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Abstract
Imitation from observation (IfO) is the problem
of learning directly from state-only demonstra-
tions without having access to the demonstrator’s
actions. The lack of action information both dis-
tinguishes IfO from most of the literature in imi-
tation learning, and also sets it apart as a method
that may enable agents to learn from a large set
of previously inapplicable resources such as in-
ternet videos. In this paper, we propose both a
general framework for IfO approaches and also a
new IfO approach based on generative adversarial
networks called generative adversarial imitation
from observation (GAIfO). We conduct experi-
ments in two different settings: (1) when demon-
strations consist of low-dimensional, manually-
defined state features, and (2) when demonstra-
tions consist of high-dimensional, raw visual data.
We demonstrate that our approach performs com-
parably to classical imitation learning approaches
(which have access to the demonstrator’s actions)
and significantly outperforms existing imitation
from observation methods in high-dimensional
simulation environments.

1. Introduction
One well-known way in which artificially-intelligent agents
are able to learn to perform tasks is via reinforcement learn-
ing (RL) (Sutton & Barto, 1998) techniques. Using these
techniques, if agents are able to interact with the world and
receive feedback (known as reward) based on how well they
are performing with respect to a particular task, they are able
to use their own experience to improve their future behavior.
However, designing a proper feedback mechanism for com-
plex tasks can sometimes prove to be extremely difficult for
system designers. Moreover, learning based solely on one’s
own experience can be exceedingly slow.
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Concerns such as the ones above have given rise to the study
of imitation learning (Schaal, 1997; Billard et al., 2008;
Argall et al., 2009), where agents instead attempt to learn a
task by observing another, more expert agent perform that
task. Because the information about how to perform the
task is communicated to the imitating agent via a demon-
stration, this paradigm does not require the explicit design
of a reward function. Moreover, because the demonstrations
directly provide rich information regarding how to perform
the task correctly, imitation learning is typically faster than
RL. While there are multiple ways that this problem can be
formulated, one general approach is referred to as inverse
reinforcement learning (IRL) (Russell, 1998). IRL-based
techniques aim to first infer the expert agent’s reward func-
tion, and then learn imitating behavior using RL techniques
that utilize the inferred function.

Importantly, most of the imitation learning literature has
thus far concentrated only on situations in which the imi-
tator not only has the ability to observe the demonstrating
agent’s states (e.g., observable quantities such as spatial
location), but also the ability to observe the demonstrator’s
actions (e.g., internal control signals such as motor com-
mands). While this extra information can make the imita-
tion learning problem easier, requiring it is also limiting.
In particular, requiring action observations makes a large
number of valuable learning resources – e.g., vast quantities
of online videos of people performing different tasks (Zhou
et al., 2017) – useless. For the demonstrations present in
such resources, the actions of the expert are unknown. This
limitation has recently motivated work in the area of imi-
tation from observation (IfO) (Liu et al., 2017), in which
agents seek to perform imitation learning using state-only
demonstrations.

Broadly speaking, the IfO problem consists of two major
subproblems: (1) perception of the demonstrations, i.e., ex-
tracting useful features from raw visual data, and (2) learn-
ing a control policy using the extracted features. Most IfO
work thus far (Liu et al., 2017; Sermanet et al., 2017) has
focused on perception and not on control. While powerful
methods for perceiving the demonstrations have been de-
veloped, the control problem is solved via relatively simple
means, i.e., reinforcement learning over a pre-defined re-
ward function. Depending on the defined reward function,
this approach could be restrictive, as discussed further in
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the next section. Therefore, we seek a more sophisticated
control algorithm that is able to learn the task automati-
cally from the demonstrations without explicitly defining a
reward function.

In this paper, we propose a general framework for the control
aspect of IfO in which we characterize the cost as a function
of state transitions only. Under this framework, the IfO prob-
lem becomes one of trying to recover the state-transition
cost function of the expert. Inspired by the work of Ho &
Ermon (2016), we introduce a novel, model-free algorithm
called generative adversarial imitation from observation
(GAIfO) and prove that it is a specific version of the general
framework proposed for IfO. We then experimentally eval-
uate GAIfO in high-dimensional simulation environments
in two different settings: (1) demonstrations and states of
the imitator are manually-defined features, and (2) demon-
strations and states of the imitator come exclusively from
raw visual observation. We show that the proposed method
compares favorably to other recently-developed methods for
IfO and also that it performs comparably to state-of-the-art
conventional imitation learning methods that do have access
the the demonstrator’s actions.

