
In the proc of 28th International Conference on Machine Learning (minor typos corrected),
Bellevue, Washingtion, USA, 2011.

Structure Learning in Ergodic Factored MDPs without Knowledge

of the Transition Function’s In-Degree

Doran Chakraborty chakrado@cs.utexas.edu
Peter Stone pstone@cs.utexas.edu

Department of Computer Science, University of Texas, 1 University Station C0500, Austin, Texas 78712, USA

Abstract

This paper introduces Learn Structure and
Exploit RMax (LSE-RMax), a novel model
based structure learning algorithm for er-
godic factored-state MDPs. Given a planning
horizon that satisfies a condition, LSE-RMax
provably guarantees a return very close to
the optimal return, with a high certainty,
without requiring any prior knowledge of the
in-degree of the transition function as in-
put. LSE-RMax is fully implemented with
a thorough analysis of its sample complex-
ity. We also present empirical results demon-
strating its effectiveness compared to prior
approaches to the problem.

1. Introduction

Representing a Markov Decision Process
(MDP) (Sutton & Barto, 1998) with a large state
space is challenging due to the curse of dimensionality.
One popular way of doing so is factoring the state
space into discrete factors (a.k.a features), and using
formalisms such as the Dynamic Bayesian Network
(DBN) (Guestrin et al., 2002) to succinctly represent
the state transition dynamics. A DBN representation
for the factored transition function can capture the
fact that the transition dynamics of a factor is often
dependent on only a subset of other factors. Such an
MDP is called a factored-state MDP (FMDP).

From a high level, this paper addresses the prob-
lem of first learning the factored transition function,
and second planning for near optimal behavior, in
a FMDP, through efficient exploration and exploita-
tion. In reinforcement learning (RL) parlance, the first
problem is often called the Structure Learning Prob-

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

lem (Strehl et al., 2007; Diuk et al., 2009).

Some of the earlier work in RL for FMDPs, are
extensions of provably sample efficient RL algo-
rithms for general MDPs. Algorithms such as
Factored-E3 (Kearns & Koller, 1999) and Factored-
RMax (Guestrin et al., 2002) achieve near optimal be-
havior in a polynomial number of samples, but require
prior knowledge of the structure of the transition func-
tion, in the form of complete DBN structures with un-
known conditional probability tables. More recently,
there have been approaches proposed that do not as-
sume prior knowledge of the structure of the transition
function, and constructs it from experience in the envi-
ronment (Degris et al., 2006). However, these results
are mostly empirical successes in particular domains,
with no formal analysis of sample complexity.

To the best of our knowledge, SLF-
RMax (Strehl et al., 2007) is the first algorithm
to solve the Structure Learning Problem with a
formal guarantee on sample complexity. More re-
cently, (Diuk et al., 2009) proposed Met-RMax, which
improves upon SLF-RMax with a better sample
complexity guarantee. However, akin to SLF-RMax,
Met-RMax requires as input the in-degree (K) of the
transition function’s DBN structure. In this work, we
are interested in scenarios where prior knowledge of
K is unavailable. To that end, we propose the first
Structure Learning algorithm for ergodic FMDPs,
called Learn Structure and Exploit with RMax (LSE-
RMax), that given a planning horizon that satisfies a
condition, provably guarantees a return close to the
optimal return, without requiring knowledge of K as
input. We explicitly lay down the condition that the
planning horizon needs to satisfy for the above claim
to hold. Our analysis focuses on time averaged return.

We propose two variants of LSE-RMax, for two ver-
sions of the problem.
1. The first deals with a specific case where factors
can be arranged in a sequence with the relevant fac-

Structure Learning in Ergodic Factored MDPs without Knowledge of the In-Degree

tors (which determine the transition function) preced-
ing the irrelevant ones in the sequence. For example,
the probability of a machine running on a particular
time step in a network may depend on the states of
its K closest neighbors from the past step. Though
this fact is common knowledge, K may be unknown.
The sequence of factors is then an incremental order-
ing of the states of all neighbors based on adjacency,
with the immediate neighbors heading the sequence.
We call problems of such a nature Sequential Struc-
ture Learning problems. We believe many real world
problems can be mapped to problems of such nature,
and hence can leverage from our solution.
2. The second deals with the general case where such
an ordering is unknown. Problems of such nature con-
stitute the more general Structure Learning problem.

LSE-RMax is fully implemented, and we present a
thorough analysis of its sample complexity. We also
present empirical results from two domains demon-
strating LSE-RMax’s superiority over Met-RMax.

The remainder of the paper is organized as follows.
Section 2 presents the background necessary to under-
stand our work, Sections 3– 5 present our algorithms,
Section 6 presents empirical results on benchmark do-
mains from literature, and Section 7 concludes.

2. Background and Concepts

This section introduces the background, and concepts
necessary to understand our work.

