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Abstract: Robots need task planning algorithms to sequence actions toward accomplishing goals that are impossible
through individual actions. Off-the-shelf task planners can be used by intelligent robotics practitioners to solve a
variety of planning problems. However, many different planners exist, each with different strengths and weaknesses,
and there are no general rules for which planner would be best to apply to a given problem. In this study, we
empirically compare the performance of state-of-the-art planners that use either the planning domain description
language (PDDL) or answer set programming (ASP) as the underlying action language. PDDL is designed for
task planning, and PDDL-based planners are widely used for a variety of planning problems. ASP is designed for
knowledge-intensive reasoning, but can also be used to solve task planning problems. Given domain encodings that
are as similar as possible, we find that PDDL-based planners perform better on problems with longer solutions,
and ASP-based planners are better on tasks with a large number of objects or tasks in which complex reasoning
is required to reason about action preconditions and effects. The resulting analysis can inform selection among
general-purpose planning systems for particular robot task planning domains.
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1 Introduction

In a general-purpose planning system, task plan-
ning problems are tackled by problem-independent
solvers based on a description of the domain in a
declarative language. Such planning systems are ex-
tremely useful in application domains where many
different planning goals need to be accomplished, or
the domain description evolves over time. For in-
stance, in an application domain such as robotics,

a mobile service robot may need to solve planning
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tasks such as collecting documents, making deliv-
eries, or providing navigation assistance to visitors
(Cambon et al., 2009; Erdem et al., 2012; Khandel-
wal et al., 2017). It is convenient to achieve all these
tasks using knowledge declared in a single descrip-
tion of the domain, and general-purpose planning
systems are well suited to the task.

To design a general-purpose planning system,
a declarative language for formalizing the domain
first needs to be selected, followed by the selection
of a suitable solver which supports this language.
Many different factors affect this selection process.
Every language has its limitations in representing
task planning problems, and given a particular lan-
guage, specific language-dependent techniques may
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need to be employed to succinctly formalize a par-
ticular planning problem. For instance, not all lan-
guages support default reasoning, which might bring
difficulties in formalizing some planning problems. A
solver is also typically tied to a particular language,
but may not support all features in that language,
requiring careful construction of the domain descrip-
tion using only supported features. Additionally, the
properties of the domain can affect how quickly a
given pair of language and solver can solve planning
problems. For instance, some domains include many
objects and their properties, which can be challeng-
ing to some planning systems. Finally, given a lan-
guage, a solver and a planning problem, there can
be many ways of formalizing the problem using the
language. For these reasons, careful consideration
needs to be given to the selection of language and
solver.

This article aims to help in the language se-
lection process, given a task planning problem at
hand. Specifically, we compare two declarative lan-
guages: the planning domain definition language
(PDDL) (McDermott et al., 1998), the most pop-
ular language in the planning community, and an-
swer set programming (ASP) (Gelfond and Kahl,
2014; Lifschitz, 2008), a popular general knowledge
representation and reasoning (KRR) language that
has been recently used in a variety of task planning
problems (Lifschitz, 2002; Yang et al., 2014; Erdem
et al., 2016), including robotics (Erdem and Patoglu,
2018). PDDL was created for the explicit purpose of
solving planning problems, whereas the development
of ASP has focused on a broader set of reasoning
tasks, such as inference and diagnosis, as well as
planning.

The main contribution of this article is, within
the context of robotics, a comparison of planning
time between ASP-based and PDDL-based task
planners when they are used to model the same do-
main. Evaluation is performed across three differ-
ent benchmark problems. While it may be possi-
ble to construct ASP and PDDL planners specifi-
cally suited to these specific benchmarks, domain-
independent solvers are compared in this article. Al-
though planner performance can be sensitive to do-
main encoding, we take care, to the extent possible,
to encode the domains similarly in each language.
The benchmark problems consist of the blocks world
and hiking problems from the International Plan-

ning Competition (IPC) (Coles et al., 2012), as well
as a variant of the robot navigation problem (Yang
et al., 2014; Zhang et al., 2015). The robot navi-
gation problem typically requires more complex rea-
soning about action preconditions and effects than
problems in the IPC, which focus on generating long
plans efficiently. Various properties of the domain
or task in these benchmarks are also varied during
evaluation to analyze the effect on planning time.
The goal of this article is to help a robot planning
practitioner understand the effects of specific domain
properties to aid the choice of language selection for
general-purpose planning.

