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Abstract

While traditional agent-based learning techniques
have enjoyed considerable success, in recent years
there has been a growing interest in improving
such learning by leveraging humans as teachers.
These human-in-the-loop methods have demon-
strated substantial improvements by using human
subjects in a variety of interaction modalities. Un-
fortunately, there are few, if any, guidelines about
when one teaching modality is more appropriate
than another. In addition to highlighting this impor-
tant gap in the current literature, this paper presents
a pilot study that compares two specific teaching
modalities: learning by feedback and learning by
demonstration, and proposes a set of hypotheses
about their relative performance.

1 Introduction

There has been considerable success in allowing agent-based
machine learning techniques to autonomously learn difficult
tasks. In particular, reinforcement learning (RL) approaches
have enjoyed multiple past successes. However, RL algo-
rithms frequently need substantial amounts of data to learn a
decent control policy. In many domains, collecting such data
may be slow, costly, or infeasible. One promising approach
towards solving RL problems in a more sample-efficient man-
ner is to explicitly leverage human knowledge.

A number of recent papers have shown that human-in-the-
loop techniques can be successfully leveraged to tackle dif-
ficult tasks [Isbell et al., 2006; Thomaz and Breazeal, 2006;
Knox and Stone, 2009; Judah et al., 2010]. However, the
growing number of methods appearing in the literature place
different burdens on, and make different assumptions about,
the human trainer. Due in part to these differences, there are
currently few guidelines about what types of human training
are appropriate under different situations.

This paper presents a pilot study that compares two teach-
ing methods: learning from feedback and learning from
demonstration, each of which are described in the following
section. The primary contributions of this paper are as fol-
lows. First, we present initial results in which learning from
demonstration outperforms learning from feedback. Second,
we investigate secondary effects, including how the results
are highly sensitive to the experimental design, and how the
agent’s online performance during teaching compares with
the agent’s offline performance. Third, we discuss important
future directions to further investigate the relative merits of
different learning methods.
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2 Background

This section provides background on (1) reinforcement learn-
ing, the common framework for all tasks learned in this paper,
(2) learning from feedback via TAMER, which allows a hu-
man to critique an autonomous learner, and (3) learning from
demonstration, a method for learning to mimic a human.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a flexible approach that al-
lows agents to learn from experience. This section briefly in-
troduces RL using the standard notation of Markov decision
processes. At each time step the agent observes its state s € S
as a vector of k state variables, where s = (x1, o, ..., Tk).
The agent then selects an action a from the set of available
actions A. An MDP’s reward function R : S x A — R
and its (stochastic) transition function 7' : S x A +— S fully
describe the system’s dynamics. The agent attempts to max-
imize the long-term reward, which is determined by the (ini-
tially unknown) reward and transition functions. An agent
chooses which action to take in a given state via a policy,
m: S +— A. 7is modified by the learner over time to improve
performance, i.e., maximize the expected total reward.

2.2 Learning from Feedback (LfF)

We define the Learning from Feedback (LfF) problem as a
task where an agent attempts to maximize rewards from a hu-
man trainer.! In an LfF scenario, a human trainer observes an
agent and reinforces its behavior through push-buttons, spo-
ken word (“yes” or “no”), or any other signal that can be con-
verted to a real-valued signal of approval or disapproval. The
key challenge, then, is to create agents that can be effectively
guided by such feedback.

An agent acting in an MDP receives a sequence of state
descriptions (s1, so, ... where s; € S) and action opportuni-
ties (choosing a; € A at each s;). A human trainer provides
occasional positive and negative scalar reinforcement signals
(h1, ho,...) that are correlated with the trainer’s assessment
of recent state-action pairs. The agent’s goal is to learn a pol-
icy (7 : S — A) that maximizes the human’s expected long
term reinforcement. In this case, the MDP’s reward function
is not used—following Abbeel and Ng’s terminology [2004],
we call this an MDP\R.

'In previous work [Knox and Stone, 20091, this problem was
termed Interactive Shaping Problem, but we use LfF here to empha-
size the main difference between learning from feedback and learn-
ing from demonstration.



