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Motivation

VF for Discrete-Time, Continuous Control Problems
Case Study: Smart Energy System (Problem setup definition)

Motivation

A smart energy problem:

Controlling a thermostat for reducing energy consumption in an
HVAC? system while maintaining comfort requirements

2Heating, Ventilation and Air-Conditioning

General Motivation

Applying value-function based reinforcement learning (RL) to
discrete-time, continuous-control problems
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Motivation
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Case Study: Smart Energy System (Problem setup definition)

Discrete-Time, Continuous Control Problems

@ System’s state-space is continuous

@ Control actions are taken at discrete times

@ Further assuming that action-set is small and discrete
@ Examples:
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Motivation
VF for Discrete-Time, Continuous Control Problems
Case Study: Smart Energy System (Problem setup definition)

Value-Function based RL

@ In theory, value-function based RL can solve such
problems optimally

@ In practice, it is often unclear how to approximate the value
function well enough

@ Indeed, recent successes used direct policy search
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Motivation
VF for Discrete-Time, Continuous Control Problems
Case Study: Smart Energy System (Problem setup definition)

Value-Function based RL

@ Sitill, value-function based RL has desirable advantages:

@ Aiming for global optimum
@ Bootstrapping — less interactions with the real-world
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Case Study: Smart Thermostat Control
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@ Minimize energy consumption while satisfying this comfort
specification B.coing Agens Research G
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Motivation
VF for Discrete-Time, Continuous Control Problems
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Case Study: Smart Thermostat Control

| OFF AUX-HEAT

@ Straightforward turn-off strategy fails to satisfy both
requirements E carning Agents Rescarch G
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Motivation
VF for Discrete-Time, Continuous Control Problems
Case Study: Smart Energy System (Problem setup definition)

Smart Thermostat Control as an MDP

We model the problem as an MDP:
® S: {(Tin, Tout, Time)}
@ A: {COOL, OFF, HEAT, AUX}
@ P: computed by the simulator, initially unknown
@ R: —energyConsumedByLastAction — Cepm
o T: {s € S|s.time == 23:59pm}
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Function Approximation Methods
Value Function Approximation FVI
Model-selection

Main Results

For the value-function (VF) approximation part, we need to:
@ Choose a function approximator
@ Choose an algorithm to compute the approximate VF

© Tune the function approximator's parameters through
model-selection
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The Challenge of Value-Function Approximation
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@ Must differentiate optimal from suboptimal action
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The Challenge of Value-Function Approximation
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state

@ Must differentiate optimal from suboptimal action

@ Non-trivial with “small” action effects + smooth value
function = losses accumulate over time
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Value Function Approximation

Function Approximation Methods
FVI

Model-selection

Main Results

Function Approximation Methods

@ Discretization

@ Suffers from the curse of dimensionality at the required

resolution levels
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Function Approximation Methods

state

@ Linear Function Approximation
@ Depends on choosing good features
@ Frequently not clear how to do that
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Function Approximation Methods
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@ Non-Parametric: can represent any function
@ Using lots of data...
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Non-Parametric Value Function Approximation

value
value

@ To minimize the assumptions about the VF representation
we use a smooth, non-parametric function approximator:
Locally Weighted Linear Regression (LWR)
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Compute an Approximate VF Using FVI

@ To compute the approximate VF, we use Fitted Value
lteration (FVI):

RepeatUntilConvergence{
vietl,...,m

y i= maxa (R(s?, &) + Eg 5[V (5)])

U (s) := LWR ({(s<’),y<’>>|i € 1,...,m}>

Sy = {5(1)7 3(2), . ,s(m)}
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Function Approximation Methods
Value Function Approximation FVI

Model-selection

Main Results

Model-Selection for LWR

@ LWR needs tuning, for instance the kernel bandwidth in
1-d:
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Model-Selection for LWR in N-dimensions

@ In N dimensions, it is common to tune N+1 parameters:

@ 1 bandwidth parameter: 7
o N attribute-scaling parameters: ¢y, ..., Cs
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Model Selection - How to Evaluate A Model?

Model-evaluation measure?

@ In supervised learning: prediction performance on held-out
sets

@ In reinforcement learning?

