Deep R Learning for Continual Area Sweeping

Rishi Shah*, Yuqian Jiang*, Justin Hart, Peter Stone
Motivation
Motivation

- Ongoing stream of tasks
 - Service robot

- Long term task
 - Cleaning robot
 - Surveillance robot
Motivation

- Ongoing stream of tasks
 - Service robot

- Long term task
 - Cleaning robot
 - Surveillance robot

- Efficiently build up background knowledge
 - Semantic map
Coverage Path Planning

Coverage Path Planning (Choset 2001)

- Complete coverage of the building
- Highly wasteful
 - Food delivery robots don’t care about restrooms

Sun et. al. 2018
Efficient Coverage

Detections per Second (DPS): Average events detected per second
Continual Area Sweeping

How can we continually patrol an area?
Continual Area Sweeping

How can we continually patrol an area in a **non-uniform** way in order to efficiently use travel time?
Prior Work: ADT-Greedy

- **ADT-Greedy** (Ahmadi and Stone 2005)
 - Introduces Continual Area Sweeping problem
 - Uses metric tailored towards first-responders (e.g. first-aid robot)
Prior Work: ADT–Greedy

- ADT-Greedy (Ahmadi and Stone 2005)
 - Introduces Continual Area Sweeping problem
 - Uses metric tailored towards first-responders (e.g. first-aid robot)

- Limitations
 - Events assumed to follow binomial distribution
 - Appearance assumed to be linear in time
 - Events never disappear

Shah et al. Deep R-Learning for Continual Area Sweeping
Prior Work: ADT-Greedy

- **ADT-Greedy** (Ahmadi and Stone 2005)
 - Introduces Continual Area Sweeping problem
 - Uses metric tailored towards first-responders (e.g. first-aid robot)

- Limitations
 - Events assumed to follow binomial distribution
 - Appearance assumed to be linear in time
 - Events never disappear

- Acceptable Scenario: **Dust Cleaning**
Our Work: DPS-Max

DPS-Max:

- No prior assumptions
- We provably maximize DPS (Detections per Second) by employing a semi-MDP formulation
- Novel deep R-learning approach to solve problem
Semi-MDP

State Space:
- 2D Navigational Costmap
- Robot Position
- Events Trace
Semi-MDP

Action Space:
- Any location in the map
 - Motion is deferred to the robot’s path planner
Semi-MDP

Action Space:

- Any location in the map
 - Motion is deferred to the robot’s path planner

- Actions take different amounts of time
 - This is what gives us a Semi-MDP
Average Reward Setting

Usual discounted reward setting:

\[
\mathbb{E} \left[\sum_{k=0}^{\infty} \gamma^k R(s_k, a_k, s_{k+1}) \right]
\]
Average Reward Setting

Usual discounted reward setting:

\[\mathbb{E} \left[\sum_{k=0}^{\infty} \gamma^k R(s_k, a_k, s_{k+1}) \right] \]

Our goal is to maximize DPS (Detections per Second) – we can’t express that in this setting!
Average Reward Setting

Usual discounted reward setting:

$$\mathbb{E} \left[\sum_{k=0}^{\infty} \gamma^k R(s_k, a_k, s_{k+1}) \right]$$

Average reward setting:

$$\lim_{n \to \infty} \inf \frac{1}{n} \mathbb{E} \left[\sum_{k=0}^{n-1} R(s_k, a_k, s_{k+1}) \right]$$
Reward Construction

Proposition 1. Take $\{ (s_n, a_n) \}_{n \geq 0} \subset S \times A$ to be a trajectory generated from a policy π. Let $\{ \phi_n \}_{n \geq 0} \subset \mathbb{R}$ a sequence, and $\{ t_n \}_{n \geq 0} \subset \mathbb{R}$ an increasing sequence denoting the associated environmental time. Construct R in the following way:

\[
R(s_0, a_0, s_1) := 0
\]

\[
R(s_n, a_n, s_{n+1}) := (n + 1) \frac{\phi_{n+1}}{t_{n+1}} - n \frac{\phi_n}{t_n}
\]

Then $\rho^\pi(s_0) = \lim \inf_{n \to \infty} \frac{\mathbb{E} \phi(s_n)}{t_n}$.
Deep R Learning