TAMER Framework

The TAMER framework was introduced by Knox and
Stone [2009] as one approach for an agent to learn from nu-
meric reinforcement signals. These feedback signals are gen-
erated by a human trainer who observes the agent attempt-
ing to perform a task. TAMER is motivated by two insights
about human reinforcement. First, reinforcement is only
slightly delayed; the trainer can quickly assess the agent’s
behavior and deliver feedback. Second, the trainer observes
the agent’s behavior with a model of that behavior’s long-
term effects. Thus the reinforcement can be assumed to be
fully informative with respect to the quality of the agent’s re-
cent behavior. Comparing LfF to RL, human reinforcement
is more similar to an action value (sometimes called a Q-
value), albeit a noisy and trivially delayed one, than it is to
an MDP reward. Consequently, TAMER assumes human re-
inforcement fully encompasses the quality of a state-action
pair and it uses regression to model a hypothetical human

reinforcement function, H : S x A — R, as H in real
time. In this pilot study, the regression algorithm for mod-
eling H is k-nearest neighbors. In the simplest form of credit
assignment, each reinforcement creates a label for the last

state-action pair.> The output of the resultant H function—
changing as the agent gains experience—determines the rela-
tive quality of potential actions, so that the exploitative action

is a = argmax,[H (s, a)l.
2.3 Learning from Demonstration

Learning from demonstration (LfD) research explores tech-
niques for learning a policy from examples, or demonstra-
tions, provided by a human teacher. LfD can be seen as a
subset of supervised learning, where the agent is presented
with labeled training samples and must model the function
which produced the data.

Similarly to RL and LfF, LfD can be defined in terms
of the agent’s observed state s € S and executable actions
a € A. Demonstrations are recorded as sequences of state-
action pairs {(so, ao), ..., (st, a)}, and these sequences typi-
cally only cover a small subset of all possible states in a do-
main. The agent’s goal is to generalize from the demonstra-
tions and learn a policy 7 : S — A, where 7 covers all states,
that imitates the demonstrated behavior.

Many different algorithms for using demonstration data to
learn 7 have been proposed. Approaches vary by how demon-
strations are performed (e.g., teleoperation, teacher follow-
ing, kinesthetic teaching, or external observation), the type of
policy learning method used (e.g., regression, classification,
or planning), and assumptions about the degree of demonstra-
tion noise and teacher interactivity (see [Argall et al., 2009]).
Across these differences, LfD techniques possess a number
of key strengths. Most significantly, demonstration leverages
the human teacher’s task knowledge to significantly speed up
learning by either eliminating exploration entirely [Grollman
and Jenkins, 2007; Nicolescu et al., 2008] or by focusing

The trivial delay is dealt with using a credit assignment tech-
nique similar to that described in Knox and Stone [2009]. We plan
to describe our current credit assignment technique exactly in a fu-
ture journal article.

learning on the most relevant areas of the state space [Smart
and Kaelbling, 2002].

Implemented LfD algorithm

For our pilot study, the subject fully controls the agent for a
predefined number of teaching episodes, producing numerous
state-action samples. We model 7 by k-nearest neighbor on
those samples, similarly to our LfF implementation. As with
TAMER, no MDP reward is received by the agent.

3 Expected Relative Strengths: LfF vs. LfD

This section briefly explores what the authors expected to be
the relative strengths and weaknesses of LfF and LfD. Note
that not all of these expectations are fully met in our pilot
study; future work will aim to collect more data and conclu-
sively show which of these expectations are (in)correct.

We expect LfD, where the teacher directly provides ac-
tions, to generally result in better learning than LfF, where
the teacher can only give feedback on the one action chosen.
Also, because the teacher controls the agent during demon-
strations, whereas LfF lets the initially uneducated agent con-
trol, we expect that the first few teaching episodes of demon-
stration will be performed more effectively than those of LfF,
reducing any cost associated with poor performance. Lastly,
many LfD control interfaces will be familiar to subjects be-
cause of video games and other push-button controllers.

