Model-Selection for Non-Parametric Function Approximation: A Case Study in a Smart Energy System

Daniel Urieli Peter Stone

Department of Computer Science The University of Texas at Austin {urieli,pstone}@cs.utexas.edu

ECML 2013

Motivation

A smart energy problem:

Controlling a thermostat for reducing energy consumption in an HVAC^a system while maintaining comfort requirements

^aHeating, Ventilation and Air-Conditioning

General Motivation

Applying value-function based reinforcement learning (RL) to discrete-time, continuous-control problems

Discrete-Time, Continuous Control Problems

- System's state-space is continuous
- Control actions are taken at discrete times
- Further assuming that action-set is small and discrete
- Examples:

- In theory, value-function based RL can solve such problems optimally
- In practice, it is often unclear how to approximate the value function well enough
- Indeed, recent successes used direct policy search

- In theory, value-function based RL can solve such problems optimally
- In practice, it is often unclear how to approximate the value function well enough
- Indeed, recent successes used direct policy search

- In theory, value-function based RL can solve such problems optimally
- In practice, it is often unclear how to approximate the value function well enough
- Indeed, recent successes used direct policy search

- Still, value-function based RL has desirable advantages:
 - Aiming for global optimum
 - Bootstrapping

 less interactions with the real-world

Case Study: Smart Thermostat Control

Minimize energy consumption while satisfying this comfort specification

Learning Agents Research Group

Case Study: Smart Thermostat Control

Straightforward turn-off strategy fails to satisfy both requirements

Smart Thermostat Control as an MDP

We model the problem as an MDP:

- **S**: $\{\langle T_{in}, T_{out}, Time \rangle\}$
- ♠ A: {COOL, OFF, HEAT, AUX}
- P: computed by the simulator, initially unknown
- R: -energyConsumedByLastAction C_{6pm}
- **T**: $\{s \in S | s.time == 23:59pm\}$

Plan,

For the value-function (VF) approximation part, we need to:

- Choose a function approximator
- Choose an algorithm to compute the approximate VF
- Tune the function approximator's parameters through model-selection

The Challenge of Value-Function Approximation

- Must differentiate optimal from suboptimal action
- Non-trivial with "small" action effects + smooth value function ⇒ losses accumulate over time

The Challenge of Value-Function Approximation

- Must differentiate optimal from suboptimal action
- Non-trivial with "small" action effects + smooth value function ⇒ losses accumulate over time

The Challenge of Value-Function Approximation

- Must differentiate optimal from suboptimal action
- Non-trivial with "small" action effects + smooth value function ⇒ losses accumulate over time

Function Approximation Methods

- Discretization
- Suffers from the curse of dimensionality at the required resolution levels

Function Approximation Methods

- Linear Function Approximation
- Depends on choosing good features
- Frequently not clear how to do that

Function Approximation Methods

- Non-Parametric: can represent any function
- Using lots of data...

Non-Parametric Value Function Approximation

 To minimize the assumptions about the VF representation we use a smooth, non-parametric function approximator: Locally Weighted Linear Regression (LWR)

Compute an Approximate VF Using FVI

 To compute the approximate VF, we use Fitted Value Iteration (FVI):

$$\mathbf{S}_{\mathsf{FVI}} := \{ s^{(1)}, s^{(2)}, \dots, s^{(m)} \}$$

Repeat UntilConvergence{ $\forall i \in 1, \ldots, m$ $y^{(i)} := max_a \left(R(s^{(i)}, a) + \gamma E_{[s'|s^{(i)}a]} [\hat{V}^{\pi^*}(s')] \right)$ $\hat{V}^{\pi^*}(s) := LWR\left(\{\langle s^{(i)}, y^{(i)} \rangle | i \in 1, \dots, m\}\right)$

Model-Selection for LWR in N-dimensions

- In N dimensions, it is common to tune N+1 parameters:
 - 1 bandwidth parameter: τ
 - N attribute-scaling parameters: c₁,...,c_n

Tuning these parameters is a form of model-selection

Model Selection - How to Evaluate A Model?

Model-evaluation measure?

- In supervised learning: prediction performance on held-out sets
- In reinforcement learning?

 We don't have the true values (labels) of states

 Performance is accumulated reward - often too expensive to evaluate

Model Selection - How to Evaluate A Model?