The rest of this paper is organized as follows. In Section
2, we cover related work in imitation learning and review
existing research in imitation from observation. Then, we
present the notation and background needed in Section 3.
In Section 4, we introduce our proposed general framework
for IfO problems and, in Sections 5 and 6, we discuss our
IfO algorithm, GAIfO. Finally, we describe and discuss our
experiments in Sections 7 and 8, respectively.

2. Related Work
Because our work is related to imitation learning (Schaal
et al., 2003), we first discuss here different approaches and
recent advancements in this area. In general, existing work
in imitation learning can be split into two categories: (1)
behavioral cloning (BC) (Bain & Sammut, 1995; Pomerleau,
1989), and (2) inverse reinforcement learning (IRL) (Ng
et al., 2000; Abbeel & Ng, 2004; Ziebart et al., 2008; Fu
et al., 2017).

Behavioral cloning methods use supervised learning as a
means by which to find a direct mapping from states to
actions. BC approaches have been used to successfully
learn many different tasks such as navigation for quadrotors
(Giusti et al., 2016) or autonomous ground vehicles (Bo-
jarski et al., 2016). Inverse reinforcement learning (IRL)
techniques, on the other hand, seek to learn the demonstra-
tor’s cost function and then use this learned cost function
in order to learn an imitation policy through RL techniques.
IRL methods have been used for interesting tasks such as
dish placement and pouring (Finn et al., 2016). To the best

of our knowledge, the current state of the art in imitation
learning is an IRL-based technique called generative adver-
sarial imitation learning (GAIL) (Ho & Ermon, 2016). GAIL
uses generative adversarial networks (GANs) (Goodfellow
et al., 2014) as a means by which to bring the distribution of
state and action pairs of the imitator and the demonstrator
closer together.

Most existing imitation learning approaches require demon-
strations that include the expert actions. However, these
actions are not always observable, and sometimes it is more
practical to be able to imitate state-only demonstrations.
One step towards this goal is the work of Finn et al. (2017)
where a meta-learning imitation learning method is pro-
posed that enables a robot to reuse past experience and
learn new skills from a single demonstration. In particular,
raw pixel videos are used as the source of demonstration
information. However, it is still assumed that the expert
actions are available during meta-training; the requirement
for actions is only lifted at test time when learning the new
task.

One way to approach the aforementioned problem is to
“learn to imitate” (as opposed to imitation learning), i.e.,
by doing some preprocessing, enable the agent to follow a
single demonstration exactly. Two such approaches are pro-
posed by Nair et al. (2017) and Pathak et al. (2018). These
methods first learn an inverse dynamics model through self-
supervised exploration, and then use it to infer the demon-
strator’s action at each step and perform that in the envi-
ronment. These approaches mimic the one demonstration
that they are exposed to exactly (as opposed to learning and
generalizing a task from multiple different demonstrations).

A second approach to imitation from action-free demonstra-
tions is behavioral cloning from observation (BCO) (Torabi
et al., 2018). This method also learns an inverse dynamics
model through self-supervised exploration which is then
used to infer actions from demonstrations. The problem is
then treated as a regular imitation learning problem, and
behavioral cloning is used to learn an imitation policy that
maps states to the inferred actions. Therefore, this method
is able to learn and generalize from different demonstrations
but, since it is based on behavioral cloning, it may suffer
from the well-studied compounding error caused by covari-
ate shift (Ross & Bagnell, 2010; Ross et al., 2011; Laskey
et al., 2016).

