
In The IJCAI-2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains (IJCAI 2005),
Edinburgh, Scotland, UK, August 2005.

Bayesian Models of Nonstationary Markov Decision Processes

Nicholas K. Jong and Peter Stone
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

{nkj,pstone}@cs.utexas.edu

Abstract

Standard reinforcement learning algorithms gener-
ate polices that optimize expected future rewards in
a priori unknown domains, but they assume that the
domain does not change over time. Prior work cast
the reinforcement learning problem as a Bayesian
estimation problem, using experience data to con-
dition a probability distribution over domains. In
this paper we propose an elaboration of the typi-
cal Bayesian model that accounts for the possibil-
ity that some aspect of the domain changes spon-
taneously during learning. We develop a reinforce-
ment learning algorithm based on this model that
we expect to react more intelligently to sudden
changes in the behavior of the environment.

1 Introduction
Reinforcement learning (RL) research provides algorithms
for generating universal plans from experience, given min-
imal prior knowledge about the domain[Sutton and Barto,
1998]. Classical RL algorithms assume only that the domain
obeys the Markov property: the effects of each action depend
only on the currently observed state. However, the behavior
of many interesting domains depends on factors that are dif-
ficult or impossible to represent in the state space. A robot’s
effectors may change unexpectedly due to damage. An over-
turned truck may render a highway suddenly impassable. An
opened door in a previously explored area may grant access to
new opportunities. Standard RL algorithms adapt only grad-
ually to such drastic changes to the overall system. Enough
experience after the change must accumulate to outweigh the
outdated knowledge. The agent maynevernotice a change
that occurs in a region of the state space that the learned be-
havior doesn’t visit.

In this paper, we consider statistical methods for detect-
ing changes in the domain in a more timely manner. Intu-
itively, an intelligent agent should notice when the environ-
ment ceases to behave as expected. Such an agent should con-
sider throwing out or discounting its old model of the relevant
aspects of the environment. We adopt a Bayesian framework
that allows us to reason explicitly about uncertainty over the
domain[Strens, 2000]. We elaborate the standard probabilis-
tic model to represent the possibility of domain change. We

then propose an algorithm that employs statistical inference
techniques to behave more robustly in the presence of domain
change.

2 Background

The standard domain formalism in RL research is the Markov
decision problem (MDP). An MDP〈S, A, P, R〉 comprises a
finite set of statesS, a finite set of actionsA, a transition
function P : S × A × S → [0, 1], and a reward function
R : S × A → R. Executing an actiona in a states yields an
expected immediate reward ofR(s, a) and causes a transition
to states′ with probabilityP (s, a, s′). A policy π : S → A
specifies an actionπ(s) for every states and induces a value
function V π : S → R that satisfies the Bellman equations
V π(s) = R(s, π(s))+ γ

∑
s′∈S

P (s, π(s), s′)V π(s′), where
γ ∈ [0, 1] is a discount factor for future reward that may be
necessary to make the equations satisfiable. For every MDP
at least one optimal policyπ∗ exists that maximizes the value
function at every state simultaneously. To compute an op-
timal policy from a fully specified MDP, a number of algo-
rithms are available, including dynamic programming, policy
iteration, and linear programming[Littmanet al., 1995].

In the RL problem, only the state spaceS and the ac-
tion spaceA are known a priori, but standard approaches as-
sume that the transition functionP and reward functionR
are fixed. An important class of RL algorithms are model-
based: they compute policies by first estimatingP andR and
then solving the estimated MDP. Although solving an MDP
is too computationally expensive to perform after every time
step, algorithms such as Prioritized Sweeping[Moore and
Atkeson, 1993] describe how to propagate incremental up-
dates to a model through a policy learned through dynamic
programming. However, model-based algorithms are partic-
ularly vulnerable to nonstationary domains, since they typ-
ically employ maximum likelihood estimates of parameters
of the model given all the available experience data. Hence,
changes in the domain will tend to averaged into a large body
of outdated prior experience.

