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The Problem

Mobile Robot Localization

Maintain estimate of global position and orientation over time

Given map of fixed landmark locations

Not SLAM
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Challenging Platform

Typical Platform

Wheeled robot

Range-finding sensors

Sony Aibo ERS-7
Color CMOS Camera in nose

Narrow field-of-view (56o)
30 YCrCb frames per second

Quadruped
576MHz processor

All on-board processing
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Challenging Platform

Our Platform
Legged robot

Vision-based sensors

Sony Aibo ERS-7
Color CMOS Camera in nose

Narrow field-of-view (56o)
30 YCrCb frames per second

Quadruped
576MHz processor

All on-board processing
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Goal

Desiderata

Navigate to specific point quickly

Remain localized while colliding

Recover quickly from kidnappings

Approach

Begin with baseline MCL algorithm

Add set of practical enhancements

Large improvement over baseline

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Goal

Desiderata

Navigate to specific point quickly

Remain localized while colliding

Recover quickly from kidnappings

Approach

Begin with baseline MCL algorithm

Add set of practical enhancements

Large improvement over baseline

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Goal

Desiderata

Navigate to specific point quickly

Remain localized while colliding

Recover quickly from kidnappings

Approach

Begin with baseline MCL algorithm

Add set of practical enhancements

Large improvement over baseline

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Method: Particle Filtering

Estimate p(hT |oT , aT−1, oT−1, aT−2, . . . , a0):
Distribution of poses given observations and actions
Represented by finite set of samples: particles

Each is a hypothesis: 〈〈x , y , θ〉 , p〉

Average to get single estimate of pose and confidence
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Extended Motion Model

2 Empirical Results
Physical Robot Experiments
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Distance-Based Updates
Landmark Histories
Extended Motion Model

Baseline: Observation Update

Need sensor model: p(o|h)

Predicts observations given pose hypothesis using map

Update each particle when robot sees something
Compute similarity for each observed landmark in frame

Use angles only [Rofer and Jungel, 2003]
Measured and expected angle difference

Compute product of similarities
Adjust probability closer to new value
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Distance-Based Updates
Landmark Histories
Extended Motion Model

Enhancement: Distance-Based Updates

Enhancement to observation update
Use distance in addition to angle

Update each particle
Difference between measured and expected distance
Use average of distance and angle similarities

Distances must be very accurate

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Enhancement: Distance-Based Updates

Enhancement to observation update
Use distance in addition to angle

Update each particle
Difference between measured and expected distance
Use average of distance and angle similarities

Distances must be very accurate

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Enhancement: Distance-Based Updates

Enhancement to observation update
Use distance in addition to angle

Update each particle
Difference between measured and expected distance
Use average of distance and angle similarities

Distances must be very accurate

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Enhancement: Distance-Based Updates

Enhancement to observation update
Use distance in addition to angle

Update each particle
Difference between measured and expected distance
Use average of distance and angle similarities

Distances must be very accurate

 0

 1

 0

S
im

ila
rit

y

Distance Difference

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Enhancement: Distance-Based Updates

Enhancement to observation update
Use distance in addition to angle

Update each particle
Difference between measured and expected distance
Use average of distance and angle similarities

Distances must be very accurate

 0

 1

 0

S
im

ila
rit

y

Distance Difference

 0

 1

 0

S
im

ila
rit

y

Angle Difference

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Enhancement: Distance-Based Updates

Enhancement to observation update
Use distance in addition to angle

Update each particle
Difference between measured and expected distance
Use average of distance and angle similarities

Distances must be very accurate

 0

 1

 0

S
im

ila
rit

y

Distance Difference

 0

 1

 0

S
im

ila
rit

y

Angle Difference

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Estimating Landmark Distances

Know actual height of beacon and focal length of camera

Measure height of beacon in image

Use similar triangles to find distance

Error due to pixelized segmentation, distortion, etc.

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Estimating Landmark Distances

Know actual height of beacon and focal length of camera

Measure height of beacon in image

Use similar triangles to find distance

Error due to pixelized segmentation, distortion, etc.

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Estimating Landmark Distances

Know actual height of beacon and focal length of camera

Measure height of beacon in image

Use similar triangles to find distance

Error due to pixelized segmentation, distortion, etc.

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Estimating Landmark Distances

Know actual height of beacon and focal length of camera

Measure height of beacon in image

Use similar triangles to find distance

Error due to pixelized segmentation, distortion, etc.

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Estimating Landmark Distances

Know actual height of beacon and focal length of camera

Measure height of beacon in image

Use similar triangles to find distance

Error due to pixelized segmentation, distortion, etc.

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Estimating Landmark Distances

Know actual height of beacon and focal length of camera

Measure height of beacon in image

Use similar triangles to find distance

Error due to pixelized segmentation, distortion, etc.