We hypothesize that current state-of-the-art
PDDL-based planners perform better on tasks with
long solutions, and ASP-based planners tend to per-
form better on shorter tasks with a large number
of objects. The hypothesis is confirmed in all three
benchmark domains. We also hypothesize that ASP-
based planners outperform PDDL-based planners in
domains where complex reasoning (specified in Sec-
tion 3.1) is required to reason about action precon-
ditions and effects. This is observed in a controlled
experiment of the robot navigation and blocks world
domains. To the best of our knowledge, this is the
first work on empirical comparisons between PDDL-
and ASP-based planning systems, and can serve as
a useful reference to robot planning practitioners.

2 Background

Research in task planning dates back to one of
the earliest research areas in artificial intelligence.
Since the development of STRIPS (Fikes and Nils-
son, 1971) (as part of the Shakey robot project),
many languages have been developed for represent-
ing task planning domains. Such languages typically
need to describe actions’ preconditions and effects,
and are commonly known as action languages. A
summary of some early action languages is available
(Gelfond and Lifschitz, 1998).

To plan for real-world problems (such as robot
systems), action languages first need to be ca-
pable of formally representing complex planning
domains. Some of the recent research in task
planning is focused on developing languages that
improve the representation capability of action lan-
guages (Giunchiglia et al., 2004; Lee et al., 2013;
Babb and Lee, 2015). Planning using these action
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languages usually requires a translation to more gen-
eral knowledge representation and reasoning (KRR)
languages such as ASP. A planning paradigm for
ASP was proposed (Lifschitz, 2002), and has been
used in many real-world applications (Chen et al.,
2010; Erdem et al., 2012; Yang et al., 2014). In this
article, we follow the same planning paradigm when
encoding domains in ASP.

In parallel, another line of research in task
planning aims at more efficient planning algorithms
and their implementations. PDDL (McDermott
et al.,, 1998) was developed as a common formal-
ism with the goal of allowing more direct compar-
ison of planning algorithms and implementations.
Since then, many efficient search algorithms have
been developed for task planning problems, such as
fast-forward (Hoffmann, 2001) and fast-downward
(Helmert, 2006). These algorithms have publicly
available implementations including SAYPHI (de la
Rosa et al., 2007), LAMA (Richter et al., 2011), and
FDSS (Helmert et al., 2011).

PDDL requires axioms, in the form of logical
formulas, for reasoning within a situation (whereas
action descriptions are used for reasoning across suc-
cessive situations). A fundamental difference be-
tween PDDL and ASP is on their (non)monotonicity
property. The axiom-based reasoning in PDDL is
monotonic in the sense of logical reasoning, meaning
that previously achieved conclusions remain when
new information becomes available. In contrast,
ASP is nonmonotonic, so it allows removal of pre-
viously achieved conclusions given new information.
The nonmonotonic property of ASP makes it useful
in tasks that require default reasoning and reasoning
about inertial facts. Existing research has studied
translating PDDL programs to ASP (Gebser et al.,
2011), and applying axioms extracted from PDDL
programs to ASP-based planning (Miura and Fuku-
naga, 2017). In particular, robotics researchers have
developed robot navigation algorithms that switch
between ASP- and PDDL-based planning systems
on mobile service robots (Lo et al., 2018). However,
none of this research conducted empirical compar-
isons over the performances of the state-of-the-art
PDDL- and ASP-based planning systems.

Action languages can be further categorized as
action description languages and action query lan-
guages (Lifschitz, 1997). Action description lan-
guages focus on specifying the transition system.