In this paper, we elaborate a model-based algorithm called
Bayesian dynamic programming[Strens, 2000]. For each
state-action pair(s, a), this approach interpretsP (s, a, ·) as
the parameters of an a priori unknown multinomial distri-
bution andR(s, a) as the mean of an unknown normal dis-

tribution.1 We represent our initial uncertainty about these
unknown distributions as prior distributions over their pa-
rameters. The joint distribution over all the presumed-
independent state-action pairs yields a probability distribu-
tion over MDPs. Since conjugate families of prior distri-
butions exist for both the multinomial and normal distribu-
tions, we can compactly represent and efficiently update these
distributions over MDPs. At the beginning of each training
episode, Bayesian dynamic programming samples a hypo-
thetical model of the domain from this distribution and then
behaves according to the policy obtained from solving the
model.

3 A Probabilistic Model of Change
We propose a simple model of environmental change: after
every episode and for each state-action pair, the associated
multinomial successor-state distribution and normal reward
distribution reset with some small probability to distributions
drawn from the respective original priors. This model caters
to the fact that only small parts of a domain may change at
a time. A more sophisticated model might also capture the
fact that a change in one state-action pair makes a change
in another pair more likely, but such models may be quite
complex.

Our Bayesian model of the domain must change to acco-
modate this probability of reset. Suppose that we havek com-
plete training episodes of data. Consider a particular state-
action pair(s, a). LetT denote the episode number when the
state-action pair(s, a) last reset, soT = 0 is the hypothesis
that the behavior ofa at states has never changed andT = k
is the hypothesis that the behavior reset at the beginning ofthe
current episode. LetP denote the successor state distribution
given(s, a). Then we have a hierarchical distribution overP ,
given byPr(P = ~p) =

∑
t
Pr(P = ~p|T = t) · Pr(T = t),

wherePr(P = ~p|T = t) is the result of the standard Bayesian
conditioning process, but using only a suffix of all the data.
Similar reasoning applies to the distribution overR, the re-
ward function evaluated at(s, a). When we sample a hypoth-
esis MDP from our Bayesian model, we must now first draw
a sample hypothesizing the last time each state-action pairre-
set (according to the distributionPr(T), before sampling the
pieces of the transition and reward functions from posterior
distributions conditioned on the corresponding suffixes ofthe
data.

No conjugate family of prior distributions exists forPr(T),
so in practice we approximate this distribution by maintaining
the relative probabilities for a small subset of episode num-
bers. The computation of these relative probabilities poses
another obstacle. Suppose that we have a prior distribu-
tion Pr(T) that we want to update given experience dataD
that we assume all come from the same distribution. Then
from Bayes’ Theorem we havePr(T = t|D) ∝ Pr(D|T =
t)·Pr(T = t). We can rewrite the model likelihood as an inte-
gral over Bayesian models conditioned on a suffix of the data:
Pr(D|T = t) =

∫ ∫
Pr(D|P = ~p, R = r, T = t) · Pr(P =

1The MDP formalism does not require the rewards to be
normally-distributed, but this assumption seems fairly innocuous
given that we care only about the mean of the reward distribution.

~p|T = t) · Pr(R = r|T = t) d~p dr. Computing the model
likelihood exactly is infeasible, but we can approximate it
with Monte Carlo integration by sampling some number of
values forP andR, again conditioned on the appropriate suf-
fix of the data.

Our Bayesian model of the state-action pair(s, a) is there-
fore approximate in two ways. First, we approximatePr(T)
with a bounded-size sample of the most probable values ofT .
Each point in this sample has a scalar weight and a Bayesian
model ofP andR, represented exactly as the appropriate pa-
rameters to the conjugate priors for these distributions. The
second approximation is in our Bayesian update of our model
given new data. We reweight the sample by multiplying each
weight by the model likelihood, estimated using Monte Carlo
integration.