A third class of techniques that is able to perform imitation
learning without requiring knowledge of actions includes
those that first focus on learning a representation of the
task and then use an RL method with a predefined surro-
gate reward over that representation. For example, Gupta
et al. (2017) have proposed an invariant feature space to
transfer skills between agents with different embodiments,
Liu et al. (2017) have presented a network architecture
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which is capable of handling differences in viewpoints and
contexts between the imitator and the demonstrator, and
Sermanet et al. (2017) have proposed a time-contrastive net-
work which is invariant to both different embodiments and
viewpoints. While these techniques represent significant
advances in representation learning, each of them uses the
same surrogate reward function, i.e., the proximity of the im-
itator’s and demonstrator’s encoded representation at each
time step. One of the downsides of this reward function is
that each provided demonstration needs to be time-aligned,
i.e., at every time step, each demonstration needs to have
advanced to the same point of the task. Another approaches
developed by Merel et al. and Henderson et al. aim to imi-
tate the state distribution of the expert. However, the state
distribution does not represent the demonstrator policy and
the learned policy may fail in tasks such as the cyclic ones.
Moreover, these approaches have thus far focused mostly on
experimentation and less on the theoretical underpinnings
of the control problem. In our work, we propose a new
algorithm to remove the constraints mentioned above, and
also provide theoretical analysis of this approach.

3. Preliminaries
Notation We consider agents within the framework of
Markov decision processes (MDPs). In this framework, S
andA are the state and action spaces, respectively. An agent
at a particular state s ∈ S, chooses an action a ∈ A, based
on a policy π : S × A → [0, 1] and transitions to state
s′ with probability of P (s′|s, a) that is predefined by the
environment transition dynamics. In this process, the agent
gets feedback c(s, a) which is coming from a cost function
c : S × A → R. In this paper, R means the extended real
numbers R ∪ {+∞} and expectation over a policy means
the expectation over all the trajectories that it generates.

Inverse Reinforcement Learning (IRL) As described
earlier, one general approach to imitation learning is based
on IRL. The first step of this approach is to learn a cost func-
tion based on the given state-action demonstrations. This
cost function is learned such that it is minimal for the tra-
jectories demonstrated by the expert and maximal for every
other policy (Abbeel & Ng, 2004). However, since the prob-
lem is underconstrained — many policies can lead to the
same (demonstrated) trajectories — another constraint is
usually assigned as well which chooses the policy that has
the maximum entropy. This method is called maximum en-
tropy inverse reinforcement learning (MaxEnt IRL) (Ziebart
et al., 2008). A very general form of this framework can be
described as

IRLψ(πE) =arg max
c∈RS×A

− ψ(c) + (min
π∈

∏− λHH(π)+

Eπ[c(s, a)])− EπE [c(s, a)] ,
(1)

where ψ(c) : RS×A → R is a convex cost function reg-
ularizer, πE is the expert policy, Π is the space of all the
possible policies, and H(π) and λH are the entropy func-
tion of the policy π and its weighting parameter respectively.
The output here is the desired cost function. The second
step of this framework is to input the learned cost func-
tion into a standard reinforcement learning problem. An
entropy-regularized version of RL can be described as

RL(c) = arg min
π∈

∏ − λHH(π) + Eπ[c(s, a)] , (2)

which aims to find a policy that minimizes the cost function
and maximizes the entropy.

Generative Adversarial Imitation Learning (GAIL)
Recently, Ho & Ermon have shown that by considering a
specific function as the cost regularizer ψ(c), the described
pipeline ((1) and (2)) can be solved instead as

min
π∈

∏ max
D∈(0,1)S×A

− λHH(π) + Eπ[log(D(s, a)]+

EπE [log(1−D(s, a))] ,
(3)

where D : S × A → (0, 1) is a classifier trained to dis-
criminate between the state-action pairs that arise from the
demonstrator and the imitator. Excluding the entropy term,
the loss function in (3) is similar to the loss of generative
adversarial networks (Goodfellow et al., 2014). Instead of
first learning the cost function and then learning the policy
on top of that, this method directly learns the optimal policy
by bringing the distribution of the state-action pairs of the
imitator as close as possible to that of the demonstrator.