Given a transition system, action query languages
are used for reasoning about the properties of tra-
jectories, such as to reason about history, non-
determinism, or both for diagnosis purposes. From
the perspective of design purposes, PDDL is an ac-
tion description language, and ASP is an action
query language, though their implementations often-
times support both description and query functional-
ities. At the same time, action language systems are
usually implemented by compilation. For instance,
Coala (Gebser et al., 2010) is one such compilation
system that provides compilation techniques for sev-
eral action languages.

There is existing research on predicting plan-
ning time using features of domains and problems
(Fawcett et al., 2014), or more generally on predict-
ing time required to solve a problem (Leyton-Brown
et al., 2002). These methods can be used to help
a planning practitioner estimate the difficulty of a
planning problem, after the planning language and
system have been selected. In contrast, this work
aims at analyzing what domain properties affect the
performances of existing planning systems, and can
serve as a reference on the selection of action lan-
guages used for encoding planning problems.

3 Domain formalization

In this section, we introduce the three bench-
mark domains, namely robot navigation, blocks
world, and hiking, and formally describe each in both
ASP and PDDL.

It may be possible that different styles of en-
coding result in different planning times. To ensure
that the conclusion is general and fair, we select the
benchmark domains from a variety of origins, and fol-
low the encoding in the literature. Blocks world and
hiking have been used in the IPC, and PDDL-based
planners have been specifically designed to solve
problems in the IPC. The PDDL versions are used as
is, and translated into equivalent ASP code. Robot
navigation is a domain used to demonstrate planning
using an ASP description (Yang et al., 2014), and
contains properties such as recursive action effects
that are missing from IPC domains. We translate
the complex reasoning rules of the robot navigation
domain from ASP as PDDL axioms.

The languages themselves require certain differ-
ences in domain encodings, and direct comparisons
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are complicated by the fact that typically the people
doing the encoding have greater familiarity with one
language or the other. We acknowledge that differ-
ent encodings may be more suitable to each planner,
but it is infeasible to control the encoding style in
practice. In this work, we ensure the fairest compar-
ison possible by enforcing in all translations that the
ASP and PDDL versions for a given domain have
exactly the same set of predicates and actions, along
with the same preconditions and effects. Specifically,
an action should be allowed to execute on the same
set of states, and it should make the same change to
the state, regardless of the language. Consequently,
as we use optimal ASP and PDDL planners in the
experiments, they generate identical plans, and only
planning times need to be compared. A detailed ex-
planation of how ASP can be used for planning is
available in Lifschitz (2002).

3.1 Robot navigation

The robot navigation domain differs from clas-
sical planning domains in the IPC in that complex
reasoning needs to be performed to ensure that ac-
tion preconditions are met, and that action effects
are executed correctly. Specifically, this domain fea-
tures action effects that require recursive reasoning
to compute the final state of the world. In this do-
main, a mobile robot navigates an office floor which
consists of a set of rooms that are connected to one
Rooms can be connected to one another
via doors, and closed doors need to be opened by the
robot before it can pass. Alternatively, rooms can be
directly connected to one another such that access
is always possible from any location in one room to
any location in the other.

another.

The robot has the following perception and ac-
tuation modules available. Using a low-level con-
troller, the robot can traverse to any room from its
current location if its path is not blocked by a closed
door, and this navigation can be encoded by a single
high-level symbolic action “goto." Furthermore, the
robot has some means of opening a closed door when
the robot is next to the door, by either enlisting hu-
man aid or using a robot arm to open the door. On
the perception side, the robot can sense its location,
whether or not it is next to a door, and whether or
not a door is open.

The domain knowledge can be formalized in
ASP by statements defined using the following

predicates:

hasdoor(R,D): This predicate specifies that
room R has door D to move to an adjacent loca-
tion. Statements expressed using hasdoor are spec-
ified during initialization, and do not change over
time. The PDDL expression is (hasdoor ?r - room
?d - door).

connected(R1,R2): The connected predicate in-
dicates that room R1 is directly connected to room
R2 without a door. Similar to hasdoor, this predi-
cate is used during initialization to describe directly
connected locations. In PDDL, statements are de-
scribed as (connected ?rl - room ?r2 - room).

acc(R1,R2): acc specifies that room Rl is ac-
cessible from room R2 via a single navigation action
executed by a low-level controller. Intuitively, any
two rooms that are not separated by a closed door
are accessible; i.e., the low-level controller can navi-
gate from one room to another.