However, LfF provides some advantages over LfD. First,
the interface for providing positive and negative feedback can
remain constant across tasks, whereas a control interface for
LfD is necessarily task-specific. Further, the actions available
in a task may be too complex for teachers to control (e.g., a
many-dimensional robot arm), making LfD infeasible. Sec-
ond, the critical feedback of LfF may require less task ex-
pertise than demonstration; intuitively, one can evaluate the
overall benefit of an action’s consequences without knowing
what action is optimal. Third, feedback likely places a lower
cognitive load on teachers than demonstrating, using less of
a human’s valuable resources. Fourth, agents learning from
LfF exhibit their learned policy during teaching, which in-
forms the teacher of the learner’s current strengths and weak-
nesses. In contrast, whereas a few LfD systems intersperse
demonstration and exhibition of the learned policy [Argall et
al., 20071, the majority of systems do not show the learned
policy during teaching, which may lead to poorly targeted
demonstrations.

These relative strengths and weaknesses support the more
general hypothesis that the relative performance of the two
teaching modes strongly depends on the situations under
which they are used. Factors such as the teacher’s interface
mastery, task expertise, and available cognitive resources will
be critical. Additionally, the cost of poor performance in early
episodes will also be an important factor. And the expressive-
ness of the employed model’s representation (of Hor), may
play an important role: poor expressiveness may increase the
discrepancy between behavior during teaching and learned
behavior in L{D.

4 Pilot Study

We designed a pilot study within the TAMER framework to
compare the efficacy of LfF and LfD in two simple MDPs
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Figure 1: Screenshots from (a) Cart Pole and (b) Mountain Car

using teachers who were not familiar with RL or MDPs.
The study used 16 undergraduates who were taking a first
semester computer science course, including both majors and
non-majors.® Students trained agents in the Cart Pole and
Mountain Car tasks (explained in the following subsection).

All students worked with Cart Pole first and Mountain Car
second. Students were selected randomly to perform first
one of the two training modalities—Lf{F or LfD—performing
the other type of training second. Each student was given
a chance to practice before his/her data was recorded,
as described in the following handout to participants:

You will have four teaching sessions for each task, first Cart
Pole and then Mountain Car. Within each task, the order
will be practice training by mode A, train by A, practice
training by B, train by B. A and B are randomly chosen to
be either demonstration or teaching by feedback.

4.1 Domains Used

Our study focused on two simple but well-studied RL do-
mains: Cart Pole and Mountain Car.* Cart Pole is explained
in our instructions to study participants:

Cart Pole: The agent is a cart that moves left and right to
keep a pole balanced upright between a V-shaped angular
region. The goal is to keep the pole balanced between the
V as long as possible. Cart Pole will automatically restart
if you balance for 300 time steps. The green box shows
which way the cart is moving (right or left).

The Mountain Car agent must drive an under-powered car
up a mountain as our instructions explained:

Mountain Car: The agent is a car that can choose to ac-
celerate left, right, or not at all. The task is for the car to
get to the goal (a marker on the top of the right hill) in the
least time possible. The green box shows whether the cart
is accelerating left, accelerating right, or not accelerating
at all. It will restart after 500 time steps.

Note that in an optimal policy, the “no acceleration” action
is never used as the agent should always increase its kinetic
and potential energy.

4.2 Instructions for LfF and LfD

For completeness, this section provides the instructions given
to participants for both training modalities.

3Mountain Car data was removed for three students who did not
finish teaching.

“Both tasks were adapted from RL-Library tasks and used RL-
Glue to connect the agent, the environment, and the graphical visu-
alizer [Tanner and White, 2009].

Demonstration: You will control the agent, which will
later learn to imitate your demonstrations. In both tasks,
“J” accelerates left and “L” accelerates right. (As these in-
structions note later, in the Mountain Car task, you can also
not accelerate by pressing “K.”)
Note for teaching by demonstration:
e The agent will keep performing the last action you
give; you don’t need to hold the button down or re-
peatedly press the button.

Teaching by feedback: The agent is in control, but you
reward behavior to encourage it and punish behavior to dis-
courage it. The agent expects a small delay in reaction, so
be quick but don’t worry about being immediate. Faster
button pressing is interpreted as stronger reinforcement. In
both tasks, “/” (the button with “?” too) rewards and “Z”
punishes.