4 Application of the Bayesian Model

We can use the Bayesian model elaborated above directly
with Strens’ Bayesian dynamic programming algorithm
[Strens, 2000]. After each episode, we add to our sample
of Pr(T) the hypothesis for each state-action pair that it reset
before that episode. We give this hypothesis some portion of
the weight equal to our prior probability of domain change at
each episode. Then we condition the weights and each model
of P andR on the data from that episode. To keep the sample
size reasonable, we select a value ofT to discard. Finally, for
the next episode, we sample an MDP from the hierarchical
model.

This Bayesian approach to recognizing domain change al-
lows us to avoid unilateral commitments to either keeping or
discarding old data. Additionally, in the absence of evidence
to the contrary, it gradually increases the belief that neglected
state-action pairs have reset. If the prior distribution over the
reward function is optimistic, then the agent will eventually
choose to explore the action again.

Unfortunately, Bayesian dynamic programming does not
always work so well when the state-action pair that changed
is part of the learned policy. If a previously reliable action
suddenly fails entirely, the solution to the sampled MDP may
cause the agent stubbornly to retry expensive actions until
timing out. The same phenomenon can occur in model-free
methods such as Q-learning: depending on the learning rate,
the agent may spend quite some time in a negative-reward
loop.

We propose a small modification of Bayesian dynamic pro-
gramming. If the number of visits to a state in a single episode
exceeds a certain threshold, we begin to conduct statistical
goodness-of-fit tests to evaluate our hypotheses forP andR
at the appropriate state-action. If the data collected during
that episode cause us to reject the sample ofP or R, we im-
mediately resample them from a Bayesian model conditioned
on only that data. We then update the policy as necessary to
solve the updated MDP. Note that even though we resample
from a distribution assuming that a reset occurred, we still
update the Bayesian model as usual at the end of the episode.

5 Future Work and Discussion
The implementation and evaluation of the algorithm de-
scribed above remains to be done. However, we believe that
this approach of building a Bayesian model of domain uncer-
tainty is very promising. One concern is the computational
cost of Bayesian inference, but the proposed modifications
to Bayesian dynamic programming should not worsen the
runtime much. The Monte Carlo integration only occurs for
state-action pairs executed during an episode, and the primary
cost of this procedure is the sampling ofP andR that the
algorithm already performs once for every state-action pair.
The goodness-of-fit tests only occur upon revisiting a state
several times in the same episode, and some form of expo-
nential backoff can help prevent spurious testing. (Testing
again after one additional data point is unlikely to producea
different result.)

The ideas described in this paper are reminiscent of our
previous usage of a Bayesian model of MDPs to infer state
abstractions[Jong and Stone, 2005] from the solution of one
MDP for use in similar MDPs. A particularly promising
avenue of future research is the usage of a single Bayesian
model to reason about both dynamic domains and state ab-
straction simultaneously. In this framework we can imagine
inducing structure such as state abstraction that continues to
aid learning despite continual changes in the reward and tran-
sition functions.

Acknowledgments
This research was supported in part by NSF CAREER award
IIS-0237699 and DARPA grant HR0011-04-1-0035.

References
[Jong and Stone, 2005] Nicholas K. Jong and Peter Stone.

State abstraction discovery from irrelevant state variables.
In Proceedings of the Nineteenth International Joint Con-
ference on Artificial Intelligence, 2005.

[Littmanet al., 1995] Michael L. Littman, Thomas L. Dean,
and Leslie Pack Kaelbling. On the complexity of solving
Markov decision problems. InProceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, 1995.

[Moore and Atkeson, 1993] Andrew W. Moore and Christo-
pher G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less real time.Machine Learn-
ing, 13:103–130, 1993.

[Strens, 2000] Malcolm Strens. A Bayesian framework for
reinforcement learning. InProceedings of the Seventeenth
International Conference on Machine Learning, pages
943–950, 2000.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

