Learning to Interpret Natural Language Commands through Human-Robot Dialog

Jesse Thomason Shiqi Zhang, Raymond Mooney, Peter Stone

The University of Texas at Austin

Commanding Robots

Autonomous robots in human environments

Simplest to interact with via natural language

Our Task

- Command a robot operating in an office environment
- Robot autonomously wanders by default
- Robot can navigate to rooms and deliver items

System Goals

- Require little initial data
 - More domain independent
- Reason using composition
 - "Alice's office"
- Robust to lexical variation
 - "bring", "deliver", "take"
- Execute the right action
 - Perform clarifications with user

Closest Previous Work

- Service robot that accepts commands (Kollar, 2013)
- Semantics match spans of words to known actions/people/locations
- Can learn new referring expressions through dialog

Human	Go to Alice's office
Robot	Where is "Alice's office"?
Human	Room 3

 This system would explicitly match "Alice's office" to room 3

Closest Previous Work

- When system sees "Bob's office", will have to ask where that is
- Want to take advantage of compositionality instead
 - Reason about possessive marker "s" and what entities "office" picks out
- Need a more powerful formalism for representing sentence semantics
 - Want to keep initial training data light

Helpful Previous Work

 Augment a semantic parser through conversation logs (Artzi, 2011)

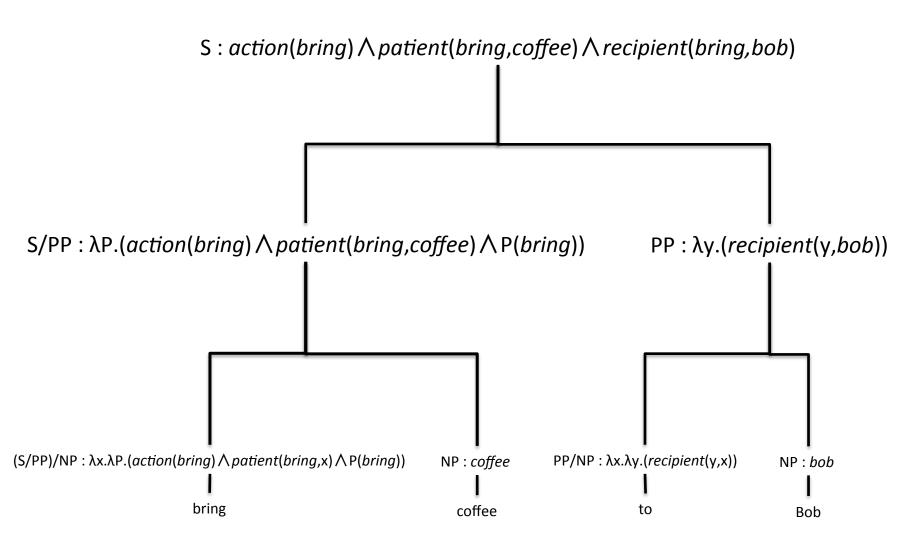
Human	I would like to fly out of boston arriving to new york and back from new york to boston
System	Leaving boston (CONFIRM: $from(fl1,BOS)$) on what date? (ASK: $\lambda x. departdate(fl1,x)$)

 Key idea for us: use known system semantic meanings to guess human utterance word meanings

Tag Token Sequence

```
University of Washington Semantic Parsing Framework (SPF); (Artzi, 2011)
Known possibilities for each token stored in a lexicon
Use Combinatory Categorial Grammar (CCG)-driven parsing
bring (S/PP)/NP: λx.λP.(action(bring) \(\Lambda\) patient(bring,x) \(\Lambda\) P(bring))
coffee \(\text{NP}: coffee\)
to \(\text{PP}/NP: \lambda x. \lambda y. (recipient(y,x))\)
Bob \(\text{NP}: bob\)
```

Construct Meaning Hierarchically



Tag Token Sequence – Missing Entry

```
bring — (S/PP)/NP : \lambda x.\lambda P.(action(bring) \land patient(bring,x) \land P(bring))
java — ?

to — PP/NP : \lambda x.\lambda y.(recipient(y,x))
Bob — NP : bob
```

Given semantic form, can guess about missing token syntax/semantics

Human	bring java to bob
Robot	what should I bring to bob?
Human	coffee

 $S: action(bring) \land patient(bring,coffee) \land recipient(bring,bob)$

Tag Token Sequence – Missing Entry

```
bring — (S/PP)/NP: \lambda x.\lambda P.(action(bring) \land patient(bring,x) \land P(bring))
java — ?

to — PP/NP: \lambda x.\lambda y.(recipient(y,x))
Bob — NP: bob
```

Given form:

 $action(bring) \land patient(bring,coffee) \land recipient(bring,bob)$

Lexicon entries that produce parts of this form:

bring :- $(S/PP)/NP : \lambda x. \lambda P. (action(bring) \land patient(bring, x) \land P(bring))$

bring :- $(S/NP)/NP : \lambda x.\lambda y.(action(bring) \land recipient(bring,x) \land patient(bring,y))$

coffee :- NP : coffee

Bob :- NP : bob

Candidates for 'java' lexical entry:

```
:- (S/PP)/NP : \lambda x.\lambda P.(action(bring) \land patient(bring,x) \land P(bring))
```