\ 1: fori = 1 — numModels do
5 / oo 2 run agent for 1 year with model?
‘;\\ ///l' 3:  Record Total Reward
= ? 4: end for
% . 5: choose best model

@ Performance is accumulated
reward - often too expensive

@ We don’t have the true values to evaluate

(labels) of states
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Model Selection - How to Evaluate A Model?

@ We use the fact that the optimal value function must satisfy
Bellman’s optimality equation:

A~

V=V" «— vseS: BEys)

=0
where
BE(s) := | V(s) — maxa(R(s, a) + 7Ejs|sa[ V()])

@ It already holds for s € Sgy; (FVI's convergence condition).
@ But not necessarily for s ¢ Sgy,
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The Resulting Model Evaluation Measure

@ Therefore, to evaluate a model, we:
@ Sample random states 7 := {t, ..., M)t ¢ Sgy,
| 7] >> |Spvil

© Use ||BE;(T)||~ as model evaluation measure
@ Model-Selection becomes minimizing

F:R™ - R

where
(C17' ) CI’hT) = HBE\A/(T)HOO

@ No need to evaluate an agent in the environment 4 foon @
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Function Approximation Methods
Value Function Approximation FVI
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Main Results

Practical Model-Selection: 2 conditions

@ To have a practical model-selection algorithm we need to
show that:
@ Bellman Error is correlated with actual performance
@ Finding the minimum can be done efficiently
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Correlation Between the Bellman Errors and
Performance
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The MSNP Algorithm

We use these two assumptions to define the following
model-selection algorithm, named MSNP:

I Gradient-free function minimization algorithm:}

SHart ["generate
) _parameters)

parameters
generate \ to function \\

parameters approximator
(LWR)

compute
value

function V(s) |
(FVI with LWR),

Y
observe Compute
function value Bellman-Error
(bellman error) model-evaluation

stop if converged measure

return value-function]
icomputed with =
best parameters A R G
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Efficiently Optimizing the Bellman Errors
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Basins of Convergence of the Max Bellman Error

Plotting p; — [|BE(7)||., for each p; € {¢1, ¢z, c3, 7} (for j # i,
p;j are held fixed at default values)
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Temperature Graphs
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Performance of MSNP

@ Comparing Yearly energy consumption (lower is better)
@ Default: default strategy that is deployed in practice
@ MSNP: our model-selection algorithm is

@ better than LargeSample
©Q close to CMA-ES

[ City [ Default (kWh) | LargeSample (kWh) | MSNP (kWh) | CMA-ES (kWh) | % Energy-Savings |
New York City 11084.8 109235 9859.3 9816.3 11.0%
Boston 122771 12480.7 11433.6 11052.8 6.9%
Chicago 15172.5 14778.2 14186 13778.4 6.5%

I fgents R G
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Performance of MSNP

@ Comparing Yearly energy consumption (lower is better)
@ Default: default strategy that is deployed in practice
@ MSNP: our model-selection algorithm is

@ better than LargeSample
©Q close to CMA-ES

[ City [ Default (kWh) | LargeSample (kWh) | MSNP (kWh) | CMA-ES (kWh) | % Energy-Savings |
New York City 11084.8 10923.5 9859.3 9816.3 11.0%
Boston 122771 12480.7 11433.6 11052.8 6.9%
Chicago 15172.5 14778.2 14186 13778.4 6.5%
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Related Work

Related Work

@ Bellman error for generalized policy iteration (Antos et al
2008, Lagoudakis and Parr 2003)

@ Bellman error for tuning basis functions in linear
architectures (Keller et al 2006, Menache et al 2005, Parr
et al 2007)

® LWR Model selection for learning a transition-function (Ng
et al 2004)

@ Abstract model-selection algorithm for RL (Farahmand and
Szepesvari 2011)
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Summary

Summary

@ Introduced mMsNP - practical model selection algorithm for
RL

[E=
@ MSNP is based on two main ideas:

Energy (kW)

[

i ) ]
' Betiman Erfor iteration #

@ Value-function based RL for thermostat control

@ Outlook
@ Theoretical analysis, Bellman Error’s basin of convergenc{e

@ High-dimensional problems N
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