R1 is accessible from R2 if R1 is directly con-
nected to R2, or R1 and R2 share the same door
D which is open. Furthermore, acc is both commu-
tative (i.e., R1 is accessible from room R2 if R2 is
accessible from R1) and associative (i.e., if both R1
and R2 are accessible from R3, then they are acces-
sible from one another). This associative property
requires a recursive definition:

acc(R1,R2,n) :- connected(R1,R2).
acc(R1,R2,n) :- open(D,n),
hasdoor (R1,D),
hasdoor (R2,D) .
acc(R1,R2,n) :- acc(R2,R1,n).
acc(R1,R2,n) :- acc(R1,R3,n),
acc(R3,R2,n) .

The recursive formulation of acc can be ex-
pressed in PDDL using the derived predicates:
(:derived (acc ?rl - room ?r2 - room)
(or (connected ?rl ?r2)
(exists (?d - door) (and (open ?d)
(hasdoor ?rl ?2d)
(hasdoor ?r2 ?2d4)))
(acc ?r2 ?rl)

(exists (?r3 - room) (and (acc ?rl ?r3)
(acc ?r3 ?r2)))))

at(R,n): at is used to specify that the robot is at
room R at timestep n (of the high-level plan). This
predicate is inertial (i.e., the robot remains in room
R if there is no evidence showing that it is not in
room R anymore), and this property is specified as

at(R,n) :- at(R,n-1), not -at(R,n).
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In PDDL, the predicate is expressed as (at 7r -
room), and all predicates are inertial by default.

open(D,n): Door D is open at step n. door is
inertial; i.e., the robot believes that a door will stay
in the same state unless sensed differently. In ASP,
the inertial property for this predicate is represented
as

open(D,n) :- open(D,n-1), not -open(D,n).

In PDDL, open is expressed as (open ?d - door).

canopen(D,n): The robot can open door D if
the robot is right next to the door. canopen is the
action effect of approaching a door, and a precon-
dition before the door can be opened. canopen is
not inertial. In PDDL, the predicate is expressed as
(canopen ?d - door).

visited(R,n): Once the robot visits a room, the
visited fluent for that room remains true until the
end of the planning process. visited is used to de-
scribe goal conditions. The persistence property is
expressed in ASP as

visited(R,n) :- visited(R,n-1).

(visited ?r - room) expresses visited in PDDL.

There are three actions in the domain, goto, ap-
proach, and opendoor, with the following definitions:

goto(R2,n): This action specifies that the robot
should navigate to room R2 at timestep n in the
high-level plan. The precondition for this action is
that the robot must be in aroom R1 from which R2 is
accessible. Once the robot goes to room R2, the goal
condition visited is set to true for that room as well.
The ASP rules defining the action preconditions and
effects are as follows:

:- goto(R2,n), at(R1l,n-1), not acc(R1l,R2,n-1).

at (R2,n) :- goto(R2,n).
-at(R1,n) :- goto(R2,n), at(R1l,n-1), Rl != R2.
visited(R2,n) :- goto(R2,n).

The same description in PDDL is expressed as
follows:

(:action goto
:parameters (?r2 - room)
:precondition (exists (?rl - room)
(and (at ?rl)
(acc ?rl ?r2)))
:effect (and (at ?r2)
(forall (?rl - room)
(when (at ?rl)
(not (at ?rl))))
(visited ?r2)
(forall (?d1 - door)
(not (canopen 2dl1)))))

The action effects in PDDL have an additional
statement to ASP to indicate that canopen is not
inertial.

approach(D,n): This action specifies that the
robot should approach door D. The action is exe-
cutable only when the robot is in a room that has
door D. After executing this action, the robot can
open door D. In ASP, this action is expressed as

:- approach(D,n), at(R1l,n-1), not hasdoor(R1,D) .
canopen (D,n) :- approach(D,n) .