A finite MDP, is given by a tuple {S,A, P,R} where
S is the finite set of states, A is the finite set of ac-
tions available to a learner, P : S × A × S′ 7→ [0, 1]
is the transition function, and R : S × A 7→ [0 : 1] is
the bounded reward function. A factored-state MDP
(FMDP) is a finite MDP where each state consists
of n discrete factors. Formally S consists of a tuple
<X1, . . . ,Xi, . . . Xn> where each Xi assumes a value
in the discrete range {0, . . . , d}. Similarly to prior
work on structure learning in FMDPs (Degris et al.,
2006; Diuk et al., 2009), we assume i) that the reward
function is known, and ii) that the transition function
satisfies the independence criterion: P (st, at, st+1) =
∏n

i=1 Pi,at
(st, st+1(i)) where Pi,at

(st, st+1(i)) repre-
sents the probability of transitioning to st+1(i) when
action at is taken in state st. st+1(i) denotes the value
of factor Xi in state st+1.

Each Pi,a has its own DBN structure, and may de-
pend only on certain factors of the state. For ease of
presentation, we assume that the in-degree (number
of parent factors in the DBN representation) for every
Pi,a is K. If such is not the case, then K can be seen

as the maximum of all such in-degrees for all Pi,a’s.
Let Pari,a be the parent factors for Pi,a.

A policy π is a strategy for choosing actions from a
state in a FMDP. A FMDP combined with a policy
π yields a Markov process on the states. We say π is
ergodic if the induced Markov process is ergodic (all
states are reachable from any state). To simplify the
analysis, and keeping in line with prior work that claim
formal learning time guarantees for average reward
RL (Kearns & Singh, 2002; Brafman & Tennenholtz,
2003), we focus on FMDPs for which every policy is
ergodic, the so called ergodic FMDPs. In an ergodic
FMDP, the stationary distribution of any policy is in-
dependent of the start state.

Let p be a T step path in the FMDP starting from
state s. Also let Prπ[p] and U(p) be the probability of
that path while executing π, and the sum of rewards
accrued along that path respectively. Then the T -step
expected time averaged return from state s while exe-
cuting π is given by Uπ

T (s) = 1
T

∑

pPrπ[p]U(p). The
asymptotic average return from s while executing π is
given by Uπ(s) = limT→∞Uπ

T (s). For ergodic FMDPs,
Uπ(s) is independent of s, and can be denoted as just
Uπ (Kearns & Singh, 2002). The optimal policy, π∗,
is the policy that maximizes Uπ, yielding return U∗.
Henceforth, we refer to the time averaged return of a
policy as simply its return.

Since this research seeks guarantees on the return of
a learning algorithm after a finite number of steps, we
need to take into account some notion of the mixing
time of the policies in the FMDP. For an 0 < ǫ < 1,
the ǫ-return mixing time of π is the smallest T s.t.
∀T ′ ≥ T and ∀s, |Uπ

T ′(s) − Uπ| ≤ ǫ. In general to
compete with π∗ and achieve a return close to U∗, it
is essential to have knowledge of the ǫ-return mixing
time T (ǫ) of π∗ (Kearns & Singh, 2002). Then given a
T (ǫ) as input, we would like our learning algorithm to
provably achieve a return sufficiently close to U∗, with
a high certainty, in a reasonable sample complexity.

Trivially, the problem can be solved by assuming that
every Pi,a is dependent on all n factors, and running
Factored-RMax (Guestrin et al., 2002). The downside
of this approach is that it requires an order of ≈ Õ(dn)
data samples. Needless to say, the above approach
does not scale for large values of n. Our objective
is to solve the problem in a sample complexity which
is polynomial in dK . Without assuming prior knowl-
edge of K, we propose LSE-RMax that achieves it,
but only for certain restrictive choices of T (ǫ). To for-
mally specify this restriction on the choice of the T (ǫ),
we introduce a bit more notation.

Structure Learning in Ergodic Factored MDPs without Knowledge of the In-Degree

First, a model P̂ of the transition function P is com-
prised of sub-models for each individual Pi,a, denoted

by P̂i,a. Each P̂i,a is defined over a set of probable par-

ent factors ˆPari,a, and specifies some distribution over

{0, . . . , d}, for each possible instantiation of ˆPari,a.
Note, a model can be any function of factor instantia-
tions to probability distributions over {0, . . . , d}. Sec-
ond, when we say planning over T steps based on
a model P̂ , we mean executing a T -step policy in
the true FMDP, which is optimal w.r.t. the FMDP
induced by P̂ . The T -step policy is computed by
running a planning algorithm, such as Value Itera-
tion (Sutton & Barto, 1998) in that fictitious FMDP.

Then, LSE-RMax can provably guarantee a return suf-
ficiently close to U∗, with a high certainty, in the de-
sired sample complexity on the order of ≈ Õ(d2K), if
the T (ǫ) provided as input satisfies the condition:

Condition 1. Planning over T (ǫ) steps based on a
transition function P̂ which comprises an insufficient
set of parent factors for some Pi,a (i.e., Pari,a 6⊂
ˆPari,a), from any start state, always results in an ex-

pected return < U∗ − 3ǫ in the true FMDP.