:- $(S/NP)/NP : \lambda x. \lambda y. (action(bring) \land recipient(bring, x) \land patient(bring, y))$

:- NP : coffee

:- NP : *bob*

Tag Token Sequence – Missing Entry

```
bring — (S/PP)/NP : λx.λP.(action(bring) \ \ patient(bring,x) \ \ \ P(bring))

java — NP : coffee

to — PP/NP : λx.λy.(recipient(y,x))

Bob — NP : bob
```

With new lexicon entry, we can construct the correct semantic form

 $S: action(bring) \land patient(bring,coffee) \land recipient(bring,bob)$

Meeting System Goals

- Require little initial data
 - Bootstrap parser with 5 expressions, 105 words
- Handle composition used by speakers
 - Use CCG-driven semantic parsing (Artzi, 2011)
- Robust to lexical variation
 - Incrementally train parser to obtain new words
- Execute the right action
 - Use dialog to clarify meanings with user (Kollar, 2013)

Mechanical Turk Experiment

- Users given one navigation and one delivery goal
 - Train/test goals chosen at random from possibilities
- Chat with robot's dialog agent until goal is understood

Mechanical Turk Interface

TASK TO COMPLETE

Dave Daniel wants the item in slot 5.

ROBOT	How can I help?
YOU	please bring the item in slot 5 to dave daniel
ROBOT	What should I bring to dave daniel?
YOU	a calander
ROBOT	I'm sorry, but I couldn't pinpoint what you meant by that.
ROBOT	What should I bring to dave daniel?
YOU	a day planner
ROBOT	I'm sorry, but I couldn't pinpoint what you meant by that.
ROBOT	What should I bring to dave daniel?
YOU	calendar
ROBOT	You want me to bring calendar to dave daniel?
YOU	yes
ROBOT	I thought so
ROBOT	Happy to help
YOU	
Final Task	

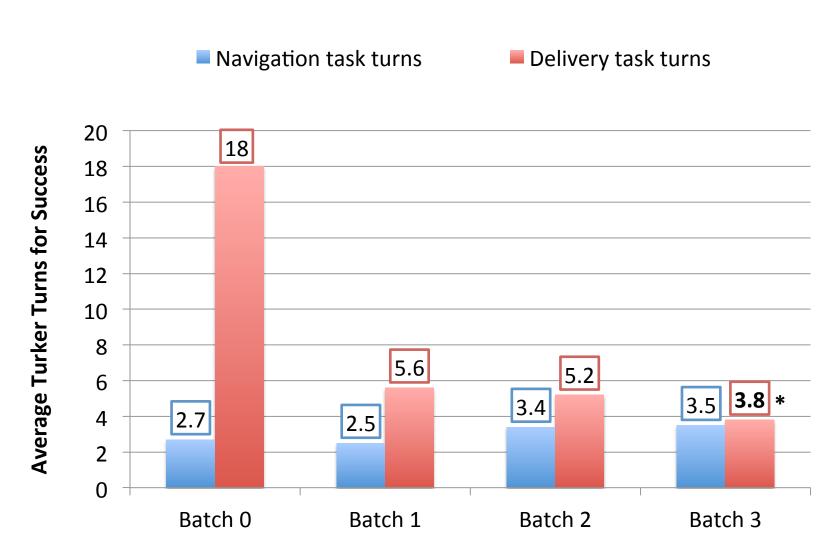
Items available to robot:

Final Task

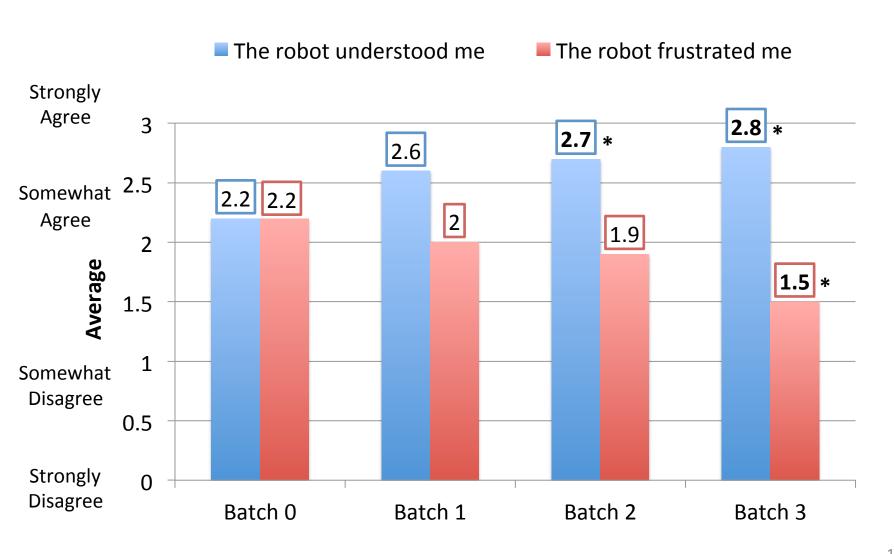
Large-Scale Experiment

- Tested in 4 phases
- ~50 users received test goals, ~50 train goals
 - Unique users in each phase
- System incrementally trained via train goal conversations only