4. A General Framework for Imitation from
Observation

In IRL, both states and actions are available and the goal is
to find a cost function that on average has a smaller value
for the trajectories generated by the expert policy compared
to the ones generated by any other policy. In the case of
imitation from observation, however, the demonstrations
that the agent receives are limited to the expert’s state-only
trajectories. In the context of the IRL-based approaches to
imitation learning discussed above, this lack of action in-
formation makes it impossible to calculate the EπE [c(s, a)]
term in (1). Consequently, none of the approaches described
in Section 3 is directly applicable in this setting.

In imitation from observation, the goal is for the imitator
to perform similarly to the expert in the environment, i.e.,
for the actions of the demonstrator and imitator to have the
same effect on the environment (performing the task), rather
than taking exactly the same actions. Therefore, instead
of characterizing the cost signal as a function of states and
actions c : S ×A → R, we define them as a function of the
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state transitions c : S × S → R. Based on this characteri-
zation, we formulate inverse reinforcement learning from
observation as

IRLfOψ(πE) =arg max
c∈RS×S

− ψ(c) + (min
π∈

∏ Eπ[c(s, s′)])

− EπE [c(s, s′)]) ,

(4)

which outputs c̃. Note that in (4) we ignore the entropy
term so as to simplify the theoretical analysis presented in
Section 5. Evidence form Ho & Ermon suggests that doing
so is fine from an empirical perspective (they set λH = 0 in
more than 80% of their successful experiments). We leave
detailed analysis of the effect of this term to future work.
From a high-level perspective, in imitation from observa-
tion, the goal is to enable the agent to extract what the task
is by observing some state sequences. Intuitively, this ex-
traction is possible because we expect the beneficial state
transitions for any given task to form a low-dimensional
manifold within the S ×S space. Thus, the intuition behind
our definition of the cost function is to penalize based on
how close each transition is to that manifold.

Now using an RL algorithm for c̃ amounts to solving:

RL(c̃) = arg min
π∈

∏ Eπ[c̃(s, s′)] (5)

where the output, π̃, is the imitation policy.

5. Generative Adversarial Imitation from
Observation

Having developed the general framework in (4), we now
propose a specific algorithm, generative adversarial imita-
tion from observation (GAIfO). To this end, we first define
the state-transition occupancy measure, ρsπ : S × S → R as

ρsπ(si, sj) =
∑
a

P (sj |si, a)π(a|si)
∞∑
t=0

γtP (st = si|π) .

(6)
This occupancy measure corresponds to the distribution of
state transitions that an agent encounters when using policy
π. We define the set of valid state-transition occupancy
measures as Ps , {ρsπ : π ∈ Π}.

We now introduce a proposition which is the foundation
of our algorithm. In the following proposition we use the
convex conjugate concept which is defined as follows: for a
function f : X → R, the convex conjugate f∗ : X∗ → R̄
is defined as f∗(x∗) , supx∈X〈x∗, x〉 − f(x).
Proposition 5.1. RL ◦ IRLfOψ(πE) and
arg minπ∈Π ψ

∗(ρsπ − ρsπE ) induce policies that have
the same state-transition occupancy measure, ρsπ̃ .

In the rest of this section, we prove this proposition and then
by choosing a specific regularizer, we present our algorithm.

At the end we propose a practical implementation of the
algorithm. To prove the proposition, we first define another
problem, RL ◦ IRLfOψ(πE), and argue that it outputs a
state-transition occupancy measure which is the same as ρsπ̃
induced by RL ◦ IRLfOψ(πE). We define

IRLfOψ(πE) =arg max
c∈RS×S

( min
ρsπ∈Ps

∑
s,s′

ρsπ(s, s′)c(s, s′))

−
∑
s,s′

ρsπE (s, s′)c(s, s′)− ψ(c) ,
(7)

where, the output is a cost function c̄. Note that,
Eπ[c(s, s′)] =

∑
s,s′ ρ

s
π(s, s′)c(s, s′) so (4) and (7) are sim-

ilar except that the former is optimized over π ∈ Π and the
latter over ρsπ ∈ Ps. If we consider using an RL method to
find a state-transition occupancy measure under c̃, (5) can
be rewritten as

RL(c̄) = min
ρsπ∈Ps

∑
s,s′

ρsπ(s, s′)c̄(s, s′) , (8)

which would now output the desired state-transition occu-
pancy measure ρ̄sπ .