Another way of interpreting Condition 1 is if we
achieve a T (ǫ) step expected return ≥ U∗ − 3ǫ in the
true FMDP from any start state, then we must be
planning based on a P̂ that is based on the correct
set of parent factors for every Pi,a. To facilitate our
theoretical claims, we assume that such a T (ǫ) exists
for our FMDP, and we are aware of it. Note that the
ǫ in Condition 1 is the corresponding ǫ value for which
T (ǫ) is the ǫ-return mixing time.

In practice when we implement RMax type of algo-
rithms, we pick an (m,T) pair. m is the number of
visits required to each unknown parameter, and is a
fixed value in most implementations. T is the planning
horizon (same as T (ǫ)). In the context of LSE-RMax,
our goal is then to guess a big enough T such that
achieving a T -step near optimal return from any start
state requires knowing all of the parent factors. We
believe for most of the FMDPs that we may encounter
in practice, it may not be hard to guess a big enough T
that satisfies (or closely satisfies) our objective. Even
in cases where our chosen T fails to strictly satisfy
Condition 1, we may still get good results as long as
it is big enough to ensure that achieving a T -step near
optimal return from any start state requires knowing
most of the crucial parent factors. We present further
empirical evidence of this in Section 6.

Our assumption of knowing a T (ǫ) that satisfies Con-
dition 1 can be seen as an alternative to knowing K.
However if the choice is between guessing a big enough
T (ǫ) that satisfies Condition 1, or a big K that serves

as a conservative upper bound if the in-degree, we are
better off guessing the former because the sample com-
plexity grows exponentially in K (≈ Õ(dK)), while
only polynomially in T (ǫ)/ǫ. Thus theoretically we
have more latitude to conservatively guess a big T (ǫ)
(hence a small ǫ), than a big K.

Since the structure of each Pi,a is unknown a priori, the
crux of our problem is figuring out how to bias explo-
ration so that the structure of each Pi,a can be learned
quickly. To solve this general Structure Learning prob-
lem (SLP), we begin by solving a simpler learning
problem which makes a more restrictive assumption
about the structure of the factored transition function.
Specifically, we assume that for each Pi,a, we have an
ordering of the parent factors, and the first K factors
in the ordering determines Pi,a, K being unknown. We
call a problem of this nature the Sequential Structure
Learning Problem (SSLP). A solution to SSLP holds
the key to solving SLP. We begin by introducing our
solution to SSLP.

3. Sequential Structure Learning

Problem

For ease of presentation, in this section and Section 4,
we denote Pi,a, st and st+1(i) as F , xt and yt respec-
tively. xt can be seen as the input to F , and yt ∼ F (xt)
as the observed output. We denote the i’th factor
value of x as x[i]. Then for SSLP, the factor values
{x[0], . . . , x[K]} completely determine y, with K be-
ing unknown. The learning problem is then to learn
a good approximation of F , from the observed (xt, yt)
pairs. We call our learning algorithm for SSLP the
Sequential Structure Learning Algorithm (SSLA).

3.1. Sequential Structure Learning Algorithm

We begin by introducing the concept of a model w.r.t.
SSLA. SSLA maintains a model for every K, ranging
from 0 to n, and chooses the best amongst them on
every time step. A model of size k only consults the
first k factor value of the input x. Internally, for every
possible value bk of the first k factors, it maintains a
value Mk(bk) which is the maximum likelihood distri-
bution of the observed y’s given that the first k factor
value of the input x is bk. Whenever a new input
that starts with bk is observed, we say a visit to bk

has occurred. Each maximum likelihood distribution
is based on all the visits to bk until time t − 1.

Each model of size k makes a prediction F̂k(x) for an
input x. The prediction is the empirical distribution
captured for the first k factor value of x, if the distri-
bution has been computed from a sufficient number of
samples. Otherwise, ⊥ is returned (“I don’t know”).

Structure Learning in Ergodic Factored MDPs without Knowledge of the In-Degree

Thus, if the first k factor value of x is bk, then

F̂k(x) =

{

Mk(bk) if c(bk) ≥ mk

⊥ otherwise
(1)

where c(bk) is the number of times bk has been visited,
and mk is a system defined parameter unique to each k.
We discuss later how mk is chosen for each k. The role
of ⊥ will be clear when we specify our main algorithm
in Section 5.

Alg. 1 gives an outline of SSLA. On each step it takes
as input the current input instance xt. It calls Find-
Best-Model-Ssla to get the current best estimate
model of F , denoted as F̂ . It then makes a prediction
F̂ (xt). The environment subsequently reveals yt. It
then updates all its internal data structures.

The main objective of SSLA is to learn to predict F̂ (xt)
s.t. it is a close approximation of F (xt). In that regard,
we say F̂ (x) is an ǫ-approx of F (x) when F̂ (x) 6=⊥, and
||F (x)− F̂ (x)||∞ ≤ ǫ. In order to achieve its objective,
SSLA relies on Find-Best-Model-Ssla (Alg. 2) to
keep returning a near accurate model. Before we dive
into the technical details of Alg. 2, we introduce the
concept of ∆k.

