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Learning Objective

Find an optimal policy, i.e., the action to take in an observed state that
maximizes expected longterm reward
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Montezuma’s Revenge: Imitation Learning
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Survey Scope

64 papers, 5 types of human guidance that...

Are beyond conventional step-by-step action demonstrations

Have shown promising results in training agents to solve deep
reinforcement learning tasks
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Montezuma’s Revenge: Evaluative Feedback
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Motivation

While the true reward is delayed and sparse, human evaluative
feedback is immediate and dense.
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Representative Works

Interpreting human feedback as:

Reward function, replacing reward provided by the environment

TAMER: Training an agent manually via evaluative
reinforcement [Knox and Stone, 2009, Warnell et al., 2018]
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Representative Works

Interpreting human feedback as:

Direct policy labels

Advise [Griffith et al., 2013, Cederborg et al., 2015]

Advantage function

COACH: Convergent actor-critic by humans [MacGlashan et al., 2017]
This interpretation explains human feedback behaviors better in several
tasks
Still an unresolved issue that requires carefully designed human studies
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Montezuma’s Revenge: Human Preference
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Motivation

Ranking behaviors is easier than rating them.
And sometimes the ranking can only be provided at the end of a
behavior trajectory.
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Representative Works

[Christiano et al., 2017]: As an inverse reinforcement learning
problem, i.e., learn human reward function from human preference
rather than from demonstration

Query selection? Preference elicitation [Zintgraf et al., 2018]

Many good works on preference-based reinforcement
learning [Wirth et al., 2017]
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Montezuma’s Revenge: Hierarchical Imitation
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Motivation

Human is good at specifying high-level abstract goals while the
agent is good at performing low-level fine-grained controls.
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Representative Works

High-level+low-level demonstrations [Le et al., 2018]

High-level demonstrations only [Andreas et al., 2017]

A promising combination:

High-level: Imitation learning, e.g., DAgger [Ross et al., 2011]
Low-level: Reinforcement learning, e.g., DQN [Mnih et al., 2015]
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Montezuma’s Revenge: Imitation from Observation

Lin Guan (UT Austin) Paper#10921 22 / 33



Motivation

To utilize a large amount of human demonstration data that do
not have action labels, e.g., YouTube videos
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Representative Works

Challenge 1: Perception

Viewpoint [Liu et al., 2018, Stadie et al., 2017]
Embodiment [Gupta et al., 2018, Sermanet et al., 2018]

Challenge 2: Control

Model-based: Infer the missing action given a state transitions (s, s ′)
by learning an inverse dynamics
model [Nair et al., 2017, Torabi et al., 2018a]
Model-free: e.g., bring the state distribution of the imitator closer to
that of the trainer using generative adversarial
learning [Merel et al., 2017, Torabi et al., 2018b]

Please see paper#10945: Recent Advances in Imitation Learning
from Observation [Torabi et al., 2019]
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Montezuma’s Revenge: Human Attention
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Motivation

Human visual attention provides additional information on why a
particular decision is made, e.g., by indicating the current object
of interest.
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Representative Works

AGIL: Attention-guided imitation learning [Zhang et al., 2018]

Including attention does lead to higher accuracy in imitating human
actions
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Representative Works

(a) Cooking [Li et al., 2018]

(b) Driving [Palazzi et al., 2018, Xia et al., 2019]
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Survey Scope

An agent can learn...

From human evaluative feedback

From human preference

From high-level goals specified by humans

By observing human performing the task

From human visual attention
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Future Directions

Shared datasets and reproducibility

Understanding human trainers’ behaviors,
e.g.,[Thomaz and Breazeal, 2008]

A unified lifelong learning framework [Abel et al., 2017]

Lin Guan (UT Austin) Paper#10921 31 / 33



Survey: Leveraging Human Guidance for Deep
Reinforcement Learning Tasks

Ruohan Zhang, Faraz Torabi, Lin Guan,
Dana H. Ballard, Peter Stone

University of Texas at Austin

Presented by Lin Guan

Thank You!

Lin Guan (UT Austin) Paper#10921 32 / 33



References

Abel, D., Salvatier, J., Stuhlmüller, A., and Evans, O. (2017).

Agent-agnostic human-in-the-loop reinforcement learning.
NeurIPS Workshop on the Future of Interactive Learning Machines.

Andreas, J., Klein, D., and Levine, S. (2017).

Modular multitask reinforcement learning with policy sketches.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 166–175. JMLR. org.

Cederborg, T., Grover, I., Isbell, C. L., and Thomaz, A. L. (2015).

Policy shaping with human teachers.
In Twenty-Fourth International Joint Conference on Artificial Intelligence.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. (2017).

Deep reinforcement learning from human preferences.
In Advances in Neural Information Processing Systems, pages 4299–4307.

Griffith, S., Subramanian, K., Scholz, J., Isbell, C. L., and Thomaz, A. L. (2013).

Policy shaping: Integrating human feedback with reinforcement learning.
In Advances in neural information processing systems, pages 2625–2633.

Gupta, A., Devin, C., Liu, Y., Abbeel, P., and Levine, S. (2018).

Learning invariant feature spaces to transfer skills with reinforcement learning.
In International Conference on Learning Representations.

Knox, W. B. and Stone, P. (2009).

Interactively shaping agents via human reinforcement: The tamer framework.
In Proceedings of the fifth international conference on Knowledge capture, pages 9–16. ACM.

Le, H., Jiang, N., Agarwal, A., Dudik, M., Yue, Y., and Daumé, H. (2018).
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