Lemma 5.1. RL ◦ IRLfOψ(πE) outputs a state-transition
occupancy measure, ρ̄sπ, which is the same as ρsπ̃ induced
by RL ◦ IRLfOψ(πE).

Proof. From the definition of Ps, the mapping from Π to
Ps is surjective, i.e., for every ρsπ ∈ Ps, there exists at least
one π ∈ Π. Therefore, we can say ρ̄sπ = ρsπ̃ (where π̃ and
ρ̄sπ , as already defined, are the outputs of (5) and (8), and ρsπ̃
is the state-transition occupancy measure that corresponds
to π̃). Therefore, solving RL ◦ IRLfOψ(πE) results in the
same ρsπ as applying RL using the cost function returned by
IRLfO in (7).

Note that, in this lemma, the returned policies from these
two problems are not necessarily the same. The reason is
that the mapping from Π to Ps is not injective, i.e., there
could be one or multiple π ∈ Π that corresponds to the
same ρsπ ∈ Ps. Consequently, it is not necessarily the case
that a policy that gives rise to ρ̄π is the same as π̃. However,
as we discussed in the previous section, in imitation from
observation, we are primarily concerned with the effect of
the policy on the environment so this situation is acceptable.

Now we introduce another lemma that helps us in the proof
of Proposition 5.1.

Lemma 5.2. RL ◦ IRLfOψ(πE) = arg minρsπ∈Ps ψ
∗(ρsπ −

ρsπE )

This lemma is proven in the appendix 1 using the min-
imax principle (Millar, 1983). Thus far, by combin-

1The appendix is anonymously presented
https://tinyurl.com/ybkn8v7n https://tinyurl.com/ybkn8v7n
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ing Lemmas 5.1 and 5.2, we can conclude that ρsπ̃ in-
duced by RL ◦ IRLfOψ(πE) is the same as the output of
arg minρsπ∈Ps ψ

∗(ρsπ − ρsπE ). Now, we only need one more
step to prove Proposition 5.1:

Lemma 5.3. arg minπ∈Π ψ
∗(ρsπ−ρsπE ) is a policy that has

a state-transition occupancy measure that is the same as the
output of arg minρsπ∈Ps ψ

∗(ρsπ − ρsπE ).

The proof of Lemma 5.3 is similar to that of Lemma 5.1.
Now based on Lemmas 5.1, 5.2, and 5.3 we can conclude
that Proposition 5.1 holds.

Having proved this proposition, we can solve
arg minπ∈Π ψ

∗(ρsπ − ρsπE ) instead of RL ◦ IRLfOψ(πE).
To this end, we consider the generative adversarial
regularizer

ψGA(c) ,

{
EπE [g(c(s, s′))] if c < 0

+∞ otherwise
(9)

where

g(x) =

{
−x− log(1− ex) if x < 0

+∞ otherwise
(10)

which is a closed, proper, convex function and has convex
conjugate

ψ∗GA(ρsπ − ρsπE ) = max
D∈(0,1)S×S

∑
s,s

ρsπ(s, s′) log(D(s, s′))+

ρsπE (s, s′) log(1−D(s, s′)) ,

(11)

where D : S × S → (0, 1) is a discriminative classifier. A
similar convex conjugate is derived in Ho & Ermon; How-
ever, for the sake of completeness, we prove the properties
claimed for (9) and show that (11) is its convex conjugate
in the appendix. 2

Using the above, the imitation from observation problem
can be solved as:

min
π∈Π

ψ∗GA(ρsπ − ρsπE ) =min
π∈Π

max
D∈(0,1)S×S

Eπ[log(D(s, s′))]+

EπE [log(1−D(s, s′))]

(12)

We can see that the loss function in (12) is similar to the
generative adversarial loss. We can connect this to general
GANs if we interpret the expert’s demonstrations as the real
data, and the data coming from the imitator as the generated

2This proof closely follows the proofs of Proposition A.1. and
Corollary A.1.1. of Ho & Ermon and it is included here for the
sake of completeness. The only substantive difference is that in
our case we consider state-transition occupancy measure (s, s′)
instead of (s, a).

