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A Reinforcement Learning Problem: Montezuma's Revenge
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Learning Objective

Find an optimal policy, i.e., the action to take in an observed state that
maximizes expected longterm reward
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Montezuma's Revenge: Imitation Learning
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Survey Scope

@ 64 papers, 5 types of human guidance that...
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Survey Scope

@ 64 papers, 5 types of human guidance that...
@ Are beyond conventional step-by-step action demonstrations

@ Have shown promising results in training agents to solve deep
reinforcement learning tasks
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© Learning from Human Evaluative Feedback
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Montezuma's Revenge: Evaluative Feedback
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While the true reward is delayed and sparse, human evaluative
feedback is immediate and dense.
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Representative Works

Interpreting human feedback as:
@ Reward function, replacing reward provided by the environment

o TAMER: Training an agent manually via evaluative
reinforcement [Knox and Stone, 2009, Warnell et al., 2018]
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Representative Works

Interpreting human feedback as:
@ Direct policy labels
o Advise [Griffith et al., 2013, Cederborg et al., 2015]
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Representative Works

Interpreting human feedback as:

@ Direct policy labels
o Advise [Griffith et al., 2013, Cederborg et al., 2015]

@ Advantage function
o COACH: Convergent actor-critic by humans [MacGlashan et al., 2017]
e This interpretation explains human feedback behaviors better in several

tasks
e Still an unresolved issue that requires carefully designed human studies
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© Learning from Human Preference
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Montezuma's Revenge: Human Preference
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Ranking behaviors is easier than rating them.
And sometimes the ranking can only be provided at the end of a
behavior trajectory.
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Representative Works

o [Christiano et al., 2017]: As an inverse reinforcement learning
problem, i.e., learn human reward function from human preference
rather than from demonstration
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Representative Works

o [Christiano et al., 2017]: As an inverse reinforcement learning
problem, i.e., learn human reward function from human preference
rather than from demonstration

o Query selection? Preference elicitation [Zintgraf et al., 2018]

@ Many good works on preference-based reinforcement
learning [Wirth et al., 2017]
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@ Hierarchical Imitation
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Montezuma's Revenge: Hierarchical Imitation
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Human is good at specifying high-level abstract goals while the
agent is good at performing low-level fine-grained controls.
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Representative Works

o High-level+low-level demonstrations [Le et al., 2018]
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Representative Works

o High-level+low-level demonstrations [Le et al., 2018]

@ High-level demonstrations only [Andreas et al., 2017]
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Representative Works

o High-level+low-level demonstrations [Le et al., 2018]
@ High-level demonstrations only [Andreas et al., 2017]

@ A promising combination:

o High-level: Imitation learning, e.g., DAgger [Ross et al., 2011]
o Low-level: Reinforcement learning, e.g., DQN [Mnih et al., 2015]
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© Imitation from Observation
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Montezuma's Revenge: Imitation from Observation
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To utilize a large amount of human demonstration data that do
not have action labels, e.g., YouTube videos
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Representative Works

@ Challenge 1: Perception

o Viewpoint [Liu et al., 2018, Stadie et al., 2017]
o Embodiment [Gupta et al., 2018, Sermanet et al., 2018]

Lin Guan (UT Austin) Paper#10921



Representative Works

@ Challenge 1: Perception

o Viewpoint [Liu et al., 2018, Stadie et al., 2017]
o Embodiment [Gupta et al., 2018, Sermanet et al., 2018]

@ Challenge 2: Control

o Model-based: Infer the missing action given a state transitions (s, s’)
by learning an inverse dynamics
model [Nair et al., 2017, Torabi et al., 2018a]

o Model-free: e.g., bring the state distribution of the imitator closer to
that of the trainer using generative adversarial
learning [Merel et al., 2017, Torabi et al., 2018b]
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Representative Works

@ Challenge 1: Perception

o Viewpoint [Liu et al., 2018, Stadie et al., 2017]

o Embodiment [Gupta et al., 2018, Sermanet et al., 2018]
@ Challenge 2: Control

o Model-based: Infer the missing action given a state transitions (s, s’)
by learning an inverse dynamics
model [Nair et al., 2017, Torabi et al., 2018a]

o Model-free: e.g., bring the state distribution of the imitator closer to
that of the trainer using generative adversarial
learning [Merel et al., 2017, Torabi et al., 2018b]

@ Please see paper#10945: Recent Advances in Imitation Learning
from Observation [Torabi et al., 2019]
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@ Learning Attention from Human
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Montezuma's Revenge: Human Attention
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Human visual attention provides additional information on why a
particular decision is made, e.g., by indicating the current object
of interest.
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Representative Works

@ AGIL: Attention-guided imitation learning [Zhang et al., 2018]

@ Including attention does lead to higher accuracy in imitating human
actions
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Representative Works

Cooklng [Li et al., 2018]

(b) Driving [Palazzi et al., 2018, Xia et al., 2019]
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Survey Scope

An agent can learn...

From human evaluative feedback

From human preference

From high-level goals specified by humans

By observing human performing the task

From human visual attention
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Future Directions

@ Shared datasets and reproducibility

@ Understanding human trainers’ behaviors,
e.g.,[Thomaz and Breazeal, 2008]

@ A unified lifelong learning framework [Abel et al., 2017]
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