∆k is the maximum difference in prediction between
consecutive models of size k and k+1. For any bk, we
define a set Aug(bk) as the set of all k+1 factor values
which have bk as their first k factor value. Then,

∆k = maxbk,bk+1∈Aug(bk))||Mk(bk) − Mk+1(bk+1)||∞

s.t. c(bk+1) ≥ mk+1. We will choose mk’s such that
c(bk+1) ≥ mk+1 will always imply c(bk) ≥ mk. If
there exists no such bk+1, then by default ∆k = −1.

Intuitively, all models of size ≥ K can learn F accu-
rately (as they consist of all of the relevant factors),
with the bigger models requiring more samples to do
so. On the other hand, models of size < K cannot
fully represent F without losing information. From a
high level, Alg. 2 chooses F̂ by comparing models of
increasing size to determine at which point there is no
larger model that is more predictive of F . The outline
of Alg. 2 is then as follows.

1. On every time step, ∀0 ≤ k < n, compute ∆k and
σk (line 1). We skip the details on how the σk’s are
computed until Section 3.2. Intuitively, the σk’s are
generated in a fashion such that if k ≥ K, then w.h.p. 1

they assume a value greater than their corresponding
∆k. Alg. 2 then searches for that smallest value of k
such that all the subsequent ∆k’s are less than their
corresponding σk’s, and concludes that this k is the
true value of K. More formally the σk’s are computed

1with a high probability

Algorithm 1: SSLA

input : xt

F̂ ← Find-Best-Model-Ssla()

predict F̂ (xt)
Observe yt, update all models and c values

Algorithm 2: Find-Best-Model-Ssla

F̂ ← Fn

for all 0 ≤ k < n, compute ∆k and σk1

for 0 ≤ k < n do2

flag ← true3

for k ≤ k′ < n do4

if ∆k′ ≥ σk′ then5

flag ← false6

break7

if flag then8

F̂ ← Fk9

break10

11

return F̂12

such that the following condition is satisfied:

∀K ≤ k < n: Pr[∆k < σk] ≥ 1 − ρ (2)

where ρ is a very small probability, and a constant.
In other words, even without the knowledge of K, we
compute the σk’s such that the difference between two
consecutive models of size ≥ K is less than σk, w.h.p
of at least 1 − ρ. Note, although we compute a σk for
every 0 ≤ k < n, Eqn. 2 only holds for K ≤ k < n;
2. Then, iterate over values of k from 0 to n − 1 and
choose the minimum k s.t. ∀k ≤ k′ < n, the condition
∆k′ < σk′ is satisfied (lines 2 - 12). Return Fk as F̂ ;

We now state the sufficient condition on the explo-
ration required that would ensure that F̂ (xt) is an ǫ-
approx of F (xt), w.h.p.

Lemma 3.1. Given 0 < ǫ, δ < 1, once a bK is visited

O(K2

ǫ2
log(ndK

δ
)) times, then ∀x whose first K factor

value is bK, F̂ (x) is an ǫ-approx of F (x), w.h.p of at
least 1 − δ.

Proof Sketch: Let at any t, the probability with
which Alg. 2 selects a model of size < K be p. If all
sub-optimal models of size < K are rejected, then it
selects F̂K with probability at least 1−(n−K)ρ (from
Eqn. 2, and using Union bound). Therefore, the prob-
ability with which it selects a model ≤ K is at least
p + (1 − p)(1 − (n − K)ρ) ≥ 1 − nρ. Models with size
> K are selected with a low probability of at most nρ,
and hence are ignored. This is exactly in line with our
goal: find the shortest most descriptive model.

Structure Learning in Ergodic Factored MDPs without Knowledge of the In-Degree

If Alg. 2 selects F̂K as F̂ , then we have the best model.
If it selects a shorter model F̂k as F̂ , then with a
probability of failure at most nρ, we have a model
which approximates F̂K(bK) with an error of at most
∑

k≤k′<K ∆k′ ≤
∑

k≤k′<K σk′ , for a bK. This follows
directly from the definition of ∆k, and line 5 of the
Alg. 2. The latter ensures that the following is true:
∆k < σk,∆k+1 < σk+1, . . . ,∆K−1 < σK−1. Further-
more, from Hoeffding’s bound, it follows that if a bK is
visited O(1/ψ2log(1/ρ)) times, then MK(bK) is a ψ-
approx of F (bK), with probability of failure at most ρ.
Revisit Eqn. 1 for a recap on how F̂K relates to MK .

Combining the above two observed facts and apply-
ing Union bound, it follows that once a bK is vis-
ited mK ≥ O(1/ψ2log(1/ρ))) times, then w.h.p of
at least 1 − (n + 1)ρ, for a xt whose first K factor
value is bK, F̂ (xt) is an (

∑

k≤k′<K σk′ + ψ)-approx of
F (xt). Thus all we need to do is choose mK such that
∑

k≤k′<K σk′+ψ is bounded by ǫ. It can be shown that

if mK = O(K2/ǫ2log(dK/ρ)), then the above holds for
all possible bK’s. Then by choosing ρ = δ/(n + 1), we
complete the proof. ¤

Henceforth, we denote the visits term in Lemma 3.1 for

any arbitrary k as V (k), i.e. V (k) = O(k2

ǫ2
log(ndk

δ
)).

