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1. Introduction

With the recent explosion in computing power available

in a single system, much attention has been turned towards

the concepts of virtualization of these systems. As this

trend continues, it is logical to assume that deploying an

entire web-based service on an externally managed virtual-

ized environment will soon be not only plausible, but com-

mon. In such an environment, the different components of

the system would be logical machines, which would each

appear to have private access to CPUs, memory, and other

resources, and which would each be running an indepen-

dent operating system. Because resources are not shared

between virtual machines, administrators will need to make

decisions about how much they should invest in resources

and when more (or less) resource capacity is a good invest-

ment. An autonomous agent that can determine the Return

on Investment (ROI) of the resource can make this manage-

ment problem easier.

We consider the situation where compute time can be

purchased for the database machine of a simple online

bookstore, which we model using the standardized TPC-

W1 benchmark. A service level agreement (SLA) defines

the value of the system, using throughput, response time,

and expected response time as metrics (Figure 1). The au-

tonomous agent must weigh the potential gain (or loss) in

value defined by the SLA against the cost of purchasing (or

relinquishing) compute time.

We implement such an au-
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Figure 1. SLA function

tonomous agent on a sim-

ulated partitionable system

(full details are available in

our previous research [2])

and show that it is possi-

ble to outperform many static

choices of compute power,

over a range of test work-

loads and resource costs. The

agent uses only raw, low-level system statistics, without the

need for custom instrumentation of the middleware or oper-

ating system.

∗currently employed by IBM Systems and Storage Group. Any opin-

ions expressed in this paper may not necessarily be the opinions of IBM.
1TPC-W is a trademark of the Transaction Processing Performance

Council.

2. The tuning agent

The tuning agent handles autonomous changes to the

compute power available to the back-end machine. The

agent simulated is one that learns the value of adding or re-

moving compute power. This agent could be a set of hand-

coded rules, a learned model, or any number of other meth-

ods; Our agent is based on a learned regression model using

M5′ trees [1].

The agent is first trained to predict the gain or loss in

SLA value per second and then uses this prediction online to

determine if it is larger or smaller than the associated cost of

compute power. This training is accomplished by collecting

low-level system statistics during runs of the benchmark on

all possible levels of compute power. 5 quantities of com-

pute power are considered, and 100 sets of runs are used to

gather training data. Each set of runs consists of a random

workload run for 300 seconds against each of the 5 possible

configurations.

Each of the 500 training runs generates 6 input vectors,

which consist of the system statistics averaged over a 30

second window and a value of the difference between the

SLA value per second of the run’s configuration and the

SLA value of the configuration with one more slice of com-

pute power (when the configuration is not maximal). These

2,400 vectors comprise the training data for one learner; a

similar data set for reducing compute power is also created.

Given these two sets of data vectors, the WEKA [3] pack-

age is used to build the two regression models used by the

agent.

The learned model is evaluated by running it against new

randomly generated workloads. However, unlike the train-

ing workloads, these workloads are not static throughout

the measurement interval; instead, each workload consists

of three randomly generated phases of 300 seconds each.

Within each phase, the workload is generated in the same

manner as the training workloads are generated. 5 random

workloads are generated and used for testing the model.

During each run, the agent collects system statistics from

the back-end machine. A persistent connection running a

favored priority process ensures that the statistics are not

blocked by the benchmark. A sliding 30-second window of



these statistics is averaged and normalized, as in the gener-

ation of the training data, and used as the input vector to the

two learned trees. Each tree predicts a single number, which

is the estimated value or loss of more or less compute time.

These values are compared to a known static cost and com-

pute time is purchased or released if it is a good investment.

In order to achieve some measure of hysteresis, the agent

sleeps for 30 seconds if compute time was either purchased

or released.

In order to determine the robustness of the agent, all runs

are done with 3 possible costs for a CPU slice: 10, 15, and

25. We assume the units here are the same as those used for

the SLA measurement.

3. Results and Future Work

To analyze our adaptive agent, the 5 possible static quan-

tities of compute time purchased are first run against the

randomly generate workloads. Each of these runs is per-

formed 15 times. Subtracting the cost of the CPU slices

used from the average SLA value for each static run gives

us the the overall value of the workload and configuration.

The adaptive agent also makes 15 runs; however a sepa-

rate set of 15 runs is necessary for each of the three costs.

For each of these runs, an independent value is computed by

taking the single run’s SLA value and removing the average

cost per second of CPU purchased. The values from the 15

runs for each cost are averaged to get the overall average

value for the adaptive agent for the given CPU slice cost.

The results for the adaptive agent show that it is generally

able to compete favorably. In only 1 of the 15 cases is the

agent significantly worse than the best static configuration.

More important, however, is that there is at least one situ-

ation where each static configuration is significantly worse

than the adaptive agent. This implies that the agent could

be a useful tool if the exact workload is not known.

The average value of the system is shown in Figure 2

and the average CPU purchased by the agent on one random

workload is shown in Figure 3. It is clear that the amount

of CPU used throughout the test changed, with the agent

determining that the extra CPU was important in phase 3

even when the CPU was the most expensive. Results from

another workload (not shown) show an unusual oscillation

between 3 and 4 slices during the second phase of the test.

This seems to imply that the agent believed the optimal CPU

choice for that phase was actually between 3 and 4 slices,

and this oscillation was an attempt to approximate the pos-

sibility of having 3.5 CPU slices. This allows the agent to

take advantage of a configuration that is not available as

a static configuration, looking for a “sweet spot” between

configurations.

Figure 3 also shows that the agent is generally more will-

ing to purchase CPU slices when they are cheaper, as is ex-

pected, and is more conservative when the price increases.
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Figure 2. Results of one random workload. Boxes and

whiskers show the 95% and 99% confidence intervals.
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Figure 3. Average CPU slices purchased by the adaptive

agent for various costs on the 5 random workloads.

However, we can also see that it is willing to purchase the

maximum CPU if it believes it will help.

It is clear that there is a potential benefit to this au-

tonomous compute time decision process. In most cases,

the agent is competitive with the optimal static configu-

ration, indicating that it is a viable alternative. Since the

optimal static configuration is not always the same, this

agent enables the system to be configured for an unknown

workload, whereas the best static configuration may not be

known. Additionally, the autonomy of the agent to toggle

back and forth between configurations allows the agent to

take advantage of partial compute time slices without need-

ing to always pay the price of a full slice.

Our ongoing research involves further work with im-

proving the learning agent, including learning the value of

other resources (such as memory). Another research di-

rection involves the agent taking into account an additional

one-time cost of switching the resource state; this could be

the cost to the owner of the temporary unavailability of the

resource. We also want to experiment with non-static costs

(e.g., the first slice of compute time is more expensive than

the second) and with different SLAs or applications.
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