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Distance-Based Updates
Landmark Histories
Extended Motion Model

Function Approximation

Place robot at known distances

Actual and Measured don’t match
(Nonlinear relationship)

Approximate function using cubic
regression for each landmark

Maximum error reduced to 5%
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Function Approximation

Place robot at known distances

Actual and Measured don’t match
(Nonlinear relationship)

Approximate function using cubic
regression for each landmark

Maximum error reduced to 5%
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Baseline: Reseeding

Based on Sensor Resetting MCL [Lenser et al., 2000]
Helps recovery when lost

Triangulate position using multiple landmarks
Three landmarks using just angles
Two landmarks using distances and angles

Add new hypotheses before resampling step
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Baseline: Reseeding

Based on Sensor Resetting MCL [Lenser et al., 2000]
Helps recovery when lost

Triangulate position using multiple landmarks
Three landmarks using just angles
Two landmarks using distances and angles

Add new hypotheses before resampling step

Shortcoming

Robot must see multiple landmarks in the same frame
Infrequent with narrow field-of-view camera
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Distance-Based Updates
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Enhancement: Landmark Histories

Want more reseeding values
Maintain “history” of recent observations

Observation list for each landmark
Record: Dist, Ang, Conf, Timestamp, Odometer

Motion update

Confidence decay

Remove old

Weighted average

Combine for reseed
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Baseline: Motion Update

Need motion model: p(h′|h, a)

Predict new pose given previous hypothesis and action

Update each particle when robot moves
Use odometry velocities to translate particles
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Enchancement: Extended Motion Model

Problem

Tradeoff between speed and motion model accuracy
Large steps over small distances inaccurate
Unable to navigate to specific point

Solution: Change Behavior

Use accurate but slower walk near target
Step size reduced to 10% within 300mm of target
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Test for Accuracy and Time

Environment: RoboCup Legged League field
Size: roughly 3m × 5m
Landmarks: 4 beacons, 4 goal edges

Visit sequence of 14 points and headings
After stabilizing at a point, measure

Time taken
Position and orientation error
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Simulation Experiments

Test for Accuracy and Time

Six Localization Conditions
1 Baseline (None)
2 Landmark Histories (HST)
3 Distance-based probability updates (DST)
4 Function approximation of distances (FA)
5 Function approx. + distance-based updates (FA+DST)
6 All enhancements (All)

Extended Motion Model present in all

Average across 10 runs for each

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Physical Robot Experiments
Simulation Experiments

Test for Accuracy and Time

Six Localization Conditions
1 Baseline (None)
2 Landmark Histories (HST)
3 Distance-based probability updates (DST)
4 Function approximation of distances (FA)
5 Function approx. + distance-based updates (FA+DST)
6 All enhancements (All)

Extended Motion Model present in all

Average across 10 runs for each

M. Sridharan, G. Kuhlmann, and P. Stone – UT Austin Practical Vision-Based MCL on a Legged Robot



Practical Enhancements
Empirical Results

Summary

Physical Robot Experiments
Simulation Experiments

Results

Enhan. Dist Err (cm) Ang Err (deg) Total Time (s)
None 19.75±12.0 17.75±11.48 161.25±3.43
HST 17.92±9.88 10.68±5.97 161.26±5.96
DST 25.07±13.73 9.14±5.46 196.18±12.18
FA 15.19±8.59 10.21±6.11 171.85±15.19

DST+FA 13.72±8.07 9.5±5.27 151.28±48.06
All 9.65±7.69 3.43±4.49 162.54±4.38

With all enhancements
50% reduction in position error
80% reduction in orientation error
No significant change in time
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Additional findings
Bad distance updates hurt (25% increase in error)
Func. Approx. largest contributor
Combined better than in isolation
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Test for Stability

Test ability to stay localized once at target

Robot stationary at each of 14 points
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1 Attempt to localize for 10 seconds
2 Record deviation of pose estimate for 20 seconds
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Results

Enhan. Dist Dev (cm) Ang Dev (deg)
None 2.63 0.678
HST 1.97 0.345
DST 9.26 3.05
FA 1.46 0.338

DST+FA 4.07 1.30
All 1.32 0.332

Significant improvement in stability

Bad distance updates again perform worst
Func. Approx. alone does as well as All

Distance information useful in reseed estimates
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Evaluating Extended Motion Model

Test impact of extended MM in isolation
Evaluate ability to navigate to a point

Used “keeper” home position
Displace robot by hand a fixed distance
Allow to return to home position
Measure position and orientation error and time

Average of ten runs
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Physical Robot Experiments
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Results

Enhan. Dist Err (cm) Ang Err (deg) Time (s)
None 12.89 15.0 17.21

Extended MM 7.50 5.5 18.14

40% reduction in position error

60% reduction in orientation error

Only a small increase in time
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Simulator

Abstract noisy observations and
movements

Always know ground truth

Perturbations repeatable
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Test for Recovery

Robot follows figure 8 path
Perturbed once every 30 seconds

Two types of interference
Collisions (stop for 5s)
Kidnappings (teleported 1.2m)

Measure position and angle error on subset of conditions
Averaged over 2 hours (about 50 laps)
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Physical Robot Experiments
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Results

Enhan. Distance Error (cm)
Undisturbed Colliding Kidnapped

None 8.03 27.7 74.3
HST 17.6 25.3 27.3

DST+FA 7.83 16.2 31.5
All 8.67 14.4 13.5

As expected, performance worse in presence of perturbations

Enhancements mitigate performance degradation

Over 900% error increase for kidnappings without
enhancements
Reduced to 56% increase with all enhancements

Orientation error results similar
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Summary

Monte Carlo Localization works well in theory
Practical implementation issues

Especially using vision-based legged robots

Three Enhancements
Significant improvement over baseline
More dramatic for unmodeled movements

Help others avoid potential pitfalls
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