Algorithm 1 GAIfO
1: Initialize parametric policy πφ with random φ
2: Initialize parametric discriminator Dθ with random θ
3: Obtain state-only expert demonstration trajectories
τE = {(s, s′)}

4: while Policy Improves do
5: Execute πφ and store the resulting state transitions

τ = {(s, s′)}
6: Update Dθ using loss

−
(
Eτ [log(Dθ(s, s

′))] + EτE [log(1−Dθ(s, s
′))]
)

7: Update πφ by performing TRPO updates with reward
function

−
(
Eτ [log(Dθ(s, s

′))]
)

8: end while

data. The discriminator seeks to distinguish the source of the
data, and the imitator policy (i.e., the generator) seeks to fool
the discriminator to make it look like the state transitions it
generates are coming from the expert. The entire process can
be interpreted as bringing the distribution of the imitator’s
state transitions closer to that of the expert. We call this
process Generative Adversarial Imitation from Observation
(GAIfO).

6. Practical Implementation
Based on the preceding analysis, we now specify our practi-
cal implementation of the GAIfO algorithm. We represent
the discriminator, D, using a multi-layer perceptron with
parameters θ that takes as input a state transition and outputs
a value between 0 and 1. We represent the policy, π, using
a multi-layer perceptron with parameters φ that takes as
input a state and outputs an action. We begin by randomly
initializing each of these networks, after which the imitator
selects an action according to πφ and executes that action.
This action leads to a new state, and we feed both this state
transition and the entire set of expert state transitions to
the discriminator. The discriminator is updated using the
Adam optimization algorithm (Kingma & Ba, 2014), with
cross-entropy loss that seeks to push the output for expert
state transitions closer to 0 and the imitator’s state transi-
tions closer to 1. After the discriminator update, we perform
trust region policy optimization (TRPO) (Schulman et al.,
2015) to improve the policy using a reward function that
encourages state transitions that yield small outputs from the
discriminator (i.e., those that appear to be from the demon-
strator). This process continues until convergence. The
algorithm is shown in Algorithm 1 and the framework is
summarized in Figure 1.

The implementation described above is only effective
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Demonstrator Imitator

Environment

. . . s

. . . π

. . . a. . .s

. . .s . . . s′

. . . D

v ↑ 1

. . .s . . . s′

. . .D

v ↓ 0

Figure 1. A diagrammatic representation of GAIfO. On the left, s
(dark blue) and s′ (light blue) are the state and next-state features
in a demonstration transition, respectively. On the right, dark blue
neurons represent the imitator’s states. Based on policy π (green),
it performs action a (red) in the environment, and encounters the
next-state s′ (light blue). We aim to find a policy that generates
state-transitions close to the demonstrations. To this end, we itera-
tively train the discriminator and the policy. The discriminator is
trained in a way to output values v (brown) close to zero for the
data coming from the expert (left) and close to one for the data
coming from the imitator (right). The policy is trained to generate
state-transitions close to the demonstrations so that the discrimina-
tor is not able to distinguish them from the demonstrations.

for cases in which the demonstration consists of low-
dimensional state representations. In particular, the imi-
tation policy maps a single state to the imitating action and
the reward function operates on a single state transition.
This approach is feasible for cases in which (a) the states
can be assumed to be fully-observable, and (b) the system is
strictly Markovian. However, when considering visual state
representations, neither of these assumptions is necessarily
valid. Therefore, agents operating in such state spaces are
typically provided instead a recent state history. This is
useful because, for example, having knowledge about the
velocity of the agent at each time step is important in order
to select the correct action, and velocity information is not
available when considering a single image. Therefore, we
propose here a second implementation of GAIfO that en-
ables imitation from visual demonstration data. It modifies
the implementation used for low-dimensional state repre-
sentations by adding convolutional layers and using images
from multiple time steps as the input to the generator and
discriminator. This implementation is summarized in Figure
2.