Notes for teaching by feedback:

e The agent learns best when reinforcement is both con-
sistent and given very shortly after the action/event
being reinforced.

e Up to a certain level, more frequent feedback gener-
ally makes for better learning.

e Be careful not to give feedback for something that
hasn’t happened yet. In other words, don’t give re-
inforcement for an action that you anticipate but has
not occurred.

e Not giving feedback communicates that recent behav-
ior was neutral.

5 Results and Discussion

This section presents and discusses the results of our pilot
study. Given the fairly small sample size in this pilot study,
we do not consider statistical significance. There are two
types of performance to consider: the online performance,
which expresses the cost of training, and the offline perfor-
mance of the learned policy, which shows how the agent
would perform at any given stopping point.®> In this second
type of analysis, we test the policy after each episode, stati-
cally running it offline for 1000 episodes to measure its per-
formance. When not specified, the reader can assume that
“performance” refers to the performance of the learned pol-
icy, which is measured offline after each episode.

Section 3 discussed the comparative advantages the authors
expected of the two teaching modes: three advantages for
LfD and four for LfF. These formed our experimental hy-
potheses. We expected our experimental results, where ap-
plicable, to support these proposed advantages.

5.1 Main effect

The main effect with which we are concerned is the relative
performances of LfF and LfD in each domain. On the simple
measure of the teaching mode’s relative performances, LfD
constantly outperforms LfF in our experiments both online
and by policy, as shown in Figures 2 and 3. However, we will

SFor LfD, the online performance is the teacher’s performance
during demonstration.
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Figure 2: Mean performance per teaching episode during the teach-
ing session for Cart Pole (CP) and Mountain Car (MC)
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Figure 3: Mean performance of the learned policy, tested after each
teaching episode

explore various interaction effects—how varying a second in-
dependent variable affects performance in ways that could
not be predicted from the teaching mode alone—that strongly
suggest that LfD’s superior performance is not a general phe-
nomena but is, as hypothesized, situationally dependent.

Also, we expected LfD to have an online advantage in early
episodes (discussed in Section 3). However, it is difficult
to separate this early advantage from LfD consistently being
more effective overall, so we refrain from drawing conclu-
sions about early performance from this study.

5.2 Interaction effects

This section points out three experimental manipulations that
appear to affect mean performance, creating interaction ef-
fects: (1) the ordering of the teaching modes, (2) the wording
of the instructions, and (3) the general experimental design
as compared to a previous study. The first and third cases
cause changes in the relative performance of the two teaching
modes. For these evaluations and their respective figures (4,
5, and 6), we focus on the mean performance of the learned
policy during teaching, approximated by averaging perfor-
mance after each episode of the teaching session.

First, consider the order in which the subjects used the two
teaching modalities. For each task, a subject either taught by
demonstration and then feedback, or vice-versa. The order
was determined by simulated coin toss. Unfortunately, this
technique resulted in lopsided group sizes; in both domains,
LfF was first much more often than LfD: 9 of 13 times in
Mountain Car and 14 of 16 times in Cart Pole. This limits
what conclusions can be made about ordering, particularly
in Cart Pole. However, preliminary results suggest that LfF
benefits much more from being second than LfD. As shown in
Figure 4, there is almost no performance difference between
LfF and LfD when each is the second teaching mode. In both
tasks, LfF benefits from being second, whereas L{D receives
a minor benefit in Mountain Car and a sizable decrease in
performance in Cart Pole when it is second (though, again,
our Cart Pole data is not well balanced in the ordering).

Second, the instructions appear to produce an interaction
effect. After 11 subjects finished, the authors attempted to
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Figure 5: Performance of LfF and LfD after adjusting the subjects’
instructions

improve instructions by verbally telling subjects to give feed-
back frequently for LfF. In our limited data, LfF performance
improved on both tasks after this instructions modification
(see Figure 5). Surprisingly, the LfD performance improved
as well—fully exploring this surprising result is left to future
work.

Third, we consider the effect of the general experimental
design. In a past experiment [Knox and Stone, 2009], we
also tested TAMER on Mountain Car. In this previous study,
we prepared subjects more, announced high scores to spur
competition and to give a high bar for good performance, and
had other design differences. The online performance of the
previous LfF study is much closer to that of LfD than the
current study’s LfF online performance, though LfD still re-
sults in the least costly teaching sessions (Figure 6). Policy
performance data for the previous study was not immediately
available, but the effects discussed in Section 5.4 suggest LfF
would make further gains on LfD in policy performance.