We set mk s.t. a model of size k stops predicting ⊥
for a bk once it is visited V (k) times, i.e., mk = V (k).
We defer a discussion on how we bias our action selec-
tion mechanism to ensure that Lemma 3.1 is satisfied
for each Pi,a and all its K parent factor values until
Section 5, where we specify our full-fledged algorithm
for performing structure learning in FMDPs.

3.2. Computation of σk

We now specify how the σk’s are computed. For each
k, the goal is to select a value for σk s.t. Eqn. 2 is
satisfied. If ∆k = −1, then we choose σk = 1, and the
condition is trivially satisfied. Hence the rest of the
derivation will focus on the case when ∆k 6= −1

In the computation of ∆k, SSLA chooses a specific
bk, a bk+1 ∈ Aug(bk) and a factor value j ∈
{0, . . . , d} for which the models Mk and Mk+1 dif-
fer maximally on that particular time step. Let
Mk(bk, j) be the probability value assigned to j
by Mk(bk). Without loss of generality, assume
Mk(bk, j) ≥ Mk+1(bk+1, j). Then ∆k < σk implies
satisfying Mk(bk, j) − Mk+1(bk+1, j) < σk. For the
range K ≤ k < n, we can rewrite it as,

(Mk(bk, j) − E(Mk(bk, j))) +

(E(Mk+1(bk+1, j)) − Mk+1(bk+1, j)) < σk (3)

This step follows from the fact that the first K
factors completely determine F : E(Mk(bk, j)) =

E(Mk+1(bk+1, j)). One way to satisfy Inequality 3
is by ensuring that Mk(bk, j) − E(Mk(bk, j)) < σ1,
and E(Mk+1(bk+1, j)) − Mk+1(bk+1, j)) < σ2, and
subsequently setting σk = σ1 + σ2.

Observing that bk, and bk+1 are random variables
for which Mk and Mk+1 differ maximally, it follows
that Pr(Mk(bk, j) − E(Mk(bk, j)) ≥ σ1) ≤ ρ

2 ,
and Pr(E(Mk+1(bk+1, j)) − Mk+1(bk+1, j) ≥
σ2) ≤ ρ

2 , is always satisfied if we choose

σ1 =
√

1/2c(bk)log(2dk/ρ), and σ2 =
√

1/2c(bk+1)log(2dk+1/ρ). Thus, by setting
σk = σ1 + σ2, we have Pr(∆k < σk) > 1 − ρ.

This concludes our specification of SSLP. Next, we
build on SSLA to propose our algorithm for SLP.

4. Structure Learning Problem

Unlike SSLP, now we do not assume any prior in-
formation about the ordering of factors. Clearly, a
very straightforward extension of SSLA can solve the
problem: arrange all factors in some order, and exe-
cute SSLA. The downside of this approach is that we
now require sufficient visits to all of the K ′ factor val-
ues, where K ′ is the smallest value ∈ [0, n] that spans
over all parent factors. In many domains it is possi-
ble to guess a decent ordering of factors, and for such
cases the above approach provides an efficient solution.
However, in the worst case the last factor in the se-
quence may be a parent factor, and in that case SSLA
can only solve the problem by requiring sufficient visits
to all possible n factor values. Our goal in this section
is to do better sample complexity wise. To this end we
introduce our Structure Learning Algorithm (SLA).

Structure Learning Algorithm

SLA shares the same algorithmic structure as SSLA
(Alg. 1) except it makes a call to Find-Best-Model-
Sla. In spirit similar to SSLA, the main objective
of SLA is to eventually start predicting F̂ (xt) which
is an ǫ-approx of F (xt) ∀xt, w.h.p., by observing as
few online samples as possible. In contrast to SSLP,
since an ordering of the factors is unavailable a priori,
Find-Best-Model-Sla maintains a model for every
possible combination of factors. From a high level,
Find-Best-Model-Sla chooses F̂ by searching for
the shortest model s.t. no bigger model consisting of a
superset of its factors is more predictive.

Let P be the power set of the factor set {X1, . . . ,Xn},
and Pk ⊆ P be all the subets of P with cardinality
k. The steps employed by Find-Best-Model-Sla
(Alg. 3) are then as follows. Iterate over 0 ≤ k < n
and for every k generate Pk (Step 2). Iterate over
every element ℘k from this set, i.e., ℘k is a set of k

Structure Learning in Ergodic Factored MDPs without Knowledge of the In-Degree

factors (Step 3). Let the model comprising the factors
in ℘k be F̂℘k

. Now generate all possible sequences
of size k + 1 to n, where the first k factors in the
sequence are the factors from ℘k (Steps 5-9). Then run
Find-Best-Model-Ssla on each of these sequences
(Step 10). If the F̂ returned by Find-Best-Model-
Ssla for all of these sequences is F̂℘k

, then we are
sure w.h.p, that from the samples we have seen so
far, F̂℘k

is the best model (Steps 11-17). If not, keep

repeating the process until a particular F̂℘k
satisfies

the condition. In the worst case, return the model
comprising all factors (Step 18).