7. Experimental Setup and Implementation
Details

We evaluate our algorithm in domains from OpenAI Gym
(Brockman et al., 2016) based on the Pybullet simulator
(Coumans & Bai, 2016-2017). In each of the domains, we
used trust region policy optimization (TRPO) (Schulman

et al., 2015) to train the expert agents, and we recorded the
demonstrations using the resulting policy.

The results shown in the figures are the average over ten
independent trials. We compare our algorithm against three
baselines:

• Behavioral Cloning from Observation
(BCO)(Torabi et al., 2018): BCO first learns
an inverse dynamics model through self-supervised
exploration, and then uses that model to infer the
missing actions from state-only demonstrated trajec-
tories. BCO then uses the inferred actions to learn
an imitation policy using conventional behavioral
cloning.

• Time Contrastive Networks (TCN)(Sermanet et al.,
2017): TCNs use a triplet loss to train a neural network
to learn an encoded form of the task at each time step.
This loss function brings the states that occur in a small
time-window closer together in the embedding space
and pushes the ones from distant time-steps far apart.
A reward function is then defined as the Euclidean
distance between the embedded demonstration and
the embedded agent’s state at each time step. The
imitation policy is learned using RL techniques that
seek to optimize this reward function.

• Generative Adversarial Imitation Learning (GAIL)
(Ho & Ermon, 2016): This method is as specified in
Section 3. Note that, this method has access to the
demonstrator’s actions while the others do not.

8. Results and Discussion
In this section, we present the results of the two sets of
experiments described above.

8.1. Low-dimensional State Representations

Figure 3 illustrate the comparative performance of GAIfO in
our experimental domains using the low-dimensional state
representations. We can see that, for the domains considered
here, GAIfO (a) performs very well compared to other IfO
techniques, and (b) is surprisingly comparable to GAIL even
though GAIfO lacks access to explicit action information.

Figure 3 compares the final performance of the imitation
policies learned by different algorithms. We can clearly see
that GAIfO outperforms the other imitation from observation
algorithms by a large margin in most of the experiments. For
the InvertedDoublePendulum domain, we can see that the
TCN method does not perform well at all. We hypothesize
that this is the case because TCN relies on time synchroniza-
tion in order to find the imitating policy, i.e., it learns what
the state should be at each time step. However, successfully
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Figure 2. A diagrammatic representation of our GAIfO implementation for processing visual state representations. A stack of 4 grayscale
images from t− 3 to t (t being the current time-step) enters the policy CNN (top left). The policy outputs an action that the agent takes in
the environment and goes to the next state in time t+ 1 (top right). A stack of 3 grayscale images from t− 1 to t+ 1 of the agent is
prepared along with a stack of 3 consecutive state images (grayscale) of the demonstrator (bottom right). When data from the imitation
policy is provided, the stack from the imitator enters the discriminator and outputs the reward for taking that action (bottom left). This
reward value is then used to both update the policy using TRPO and also update the discriminator using supervised learning (to drive the
value closer to zero). When data from the demonstrator is provided, the stack from the demonstrator enters the discriminator and outputs a
value which is then used to update the discriminator (to drive the value closer to one).

performing the InvertedDoublePendulum task requires the
agent to simply keep the pendulum upright, and requiring
it to time synchronize with the demonstrator may be too
restrictive a requirement. BCO, on the other hand, performs
very well in this domain, which demonstrates that, here,
the inverse dynamics model learned by BCO is accurate
and that the compounding error problem is negligible. We
can see that GAIfO also performs very well here, achieving
performance similar to that of the expert, which shows that
the algorithm has been able to extract the goal of the task
and find a reasonable cost function from which to learn the
policy.

For the InvertedPendulumSwingup domain, we can see that
TCN again does not perform well, perhaps because the goal
of the task is not well-represented in the encoding-learning
phase. BCO also does not perform well. We hypothesize
that this is the case because of the compounding error prob-
lem since performing this task successfully is contingent
on taking several specific actions consecutively – deviation
from those actions would cause the pendulum to drop down
and not reach the goal. GAIfO and GAIL, on the other hand,
perform as well as the expert, which reveals that these algo-
rithms have successfully extracted the goal and learned the
task.