5.3 Discussion of main and interaction effects

From the preliminary results presented above, we make two
tentative conclusions that we will examine with a larger study,
carefully designed with lessons learned from this one.

First, both teaching modes are sensitive to the experimental
setup. It seems naive to generalize by saying that one teach-
ing mode is superior to the other. Therefore, our goal go-
ing forward will be to find experimental designs that straddle
the line for which mode is more effective, allowing various
manipulations—teaching order, the amount of subject prepa-
ration, or properties of the task—to affect which mode per-
forms best. In other words, a manipulation that increases
interacting variable A changes the best teaching mode from
LfD to LfF, indicates that LfF becomes more desirable as A
increases. Such experiments allow us to better understand the
relative strengths and weaknesses of LfF and LfD.

Second, subjects need more preparation for LfF than for
LfD, although it is possible that a small amount of prepara-
tion provides much more benefit to LfF than LfD. Successful
teachers should have some understanding of both the inter-
face and the task. Regarding the interface, LfD has the ad-
vantage of being more or less the same as playing a video
game, something that people, especially computer science
undergraduates, generally have much experience in. LfF has
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a simple but alien interface, one that requires at least a small
amount of practice and instruction to master. In regard to the
task, we suspect that subjects who know little about a task
can learn a good strategy more easily through direct control
in LfD than by indirect control by feedback. Therefore, be-
fore training novel tasks by feedback, teachers should be able
to perform the tasks themselves or see them competently per-
formed. This tentative conclusion appears to contradict the
second expected strength of LfF from Section 3, but it may
operate in a different space of task expertise; LfF may require
more knowledge about the quality of various state trajecto-
ries, but less knowledge about the transition model (mapping
current state and action to next state to predict actions’ ef-
fects), which may not be a factor for these tasks since the
transition models are simple and easy for a trainer to learn.

5.4 Online vs. Offline Performance

If there is a large discrepancy between an agent’s online be-
havior (during teaching) and the behavior of its learned pol-
icy (during offline testing), the teacher might not be aware
of the weaknesses of the agent’s learned policy.® For exam-
ple, an LfD agent’s policy representation might not be able
to represent aspects of the demonstrations, causing the agent
to enter regions of the state space that are far from any vis-
ited during the demonstrations and are thus unknown. We
examine this discrepancy by looking at the difference in on-
line performance and policy performance. Since an LfF agent
is using its learned policy during teaching, we expect a lower
performance discrepancy than for LfD, where the model of
the demonstrations is hidden during teaching.

Figure 7, shows the performance differences—policy per-
formance minus online performance—in the mean reward re-
ceived per episode for both tasks. This difference can be
seen as a type of error, where the policy performance is con-
sidered actual performance and the teaching performance is
considered predicted performance.  In Mountain Car, our
expectations are met: LfF stays centered more or less just
below zero error, whereas LfD policies consistently perform
much worse than the online demonstration for that episode.
In Cart Pole, however, both teaching modes have a similar
amount of error over a training session. Although the policies
learned from demonstration again underperform the demon-
strations that guide them, LfF actually results in better end-
of-episode policies than the agents had shown during teach-
ing. A potential explanation of this surprising result is that
the end-of-episode policy has more learning samples than the
online agent during that episode. But this explanation does

SWe use “offline” and “policy” as interchangeable modifiers of
“performance” and “testing.”
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not suffice, since the agents do not improve online in the next
episode by the amount of the error.

In summary, on one task LfF had less discrepancy between
online performance and policy performance than did LfD,
and on another task the two modes had similar magnitudes
of discrepancies. Thus, our prediction was only partially
borne out. We also note that LfF’s learned policy did as well
or better than during teaching, whereas LfD’s policy did as
well or worse.

6 Additional Related Work

To the best of our knowledge, no prior research focuses on
comparing and evaluating different methods for integrating
teaching into an agent acting in an MDP.