In PDDL, this action is expressed as

(:action approach
:parameters (?d - door)
:precondition (exists (?rl - room)
(and (at ?rl)
(hasdoor ?rl 2d4)))
:effect (and (canopen ?d)
(forall (?dl - door)
(when (not (= ?d1 2d))
(not (canopen ?2d1))))))

The action effects in PDDL express that door d
can be opened, and that no other doors in the domain
can be opened without approaching them first.

opendoor(D,n): This action allows the robot to
open door D if canopen(D) is true. Opening an open
door does not change the state of the world. This
action is represented in ASP as

: - opendoor (D,n), not canopen(D,n-1) .
open(D,n) :- opendoor(D,n).

In PDDL, this action is represented as

(:action opendoor
:parameters (?d - door)
:precondition (canopen ?d)
:effect (and (open ?d)
(forall (?d1 - door)
(not (canopen ?d1)))))

In all three actions, a specific action effect
in PDDL describes the non-inertial property of
canopen. This effect is not required in ASP because
the canopen is not inertial.

The goal in the robot navigation domain is to
visit a randomly selected set of rooms. To visit a
room, the robot needs to recursively reason about
If a
door in its path is closed, the robot needs to explicitly
approach the door and execute an opendoor action.
Whenever opendoor is executed, the direct accessi-
bility of rooms changes, and this action effect needs
to be computed recursively. This recursive property
of the domain differentiates it from traditional IPC

which rooms are accessible from one another.

planning domains such as blocks world and hiking.
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3.2 Blocks world

In the blocks world domain, the goal is to move
a set of stackable blocks from one configuration to
another using a robot hand. We use the official do-
main definition in IPC-2011 as the PDDL domain
description, and translate the domain to ASP. The
full description of the IPC domain is available online
(All links have anonymized for the review process) in
PDDL (http://pastebin.com/raw/b07aMTJB) and
ASP  (http://pastebin.com/raw/SAqM3xbF). We
describe only the translation of the pick-up action
to ASP as an illustrative example; the other ac-
tions (put-down, stack, and unstack) follow similarly.
pick-up allows a robot to pickup a block that has no
blocks underneath it (designated by ontable). Fur-
thermore, it should have no blocks stacked on top
of it (designated by clear). Finally, a block can be
picked up only if the robot hand is empty (desig-
nated by handempty). The effect of the action is
that the robot hand is holding the block, and all pre-
conditions for the action become false. This action
description translated to ASP looks as follows:

:- pickup(B,n), not clear(B,n-1).

:- pickup(B,n), not ontable(B,n-1).
:- pickup(B,n), not handempty (n-1).

-ontable(B,n) :- pickup(B,n).
-clear (B, n) :- pickup(B,n).
-handempty (n) :- pickup(B,n).
holding(B,n) :- pickup(B,n).

The first three statements specify the same ac-
tion preconditions specified in the PDDL description,
and the last four statements specify the same action
effects as specified in the PDDL description.

The extended version of the blocks world do-
main introduces a recursively defined predicate:
above (Thiébaux et al., 2005). The PDDL defini-
tion is as follows:

(:derived (above ?x ?y)

(or (on ?x ?y)
(exists (?z) (and (on ?x ?z) (above ?z ?y)))))

The predicate is defined in ASP as

above (X,Y,n)
above (X,Y,n)

:- on(X,¥Y,n).
:-on(X,Z,n), above(Z,¥Y,n).

The complete domain descriptions in PDDL
(http://pastebin.com/raw/FwZgGmZf) and ASP
(http://pastebin.com/raw/9D2PuNze) are online.
We use both the original and the extended versions
of the blocks world domain in experiments.

3.3 Hiking

We select the hiking domain, new in IPC-2014,
as our third benchmark domain. The hiking domain
features negative preconditions. We use the official
PDDL formalization in IPC, and an equivalent defi-
nition in ASP for this study.