 We use the fact that the optimal value function must satisfy Bellman's optimality equation:

$$\hat{V} \equiv V^{\pi^*} \iff \forall s \in S : BE_{\hat{V}(s)} = 0$$

where

$$BE_{\hat{V}}(s) := |\hat{V}(s) - max_a(R(s, a) + \gamma E_{[s'|sa]}[\hat{V}(s')])|$$

- It already holds for $s \in S_{FVI}$ (FVI's convergence condition).
- But not necessarily for $s \notin S_{FVI}$

The Resulting Model Evaluation Measure

- Therefore, to evaluate a model, we:
 - Sample random states $\mathcal{T} := \{t^{(1)}, ..., t^{(m')}\}, t_i \notin S_{FVI}, |\mathcal{T}| >> |S_{FVI}|$

- Use $||BE_{\hat{V}}(T)||_{\infty}$ as model evaluation measure
- Model-Selection becomes minimizing

$$F: \mathbb{R}^{n+1} \to \mathbb{R}$$

where

$$(c_1,\ldots,c_n,\tau)\mapsto ||BE_{\hat{V}}(\mathcal{T})||_{\infty}$$

• No need to evaluate an agent in the environment earning Agents Research Group

Practical Model-Selection: 2 conditions

- To have a practical model-selection algorithm we need to show that:
 - Bellman Error is correlated with actual performance
 - Finding the minimum can be done efficiently

Correlation Between the Bellman Errors and Performance

The MSNP Algorithm

We use these two assumptions to define the following model-selection algorithm, named MSNP:

Efficiently Optimizing the Bellman Errors

Basins of Convergence of the Max Bellman Error

Plotting $p_i \mapsto ||BE_{\hat{V}}(T)||_{\infty}$, for each $p_i \in \{c_1, c_2, c_3, \tau\}$ (for $j \neq i$, p_j are held fixed at default values)

Temperature Graphs

MSNP

Default

Turn-off

- Comparing Yearly energy consumption (lower is better)
- Default: default strategy that is deployed in practice
- MSNP: our model-selection algorithm is
 - better than LargeSample
 - close to CMA-ES

City	Default (kWh)	LargeSample (kWh)	MSNP (kWh)	CMA-ES (kWh)	% Energy-Savings
New York City	11084.8	10923.5	9859.3	9816.3	11.0%
Boston	12277.1	12480.7	11433.6	11052.8	6.9%
Chicago	15172.5	14778.2	14186	13778.4	6.5%

- Comparing Yearly energy consumption (lower is better)
- Default: default strategy that is deployed in practice
- MSNP: our model-selection algorithm is
 - better than LargeSample
 - olose to CMA-ES

City	Default (kWh)	LargeSample (kWh)	MSNP (kWh)	CMA-ES (kWh)	% Energy-Savings
New York City	11084.8	10923.5	9859.3	9816.3	11.0%
Boston	12277.1	12480.7	11433.6	11052.8	6.9%
Chicago	15172.5	14778.2	14186	13778.4	6.5%

- Comparing Yearly energy consumption (lower is better)
- Default: default strategy that is deployed in practice
- MSNP: our model-selection algorithm is
 - better than LargeSample
 - close to CMA-ES

City	Default (kWh)	LargeSample (kWh)	MSNP (kWh)	CMA-ES (kWh)	% Energy-Savings
New York City	11084.8	10923.5	9859.3	9816.3	11.0%
Boston	12277.1	12480.7	11433.6	11052.8	6.9%
Chicago	15172.5	14778.2	14186	13778.4	6.5%

- Comparing Yearly energy consumption (lower is better)
- Default: default strategy that is deployed in practice
- MSNP: our model-selection algorithm is
 - better than LargeSample
 - close to CMA-ES

City	Default (kWh)	LargeSample (kWh)	MSNP (kWh)	CMA-ES (kWh)	% Energy-Savings
New York City	11084.8	10923.5	9859.3	9816.3	11.0%
Boston	12277.1	12480.7	11433.6	11052.8	6.9%
Chicago	15172.5	14778.2	14186	13778.4	6.5%

Related Work

- Bellman error for generalized policy iteration (Antos et al 2008, Lagoudakis and Parr 2003)
- Bellman error for tuning basis functions in linear architectures (Keller et al 2006, Menache et al 2005, Parr et al 2007)
- LWR Model selection for learning a transition-function (Ng et al 2004)
- Abstract model-selection algorithm for RL (Farahmand and Szepesvari 2011)

Summary

 Introduced MSNP - practical model selection algorithm for RL

MSNP is based on two main ideas:

- Value-function based RL for thermostat control
- Outlook
 - Theoretical analysis, Bellman Error's basin of convergence
 - High-dimensional problems