We claim that if all combinations of 2K factor val-
ues in a xt are visited nV (2K) times, then the F̂ (xt)
predicted by SLA is an ǫ-approx of F (xt), w.h.p of at
least 1 − δ. Trivially, if 2K ≥ n, then all n factor val-
ues need to be visited nV (n) times. Hence the rest of
the analysis focuses on the scenario when 2K < n.

To understand the claim, consider the following ex-
ample. Let the factor set be {X1,X2,X3,X4,X5},
and let each Xi assume binary values. Also let xt =
{X1 = 0,X2 = 1,X3 = 0,X4 = 1,X5 = 1}, and
K = 2. Then all possible combinations of 4 factor
values in xt are {X1 = 0,X2 = 1,X3 = 0,X4 = 1},
{X1 = 0,X2 = 1,X3 = 0,X5 = 1}, {X2 = 1,X3 =
0,X4 = 1,X5 = 1}, and so on (in total 5). Then we
require all of these factor values to be visited 5V (4)
times. The formal proof of the claim is similar to that
for SSLP. We instead give an intuitive justification for
it by way of the above example.

Assume that F depends on parent factors {X1,X2}.
Let F̂X1,X2 be the model based on them. First, we
show that if the choice boils down to selecting whether
F̂X1X2 is the best model or not, Alg. 3 always selects
F̂X1X2 with some probability. Alg. 3 then checks for
all possible sequences that start with {X1,X2}. Step
10 returns F̂X1X2, w.h.p of at least 1 − δ for each
such sequence (following reasoning similar to SSLP,
i.e., by our choice of σ’s). Since there can be at most
∑n−2

k=1

(

n
k

)

< 2n such sequences, step 10 returns F̂X1X2,
with a probability of at least 1−2nδ (by Union bound).
Thus a model of size > 2 is only selected with a prob-
ability of at most 2nδ.

If Alg. 3 selects F̂X1X2, then we have the best model.
Suppose it selects a model of size ≤ 2 other than
F̂X1X2. Let it be F̂X3X4. This means that at some
point Alg. 3 must have executed SSLA on the sequence
X3X4X1X2 (or X3X4X2X1), and Step 10 returned
F̂X3X4

. However if the factor value {X1 = 0,X2 =
1,X3 = 0,X4 = 1} is visited V (4) times, then from
Lemma 3.1, we know that F̂X3X4(xt) is an ǫ-approx of
F (xt), w.h.p of at least 1 − δ.

Algorithm 3: Find-Best-Model-Sla

for 0 ≤ k < n do1

Generate Pk2

for every ℘k ∈ Pk do3

flag ← true4

for 1 ≤ k′ <= n − k do5

Generate Pk′6

for every ℘k′ ∈ Pk′ do7

if ℘k′ ∩ ℘k 6= φ then8

continue
seq ← a sequence starting with ℘k9

followed by ℘k′

F̂ ← execute Find-Best-Model-Ssla10

on seq

if F̂ 6= F̂℘k
then11

flag ← false12

break13

if !flag then14

break15

if flag then16

return F̂℘k
17

return model comprising of all factors18

So we are sure that the model returned by Alg. 3 has
to be of size ≤ 2, w.h.p of at least 1− 2nδ, but unsure
about the exact model. Hence, to be on the safe side
we require all combinations of 4 (2K = 4 here) factor
values in a xt to be visited V (4) times, s.t. F̂ (xt) is
an ǫ-approx of F (xt), w.h.p of at least 1 − 2nδ. Then
reassigning δ ← δ/2n brings us to our main theoretical
result concerning SLA.

Lemma 4.1. Given 0 < ǫ, δ < 1, if all the com-
binations of 2K factor values in a xt are visited

O((2K)2

ǫ2
log(nd2K2n

δ
) < nV (2K) times, then F̂ (xt) is

an ǫ-approx of F (xt), w.h.p of at least 1 − δ.

For SLA, we set mk s.t. a model of size k stops predict-
ing ⊥ for a k factor value once that is visited nV (k)
times, i.e., mk = nV (k). Again we defer a discus-
sion on how we bias our action selection mechanism to
ensure that Lemma 4.1 is satisfied for each Pi,a, and
the 2K factor values associated with it until Section 5,
where we introduce the full blown LSE-RMax.

5. LSE-RMax

We now introduce Learn Structure and Exploit with
RMax (LSE-RMax), which is modeled closely on
RMax (Brafman & Tennenholtz, 2003). To learn each
factored transition function Pi,a individually, LSE-
RMax uses a separate instance of SLA (or SSLA de-
pending on the type of the problem), denoted as Ai,a.
For both SSLA and SLA, we set ǫ ← ǫ

nT (ǫ) and

δ ← δ
n|A| . Our analysis focuses solely on LSE-RMax

Structure Learning in Ergodic Factored MDPs without Knowledge of the In-Degree

with SLA. LSE-RMax with SSLA works analogously.