In short, the purpose of this domain is to ar-
range activities for a number of couples, so each
couple can hike to their destination with a tent
ready. A hiking problem specifies connections be-
tween places, and initial locations of couples, cars,
and tents. A typical plan transports and sets up
tents at the destination, drives each couple to the
starting point of their hike, and then has them walk
together along the hike. The complete description
of the hiking domain is available online for both
PDDL (http://pastebin.com/raw/v3wkv57W) and
ASP (http://pastebin.com/raw/Dw1BwG0Z).

4 Experiments

The experiments in this section are designed to
compare planning times when the domains and prob-
lems formalized in the previous section are optimally
solved using state-of-the-art solvers. Our encoding
strategy and the award-winning optimal planning
systems ensure that all planners generate the same
plan given the same pair of domain and problem.

We select FastDownward (Helmert, 2006) with
the setting FDSS-1 (Helmert et al., 2011), which had
the highest score in the sequential optimization track
at IPC 2011. Note that the later versions of the
track do not take into account or announce the time
needed to solve each problem. Instead, a hard time
constraint (e.g., 30 min) is given to all planners. As
a result, most PDDL planners always use the max-
imum time allowed to avoid reporting suboptimal
or incorrect solutions (which is greatly penalized),
and are therefore unfit for a comparison of plan-
ning times. The robot navigation domain and the
extended blocks world domain require derived predi-
cates. Since none of the planners in the optimization
track support derived predicates, we use FastDown-
ward with the setting LAMA-2011 (Richter et al.,
2011), the winner of Sequential Satisficing Track in
2011. We use version 4.5.4 of Clingo (Gebser et al.,
2014) in incremental mode as the ASP solver. Clingo
is an answer set solving system that integrates Clasp,
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the winner of the fifth Answer Set Programming
Competition in 2015 (Calimeri et al., 2016).

Planner performances are evaluated on a
general-purpose high throughput computing (HTC)
cluster that is operated by the Department of Com-
puter Science at the University of Texas at Austin.
We filter out machines with less than 8 GB memory
in the experiments, resulting in more than 10 ma-
chines with different hardware configurations (e.g.,
memory ranging from 8 GB to more than 500 GB).
All data points are averaged across at least 10 tri-
als to reduce noise, and standard deviations are re-
ported. Given the wide range of hardware configu-
rations and statistical analysis, we aim to conclude
with observations that are generally valid and useful
to practitioners.

During evaluations, various domain characteris-
tics are also changed to measure the difference in per-
formance of different planning paradigms. Note that
we are generally more interested in comparing sen-
sitivities of planning systems (instead of comparing
individual data points) given different domain char-
acteristics. The sensitivity that can be reflected by
the “trend” of a series of data points is typically more
robust to implementation details of planning systems
such as programming languages and compilers. The
goal of these evaluations is to test the hypothesis
that PDDL-based approaches work better in situa-
tions where the generated plans have many steps,
and ASP-based approaches work better in situations
where the domain is large or substantial reasoning
is required at every step of the plan to compute the
world state.

Robot navigation: Results from the robot nav-
igation domain are shown in Fig. 1. Two different
versions of the domain have been created. The small
domain has 10 rooms, and each of them is connected
via a central corridor. Four rooms are connected via
doors, and the rest are directly connected. In con-
trast, the large domain has 15 rooms where six rooms
are connected via doors to the corridor.

The robot is initially located in the corridor,
and as its goal, it needs to visit a number of rooms
that are randomly selected in each trial. Since rooms
that are connected by doors take more steps to visit,
we increase the number of trials (to 50), on which
we compute the average planning time for each data
point. Regardless, the number of rooms in the goal
is positively correlated with the plan length. The
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Fig. 1 Robot navigation: small domain, 10 rooms;
large domain, 15 rooms. Forty percent of rooms are
connected via doors, and the rest are directly acces-
sible from the corridor

planning time for each planner is represented on the
y axis (log scale, same for all following figures).

