  5  10  15  20  25  30  35  40

R
ew

ar
d 

pe
r 

ep
is

od
e

Episode

Fitted R-MAXQ
Fitted R-MAX

R-MAXQ
R-MAX

Fig. 3. Reward per episode for variations of R-MAX with and without function ap-
proximation and hierarchical decomposition.



Figure 4 integrates under the curves in Fig. 3 to show the total learning costs.
Note that both figures only show the first several episodes, to focus on the period
of learning when the algorithms’ performance differs. Note that the benefit of
adding both hierarchical decomposition and function approximation to R-MAX
is greater than the sum of the benefits for adding each innovation by itself!

-30000

-25000

-20000

-15000

-10000

-5000

 0

 0  20  40  60  80  100

C
um

ul
at

iv
e 

re
w

ar
d

Episode

Fitted R-MAXQ
Fitted R-MAX

R-MAXQ
R-MAX

Fig. 4. Cumulative reward for variations of R-MAX with and without function ap-
proximation and hierarchical decomposition.

An inspection of the behavior of Fitted R-MAXQ reveals that it outperforms
the other algorithms largely by avoiding excessive exploration in the puddles.
Consider a state in the middle of a puddle that is in the set of unknown states
Ua for some primitive action a. The R-MAX operator will assign this state the
optimistic value V max, but this value does not guarantee that the agent will
attempt to reach this state. If the predicted cost of completing the current task
is smaller than the predicted cost of wading through the puddle to the unknown
state, the agent will choose to ignore the unknown state and instead exploit
a path through known states. In the non-hierarchical case, the current task is
always to complete all the remaining activities, which may have a rather high
cost. In the hierarchical case, the current task is to complete a particular one
of the activities, which is more likely to have a lower cost than wading into the
puddle. In a sense, the hierarchical decomposition limits the optimism applied to
unknown states, which R-MAXQ models as terminating only the current task,



not the entire episode. Meanwhile, discretization interferes with the accurate
prediction of the costs of exploring versus exploiting. The coarse discretization
we used is very effective in most of the state space, where the dynamics are the
same, but not near the puddles, where the immediate reward varies quickly as
a function of the coordinates.

5 Discussion

In this paper, we cast certain existing algorithms into a unified framework with
an eye towards defining a new algorithm that combined all the desired existing
features. The generality of our framework leaves open the possibility that still
more algorithms can be formalized in terms of model generators and model
operators. Investigating combinations of these algorithms can only help us to
develop deeper understandings of their individual contributions in context.

One important direction for future work is to derive general properties of the
class of algorithms defined by our compositional framework. Each algorithm in
this class behaves strictly according to the optimal policy for an MDP derived
in some way from data. An understanding of the expressivity and limitations of
such algorithms might either inspire the creation of new operators within this
framework or of new algorithms that meaningfully break out of it. For example,
hierarchical RL requires the ability to work with a derived MDP that has a
different action space than the original MDP. We observe that the problem of
optimal exploration in RL can be reduced to a planning problem in a derived
MDP, where the state space is augmented with beliefs concerning the underlying
MDP [16]. In what ways can model operations productively change the state and
action spaces of the underlying MDP? Finally, integration with the ongoing work
on MDP homomorphisms [17] may allow our framework to deal more explicitly
with state abstraction.

6 Conclusion

This paper developed two main contributions to the literature on scaling rein-
forcement learning to increasingly complex environments. First, it introduced
a novel, unifying notation and formulation of three previously disjoint ideas in
RL: model-based exploration, function approximation, and hierarchy. This for-
mulation construed existing algorithms as essentially the application of a stan-
dard planning algorithm to a transformed reward and transition model. Second,
the paper leveraged this new notation to unify these three ideas into Fitted
R-MAXQ, the first algorithm for hierarchical, model-based RL in continuous
domains. Fitted R-MAXQ is fully implemented and evaluated in a hierarchical
Puddle World, significantly outperforming algorithms that utilize only a subset
of its components.



References

1. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning 13 (1993) 103–130

2. Kearns, M., Singh, S.: Near-optimal reinforcement learning in polynomial time.
In: Proceedings of the Fifteenth International Conference on Machine Learning.
(1998) 260–268

3. Brafman, R.I., Tennenholtz, M.: R-max – a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research 3

(2002) 213–231
4. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine

Learning Research 4 (2003) 1107–1149
5. Riedmiller, M.: Neural fitted Q iteration – first experiences with a data efficient

neural reinforcement learning method. In: Proceedings of the European Conference
on Machine Learning. (2005)

6. Barto, A.G., Mahadevan, S.: Recent advances in hierarchical reinforcement learn-
ing. Discrete-Event Systems 13 (2003) 41–77 Special Issue on Reinforcement Learn-
ing.

7. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc. (1994)

8. Kakade, S.M.: On the Sample Complexity of Reinforcement Learning. PhD thesis,
University College London (2003)

9. Gordon, G.J.: Stable function approximation in dynamic programming. In: Pro-
ceedings of the Twelfth International Conference on Machine Learning. (1995)

10. Ormoneit, D., Sen, Ś.: Kernel-based reinforcement learning. Machine Learning
49(2) (November 2002) 161–178

11. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Artificial Intelligence Research 13 (2000) 227–303

12. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence 112(1–2)
(1999) 181–211

13. Jong, N.K., Stone, P.: Model-based exploration in continuous state spaces. In:
Proceedings of the Seventh Symposium on Abstraction, Reformulation and Ap-
proximation. (2007)

14. Jong, N.K., Stone, P.: Hierarchical model-based reinforcement learning: R-max +
MAXQ. In: Proceedings of the Twenty-Fifth International Conference on Machine
Learning. (2008)

15. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
Proceedings of the Twenty-Third International Conference on Machine Learning.
(2006)

16. Duff, M.: Design for an optimal probe. In: Proceedings of the Twentieth Interna-
tional Conference on Machine Learning. (2003) 131–138

17. Ravindran, B., Barto, A.G.: SMDP homomorphisms: An algebraic approach to
abstraction in semi-Markov decision processes. In: Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence. (2003)