For both the Hopper and Walker2D domains, it can be seen
that, again, TCN does not work well. We posit that this

might be due to the fact that these tasks require behavior
that is cyclic in nature, i.e., the expert demonstrations con-
tain repeated states. Because TCN learns a time-dependent
representation of the task, it cannot appropriately handle
this periodicity and, therefore, the learned representations
are not sufficient. GAIfO, however, learns a distribution of
the state transitions that is not time-dependent; therefore,
periodicity does not affect its performance. BCO also does
not perform well in either of these two domains, perhaps
again due to the compounding error problem. Learning in
these domains has two steps: first, the agent needs to learn
to stand, and then the agent needs to learn to walk or hop.
With BCO, it would seem that the imitating agent begins to
deviate from the expert early in the task, and this early devi-
ation ultimately leads to the imitating agent being unable to
learn the secondary walking and hopping behaviors. GAIfO,
on the other hand, does not suffer from this issue because it
learns by executing its own policy in the environment (on-
policy learning) and is therefore able to address deviation
from the expert during the learning process.

8.2. Visual State Representations

In this section, we discuss the results of the experiments per-
formed on the cases where the states are represented using
the raw visual data. Figure 4 illustrates the comparison be-
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performances such that a random and the expert policy score 0.0 and 1.0, respectively. *GAIL has access to action information.
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Figure 4. Performance of algorithms in visual experiments with respect to the number of demonstration trajectories. Rectangular bars and
error bars represent mean return and standard deviations, respectively. For comparison purposes, we have scaled all the performances such
that a random and the expert policy score 0.0 and 1.0, respectively.

tween the performance of GAIfO, BCO and TCN. 3 In these
experiments, like the ones done using the lower-dimensional
state representations, the expert is trained with TRPO using
low-level state features, and the quantities 0 and 1 repre-
sent the performance of a random agent and the expert,
respectively. The demonstrations, though, consist of visual
recordings using the trained policy. Accordingly, for a more-
representative baseline, we also learn a policy with TRPO
using visual states only (as opposed to the low-dimensional
state observations) and represent the performance of that
agent using a black dotted line on the plots. This line is
important in our comparison because it shows (everything
being similar to IfO methods) what would have been the
resulting performance if the agent had access to the reward.
Figure 4 shows that GAIfO outperforms other approaches
by a large margin.

It is interesting to notice that, even though GAIfO (like the
other IfO techniques) does not achieve the performance
of the expert agent (solid line), it does achieve the perfor-
mance of the TRPO-trained agent that used visual state
representations. This suggests that, in these cases, the drop
in imitation performance is perhaps due to a fundamental
limitation of learning the task from visual data (i.e., partial
state observability).

3Here, we do not compare against GAIL because doing so
would require a drastic change to the structure of its discriminator
in order to process raw visual data, i.e., the discriminator would
need to be altered to appropriately mix action and visual data.

Finally, it can be seen that BCO does not perform well
in any of the domains, perhaps due to (a) the complexity
of learning dynamics models over visual states, and (b)
compounding error. TCN also does not work well, perhaps
due to the demonstrations not being time-synchronized.

9. Conclusion and Future Work
In this paper, we presented a general framework for imi-
tation from observation (RL ◦ IRLfOψ(πE)) and then pro-
posed a specific algorithm (GAIfO) for doing so. GAIfO
removes the need for several restrictive assumptions that
are required for some other IfO techniques, including the
need for multiple demonstrations to be time-synchronized.
Moreover, the on-policy nature of GAIfO allows it to avoid
the compounding error problem experienced by more brittle
imitation techniques. The result is an approach that is able
to find better imitation policies without the need for action
information, and is also able to find imitation policies that
perform very close to those found by techniques that do
have access to this information.

Regarding future work, note that, in our analysis, we did
not consider policy entropy terms in either the IRLfO step,
nor in the RL step. Therefore, it would be interesting to
include entropy in these equations – as has been shown to
be beneficial in some cases (Haarnoja et al., 2017; 2018) –
and investigate its effects on the overall problem and results
as has been shown to be beneficial in some cases.
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