Mechanical Turk Dialog Turns



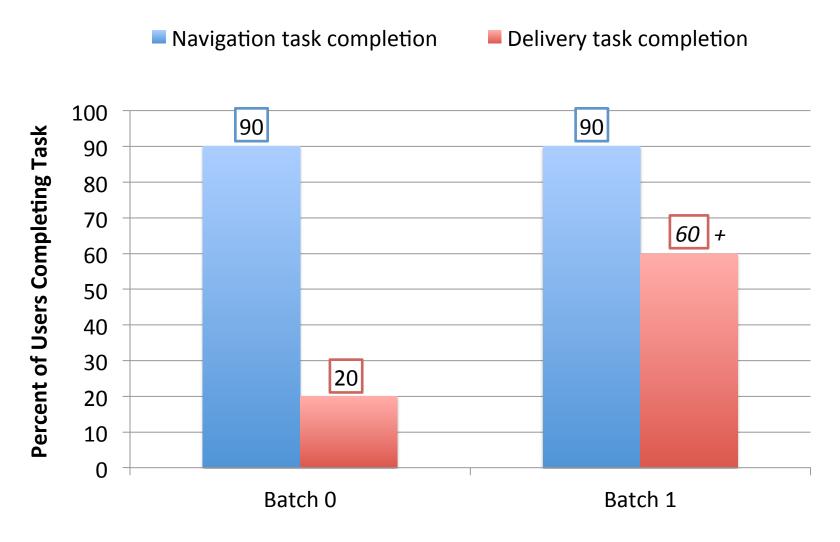
Mechanical Turk Survey Responses



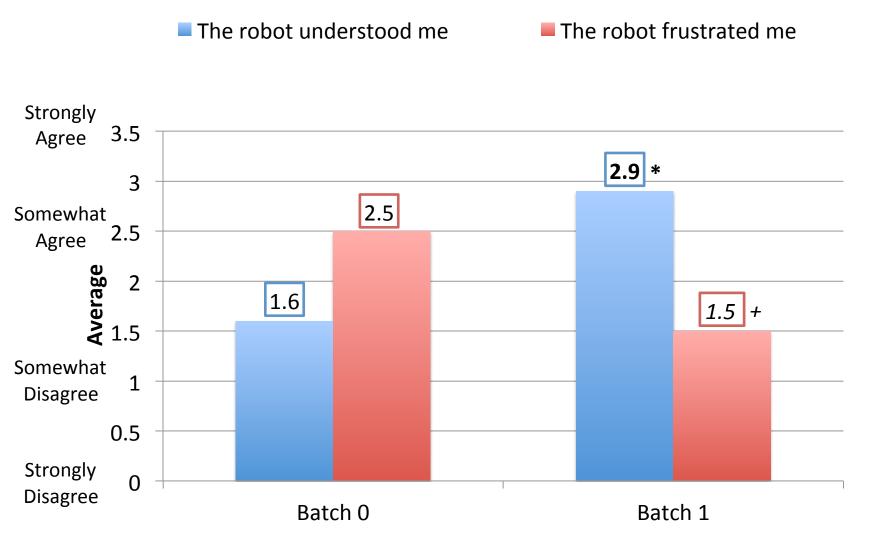
Robot Experiment

- Same setup, but real robot and fewer users
 - Users type to robot to mimic Mechanical Turk setup
- 10 users in initial test batch
- System interacted freely with people on the floor for four days as training (34 conversations in total)
- 10 users in the second test batch, after retraining

Office Robot Dialog Completion



Office Robot Survey Responses



Conclusions

- Lexical acquisition reduces dialog lengths for multi-argument predicates like delivery
- Causes users to perceive the system as more understanding
- Leads to less user frustration
- Allows improving language understanding without large, annotated corpora

Learning to Interpret Natural Language Commands through Human-Robot Dialog

Jesse Thomason Shiqi Zhang, Raymond Mooney, Peter Stone

The University of Texas at Austin

Related Work

- Command processing has taken many forms
- Specify tasks step-by-step (Meriçli, 2014)
 - Assumes particular words in particular order
- Specify low-level action sequences (Misra, 2014; Tellex, 2011)
 - Uses a parser trained on a huge corpus
- Map language to action specifications (Matuszek, 2013)
 - Cannot learn new words/expressions

Future Work

- Perceptual grounding (`blue', `left of')
- Predicate invention (`ruddy')
- Learning a multi-objective dialog policy that trades off learning and user satisfaction