Related to all the techniques below, but fundamentally dif-
ferent, is that of transfer learning, which typically allows a
target agent to directly access a source agent’s “brain.” The
challenge is typically to most effectively re-use the source
agent knowledge when the target agent has different capa-
bilities [Taylor and Stone, 2009]. A more recently inves-
tigated form of transfer relies on a human constructing a
sequence of tasks for the agent to train on [Taylor, 2009;
Zang et al., 2010].

The remainder of this section surveys some of the most
relevant related work that focuses on using a human to help
teach an agent, categorizing systems along two dimensions.
The first, and more important, is teaching modality, which
determines the type of interaction the teacher and agent will
have. The second is whether the agent has access to (and
uses) reward from the underlying MDP.

6.1 Demonstration

This section discusses research related to LfD that were not
discussed previously in Section 2.3.

A slightly different form of learning from human demon-
strations is Inverse Reinforcement Learning [Abbeel and Ng,
2004]. For this form of LfD, the a human temporarily controls
an agent within an MDP\R environment. Instead of learning
a policy that directly mimics the human, an agent employing
apprenticeship learning infers a reward function, R, from the
human-provided examples, and then uses RL to optimize the
policy on this inferred MDP, rather than attempting to directly
mimic the human’s policy.

LfD has also been used to improve reinforcement learn-
ing. Imitation learning may aim to directly mimic the
agent/human’s policy [Smart and Kaelbling, 2000; Price and
Boutilier, 2003], or to use it as a starting point for optimizing
the policy on the original MDP [Taylor ef al., 2011].

6.2 Reinforcement

Within psychology, behavioral shaping [Skinner, 1953] is a
training procedure that uses reinforcement to condition the

~—LfF



desired behavior in a human or animal. During training, the
reward signal is initially used to reinforce any tendency to-
wards the correct behavior, but is gradually changed to re-
ward successively more difficult elements of the task. Shap-
ing methods with human-controlled rewards have been suc-
cessfully demonstrated in a variety of software agent applica-
tions [Blumberg et al., 2002; Kaplan et al., 2002].

Three other approaches integrated human training with
autonomous learning. In Thomaz and Breazeal [2006], a
table-based Q-learning agent in a virtual kitchen environment
learns from a reward signal that is the sum of human rein-
forcement and MDP reward (a type of shaping rewards ap-
proach [Dorigo and Colombetti, 1994; Mataric, 1994]). In
Isbell et al. [2006], an agent uses RL to learn social behav-
ior from multiple sources of human reinforcement. Judah et
al. [2010] alternate between “practice”, where actual world
experience is gathered, and an offline labeling of actions as
good or bad by a human critic, an approach that blurs the line
between feedback and demonstration. The human criticism is
used to judge the expected value of candidate policies while
also automatically determining the level of influence given to
the criticism.

6.3 Advice

High-level advice and suggestions have also been used to bias
agent learning. Such advice can provide a powerful learn-
ing tool that speeds up learning by biasing the behavior of
an agent and reducing the policy search space. However, ex-
isting methods typically require either a significant user so-
phistication (e.g., the human must use a specific program-
ming language to provide advice [Maclin and Shavlik, 1996])
or significant effort is needed to design a human interface
(e.g., the learning agent must have natural language process-
ing abilities [Kuhlmann et al., 2004]).

7 Conclusions and Future Work

Several patterns emerge from the pilot study that directly ad-
dress the teaching modes’ expected comparative strengths, as
described in Section 3. LfD generally results in higher per-
formance than LfF, which we suspect to usually be the case.
However, several interaction effects indicate that the relative
performance of each method is highly situational, support-
ing our overall thesis that each method has unique strengths.
More investigation is needed to determine which circum-
stances favor each method. Additionally, the performance of
the policy learned from feedback was at least as good as the
performance during teaching, whereas the performance of an
LfD policy was at most as good as during the demonstrations
(removing apparent episode-to-episode noise).

However, these patterns are not conclusive, because of a
small sample size and changing conditions during the pilot
study. In the future, we plan to redesign the experiment, better
preparing the subjects to teach well, balancing the number of
subjects in each condition, and carefully choosing what ma-
nipulations we use to further test when each teaching modal-
ity should be used. Additionally, we hope to use our under-
standing of the relative strengths of LfF and LfD to design an
agent that appropriately uses both learning mechanisms.
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