We can observe that the red curves have smaller
slopes, since they intersect (or will do so) with the
blue curves. This confirms our hypothesis that
PDDL planners are better at solving planning prob-
lems which require a large number of steps. We can
also observe that the gap between red curves is larger
than the gap between blue curves, even on the log-
arithmic scale. This observation again supports the
hypothesis that ASP-based planning is less sensitive
to object scaling.

Furthermore, ASP-based planning is much
faster than PDDL-based planning when the number
of rooms is smaller than eight, and finishes within a
reasonable amount of time. This is especially use-
ful in domains such as robotics where fast real-time
operation is necessary. This better performance is
probably a consequence of recursive action effects
embedded in the domain. We further verify this ob-
servation in a controlled experiment using the blocks
world domain.

Blocks world: Fig. 2 reports results from the
regular blocks world domain. Similarly, two versions
of the domain are evaluated: a small domain with 15
blocks in the environment, and a large domain with
60 blocks in the environment. Initially, all blocks
are unstacked and on the table (so as to control the
optimal plan length). The goal of the planners is
to generate a plan that builds a single stack of a
specified height with randomly specified blocks. The
plan length is proportional to the height of the stack,
and is represented as the x axis in Fig. 2. All results
have been averaged across 10 trials.
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Fig. 2 Blocks world: small domain, 15 blocks; large
domain, 60 blocks. We use a timeout of 1800 s (same
as IPC). The graph plots only configurations where all
trials of both planners finished before timeout (same
for all following experiments). References to color
refer to the online version of this figure

The two red lines are far apart and almost hor-
izontal; i.e., the PDDL planner slows down signifi-
cantly in the larger domain, but planning time does
not depend on the plan length. The planning time
of Clingo grows as the plan length increases, but the
difference between different sized domains is smaller
than that in PDDL. These observations support
our hypotheses that PDDL-based planning is fast
at producing long plans, while ASP-based planning
is faster in large domains where smaller plans are
necessary.

Fig. 3 compares the performance of each planner
between the regular blocks world domain and the ex-
tended version. In this experiment, the domain has
10 blocks. The task is the same as before: build-
ing a tower of various heights from unstacked blocks.
The difference of the extended domain is that the
goal condition is expressed with the predicate above,
where the planners reason about recursive effects.
Similarly, the results are averaged across 10 trials.

Hiking: In Fig. 3, there is a small difference in
ASP solving time, but a significant change in the
performance of the PDDL planner. In contrast to
Fig. 2, we can observe that complex reasoning affects
PDDL planning time in its slope with respect to plan
length, whereas object scaling shifts the curve up.
The observation confirms that ASP-based planning
is better for domains that involve complex reasoning
(reasoning about recursive action effects in this case).

Figs. 4 and 5 show results from the hiking do-
main. In each graph, the x axis is the total number
of trips made by all couples, and the y axis is the
planning time in seconds. Fig. 5 shows the perfor-
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Fig. 3 Blocks world: regular domain vs. extended do-

main. References to color refer to the online version

of this figure

mance of each planner for two sizes of the domain.
Although we can make similar observations that the
PDDL planner becomes faster than the ASP planner
at higher plan lengths but slower with more objects,
the evidence is weaker than the results above. Since
the hiking domain has four types of objects that af-
fect planning in different ways, the domain size has
four dimensions. Fig. 4 shows a more controlled set
of experiments in which the larger domain increases
only one type of objects. Objects are added in a way
that does not affect the plan length or the number
of optimal plans at each point of the x axis. In all
graphs the slope of blue curves is larger than the
slope of red curves. So, the hypothesis about the
plan length holds for all object types.