LSE-RMax runs in phases, where a phase lasts for at
most T (ǫ) time steps. The phases are of two types:
regular and exploratory. On each regular phase LSE-
RMax computes a T (ǫ) step policy, and executes it.
The Bellman equations (Sutton & Barto, 1998) behind
the policy computation are as follows,

Qt(s, a) =

{

T (ǫ) if ∃i, s.t, P̂i,a(s) =⊥, o.w.,

R(s, a) +
P

s′

Q

i
P̂i,a(s, s′(i))maxa′Qt−1(s

′, a′)

The P̂i,a’s are predicted by their corresponding Ai,a’s.
For a state action pair (s, a), if any P̂i,a(s) =⊥,
it means that LSE-RMax has no way of estimating
Qt(s, a). To facilitate exploration to these state ac-
tion pairs, LSE-RMax gives them an imaginary bonus
of T (ǫ), the maximum total reward achievable in T (ǫ)
steps. For all other pairs, LSE-RMax performs the
conventional Bellman backup.

If we just keep running regular phases, then there is a
possibility that LSE-RMax may converge to exploiting
a sub-optimal model of the transition function because
of insufficient exploration. In order to avoid that, LSE-
RMax deviates for a single phase, after every φ regular
phases. We call this phase an exploratory phase. The
objective of this phase is to facilitate the exploration
needed to satisfy the condition in Lemma 4.1 for each
individual Pi,a. In this phase, LSE-RMax chooses a k
randomly from 0 to n. The T (ǫ) step policy compu-
tation, which is similar to the one for a regular phase
apart from one key difference, is as follows: For all
(s, a) pairs that contain a k factor value bk in s for
which action a has not been taken mk = nV (k) times,
give them the imaginary bonus. For every other (s, a)
pair, use the P̂i,a(s)’s, predicted by the corresponding
Ai,a’s, to perform the Bellman back up.

The analysis that leads to our main theoretical result
for LSE-RMax is similar to that of RMax, and we skip
it for space constraints. Instead we highlight the key
parts where it differs from a standard RMax analysis.

From the Implicit Explore and Exploit Lemma of
RMax (Lemma 6 of (Brafman & Tennenholtz, 2003)),
the policy followed by RMax on every T (ǫ) step phase
either attains an expected return ≥ U∗−3ǫ in the true
FMDP, or explores with probability ≥ ǫ. Now in ex-
pectation, LSE-RMax chooses 2K once in every n + 1
such exploratory phases. Since there are only finite
number of explorations to perform, then at some point
LSE-RMax must execute such a phase where it chooses
2K as the random value from [0, n], and achieves an
expected return ≥ U∗ − 3ǫ. This follows from the rea-
soning that if RMax is exploring with probability < ǫ,
then it must be confining itself to “known” state ac-

tion pairs (state action pairs for which it believes it
has a near accurate model). Now, from Lemma 4.1, it
is true that the predictions made by each Pi,a for these
“known” state action pairs are near accurate with an
error of at most ǫ

nT (ǫ) . Then through the standard

analysis of the Implicit Explore and Exploit Lemma,
the expected return for this phase is ≥ U∗ − 3ǫ.

Then from Condition 1, and the fact noted earlier that
each P̂ i,a is of size at most K w.h.p of at least 1− δ

n|A| ,

it follows that the transition function of this approx-
imate MDP must be based on the correct parent fac-
tors for all Pi,a’s, w.h.p of at least 1− δ. Hence, LSE-
RMax has identified the correct parent factors for each
Pi,a. From then onwards, in every regular phase LSE-
RMax uses this model of the transition function, and
eventually achieves an expected return ≥ U∗− 3ǫ over
all the regular phases. However, the return from an
exploratory phase may yet still be arbitrary. By ap-
propriately choosing φ = ⌈ 1−4ǫ

ǫ
⌉, we then keep the

expected return over every φ + 1 phases ≥ U∗ − 4ǫ.
Analyzing in terms of overall return then brings us to
our main theorem regarding LSE-RMax.

Theorem 5.1. For a T (ǫ) that satisfies Condition 1,
and 0 < δ < 1, w.h.p of at least 1 − 3δ, LSE-
RMax achieves a return ≥ U∗ − 6ǫ − δ, in time steps:

1) O(n4K3|A|dKT (ǫ)3

ǫ7
log(n2|A|dK

δ
)log2(1

δ
)) for SSLP; 2)

O(
(

n
2K

)

n5K2|A|d2KT (ǫ)3

ǫ7
log(n2|A|d2K

δ
)log2(1

δ
)) for SLP;

The additional loss of δ is because, with probability
at most δ, on each T (ǫ) step iteration, LSE-RMax can
still plan based on a model that is sub-optimal, and
hence achieve a return of 0 over that iteration.