When adding cars and tents to the domain, from
Figs. 4a and 4b, we can observe that the ASP solver
is less sensitive than the PDDL planner, but there
is no significant difference in the case of couples and
places (Figs. 4c and 4d). We find that couples and
places are more heavily used as action parameters
than two other types of objects. Actions such as
drive passenger and walk together even take two
parameters of each. Therefore, increasing the num-
ber of these objects complicates the grounding (Plan
generation in ASP is a two-step process that includes
grounding and solving, where the grounding step
outputs a variable-free representation) of ASP prob-
lems. We also observe that most of the increased
planning time of Clingo is in grounding. For in-
stance, when the number of couples increases from 5
to 10 (Fig. 4¢), average solving time for one trip stays
below 0.8 s, while average grounding time grows from
16.0 s to 354.2 s. Based on these two observations,

we hypothesize that if the domain has actions that
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check or change the state of many objects, Clingo’s
advantage at planning in large domains can be can-
celed out by the extra grounding time. A further
analysis of how parameter type and the number of
trips affect grounding time is left for future research.
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Fig. 5 Hiking: small domain vs. large domain. Ref-
erences to color refer to the online version of this
figure

Remark: All of the above results support our hy-
pothesis that PDDL-based approaches work better
in situations where the generated plans have many

steps, and ASP-based approaches work better in sit-
uations where the domain is large or substantial rea-
soning is required at every step of the plan to com-
pute the world state.

Given the wide range of hardware configurations
of machines in the HTC cluster and the low stan-
dard deviation values reported in the results, we can
see that machines of different configurations did not
cause significant differences in planning time, which
indicates that the trends are consistent across differ-
ent types of computing platforms.

5 Conclusions and discussions

In this article, we empirically compared ASP-
and PDDL-based task planners using three robotic
benchmark domains. PDDL is the dominant action
language in the task planning community; ASP is
widely used for knowledge representation and rea-
soning, and can be used for task planning. The anal-
ysis in this article demonstrates that PDDL-based
planners perform better when tasks require long so-
lutions. However, ASP-based task planners are less
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susceptible to an increase in the number of domain
objects, as long as the number of objects does not
explode the number of grounded actions. Finally,
in domains requiring complex reasoning such as the
robot navigation domain, ASP-based planners can
be considerably faster than PDDL-based planners
for shorter plans. Such observations can serve as a
useful reference to task planning practitioners in the
process of action language selection.

This article, by no means, aims to provide a list
of the best planners given a pair of planning domain
and planning problem, which is infeasible in prac-
tice. From a high-level perspective, the observations
shared in this article are intended to contribute to
the community’s understanding of how properties of
planning domains and problems affect the perfor-
mance of different planning systems. Based on one’s
knowledge and intuition about properties of the plan-
ning problems at hand, a practitioner can then make
a more informed choice of the planning system.

In this work, we selected the Clingo system for
evaluating the ASP-based planning formalism, and
the FastDownward planning systems of FDSS-1 and
LAMA-2011 for the PDDL-based formalism. These
award-winning optimal systems represent the state-
of-the-art algorithms and implementations of the two
planning paradigms. As the first work on empirical
comparisons of PDDL- and ASP-based task plan-
ners, we focus on a clear presentation of the method-
ology and results. We carefully selected the three
domains that are as distinct as possible for a rep-
resentative comparison. We believe that the con-
clusions hold in most cases. In the future, we will
conduct further evaluations over the two planning
formalisms and their implementations on other task
planning problems using other more extreme com-
puting platforms (such as low-end onboard comput-
ers on mobile robots). The experiments in this article
were conducted using an ASP-based planner and a
PDDL-based planner that are meant to be represen-
tative of their respective classes. While we believe
that our results and observations will generalize to
other such planners, we acknowledge that there is no
way to establish the generalization conclusively with-
out empirical comparison with many other planners,
which is beyond the scope of this article.

This article does not include formal analysis
or comparisons between PDDL- and ASP-based
paradigms. One of the main reasons is that the

original definition of the PDDL language includes
only its syntax, and its semantics is not discussed.
As a result, different PDDL solvers have different
“interpretations” of PDDL programs, although they
all aim at producing optimal solutions. Another
direction for future work is to look into the seman-
tics of PDDL (McDermott, 2003; Thiébaux et al.,
2005) and conduct formal analysis between the two
planning paradigms.
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