6. Results

In this section we test LSE-RMax’s empirical perfor-
mance in two popular domains compared to its clos-
est competitor Met-RMax (implemented as closely as
possible to match their descriptions in the literature),
and Factored-RMax which is aware of the DBN struc-
tures a priori. Theoretically in context of LSE-RMax,
we need to set the value of mk to nV (k) for SLP, or
to V (k) for SSLP. Note that these estimates for mk

proven theoretically are extremely conservative, and
for most practical scenarios, much lower values may
suffice. In our experiments we set a fixed m for each
k by doing a parameter search over a coarse grid, and
choosing the best value. Also we ran LSE-RMax with-
out an exploratory phase, i.e., φ = ∞. The explo-
rations from the regular phases were enough to de-
termine the structure of the transition function. For,
Met-RMax we set K to the in-degree (the tightest K).
The m values chosen for the benchmarks are from the
results reported in (Diuk et al., 2009). For all the al-

Structure Learning in Ergodic Factored MDPs without Knowledge of the In-Degree

-1000
 0

 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0 1000 2000 3000 4000

C
um

ul
at

iv
e

R
ew

ar
ds

time

Factored-RMax
LSE-RMax
Met-RMax

(a) Stock Trading

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0 2000 4000 6000 8000 10000

C
um

ul
at

iv
e

R
ew

ar
ds

time

LSE-RMax
Met-RMax

(b) System Administrator
Figure 1. Results in two domains

gorithms, we use T = 20. Additionally for LSE-RMax
we use ρ = 0.99, needed for the computation of the
σk’s (Section 3.2). All of our results have been aver-
aged over 50 runs, and are statistically significant.

Stock Trading (Strehl et al., 2007): In this case LSE-
RMax uses SLA to learn each factored transition func-
tion, with m = 20. LSE-RMax has a significantly
higher cumulative reward than Met-RMax (Fig. 1(a)).
In fact its performance is as good as Factored-RMax.
The reason behind being LSE-RMax figures out the
correct structure for almost 85 % of the factors within
1000 time steps, and hence behaves as Factored-RMax
from there on. In fact it consistently follows the opti-
mal policy from the 1000 time step in all runs. Prior to
that LSE-RMax still accrues a high cumulative reward
because it plans based on decent sub-optimal models.

System Administrator (Guestrin et al., 2003):
Here we assume that it is known beforehand that the
state of a machine depends on its own state, the action
taken, and the states of its K closest neighbors from
the past step, K being unknown. Thus in this case
LSE-RMax uses SSLA, with m = 30. Our results are
for the 8 machines in a ring topology, and assuming
that every machine has the same transition structure.
Again the cumulative reward accrued by LSE-RMax is
significantly better than that of Met-RMax (Fig. 1(b)),
and almost equivalent to that of Factored-RMax (plot
omitted for clarity). In this case LSE-RMax figures
out the correct parent factors in about 400 time steps.

7. Conclusion and Future Work

This paper introduces LSE-RMax, an algorithm for
structure learning in FMDPs that given a big enough
planning horizon that satisfies a certain condition,
provably guarantees a return close to the optimal re-
turn, without requiring any prior knowledge of the in-
degree of the transition function. We present two ver-
sions of LSE-RMax, tailored for two cases. In both
cases, we argue that LSE-RMax has a competitive
sample complexity. Our ongoing research agenda in-
cludes empirical analysis of LSE-RMax in the various

factored domains prevalent in the RL literature.

Acknowledgments: This work has taken place in the Learning
Agents Research Group (LARG) at UT Austin. LARG research is
supported in part by NSF (IIS-0917122), ONR (N00014-09-1-0658),
and the FHWA (DTFH61-07-H-00030).

References

Brafman, Ronen I. and Tennenholtz, Moshe. R-max - a
general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learn-
ing Research, 3:213–231, 2003.

Degris, Thomas, Sigaud, Olivier, and Wuillemin,
Pierre-Henri. Learning the structure of Factored
Markov Decision Processes in reinforcement learning
problems. In Proceedings of the 23rd International
Conference on Machine learning’ 06, pp. 257–264.

Diuk, Carlos, Li, Lihong, and Leffler, Bethany R. The
adaptive k-meteorologists problem and its applica-
tion to structure learning and feature selection in
reinforcement learning. In Proceedings of the 26th
International Conference on Machine Learning’09,
pp. 249–256.

Guestrin, Carlos, Patrascu, Relu, and Schuurmans,
Dale. Algorithm-directed exploration for model-
based reinforcement learning in Factored MDPs. In
Proceedings of the 19th International Conference on
Machine Learning’02, pp. 235–242.

Guestrin, Carlos, Koller, Daphne, Parr, Ronald, and
Venkataraman, Shobha. Efficient solution algo-
rithms for Factored MDPs. Journal of the Artificial
Intelligence Research, pp. 399–468, 2003.

Kearns, Michael and Singh, Satinder. Near-optimal
reinforcement learning in polynomial time. Machine
Learning, pp. 209–232, 2002.

Kearns, Michael J. and Koller, Daphne. Efficient rein-
forcement learning in Factored MDPs. In Proceed-
ings of the 16th International Joint Conference on
Artificial Intelligence’ 99, pp. 740–747.

Strehl, Alexander L., Diuk, Carlos, and Littman,
Michael L. Efficient structure learning in Factored-
State MDPs. In Proceedings of the 22nd National
Conference on Artificial intelligence, pp. 645–650.

Sutton, Richard S. and Barto, Andrew G. Reinforce-
ment Learning: An Introduction. MIT Press, 1998.