- Off-policy RL is desired
 - Greater sample efficiency
Deep R Learning

- Off-policy RL is desired
 - Greater sample efficiency

- R Learning (Schwartz 1993)
 - Classical modification to Q Learning for the average reward setting

- We want to use deep function approximators
 - Experience Replay
 - Modify Double DQN
Deep R Learning

Algorithm 1 Deep R-Learning

1: Initialize empty experience replay buffer \mathcal{D}.
2: Initialize network Q with random weights $\theta = \theta^−$.
3: Initialize $\rho = 0$.
4: for $t = 1, \ldots, M$ do
5: \hspace{1em} Select an action a_t according to an action selection mechanism like ϵ-greedy.
6: \hspace{1em} Execute a_t and store the resulting transition (s_t, a_t, r_t, s_{t+1}) in \mathcal{D}.
7: \hspace{1em} Randomly sample a batch of transitions $\{(s_j, a_j, r_j, s_{j+1})\}$ from \mathcal{D}.
8: \hspace{1em} Let $q_{max} = Q(s_{j+1}, \text{argmax}_a Q(s_{j+1}, a; \theta); \theta^−)$.
9: \hspace{1em} Let $y_j = r_j - \rho + q_{max}$.
10: \hspace{1em} Take a gradient descent step on $L(y_j, Q(s_j, a_j; \theta))$.
11: \hspace{1em} Let $\Delta_j = y_j - Q(s_j, a_j; \theta)$
12: \hspace{1em} Let $\Delta = \text{avg}\{\Delta_j \text{ s.t. } |Q(s_j, a_j) - q_{max}| < \delta\}$
13: if Δ is well-defined then
14: \hspace{1em} $\rho = \rho + \alpha \Delta$ for learning rate α
15: end if
16: end for
Deep R Learning

- Huge action space
 - # actions: height x width of map
 - Value based methods traditionally struggle in this context

- Architecture circumvents the issue by exploiting the topology of our action space
Gridworld Experiments

- Initial experiments on 20x20 gridworld to compare with ADT-Greedy

- Events appear in some random cells
 - Binomially (like dust)
 - Periodically (like objects)
Gridworld Experiments
DPS Comparison

Higher beats baseline

Shah et al.

Deep R-Learning for Continual Area Sweeping
Leveraging Extra Knowledge

- Littering experiment
 - Person moves around and sometimes drops trash
 - Location of person added to robot’s state

- DPS-Max leverages person information and learns that it is correlated with trash appearance
 - Outperforms baseline by utilizing this information
Gazebo Experiments

- Gazebo is a high-fidelity simulator
- Simulated robot in an apartment
- Realistic map size representing 900 m\(^2\) area
 - With 10cm x 10cm grid cells
Service Robot Demonstration

But some doors are almost always closed

Shah et al. Deep R-Learning for Continual Area Sweeping
Related Work

- Adversarial Coverage
 - Game-theoretic approaches (Gatti 2008, Basilico et. al. 2012, Bošanský et. al. 2011)
 - Focus is on adversarial two player games
Related Work

● Adversarial Coverage
 ○ Game-theoretic approaches (Gatti 2008, Basilico et. al. 2012, Bošanský et. al. 2011)
 ○ Focus is on adversarial two player games

● Coverage with Metrics
 ○ Known spatial distribution
 ■ Ergodic coverage, Information Surfing (Ayvali et. al. 2017, Ratto et. al. 2015)
Related Work

- **Adversarial Coverage**
 - Game-theoretic approaches (Gatti 2008, Basilico et. al. 2012, Bošanský et. al. 2011)
 - Focus is on adversarial two player games

- **Coverage with Metrics**
 - Known spatial distribution
 - Ergodic coverage, Information Surfing (Ayvali et. al. 2017, Ratto et. al. 2015)
 - Unknown/changing spatial distribution
 - Adaptive ergodic approaches (Mavrommati et. al. 2017)
 - ADT-Greedy (Ahmadi and Stone 2005)
Summary

- Continual area sweeping important for ongoing streams / long term tasks
 - Service robots, cleaning, surveillance, etc.

- Our novel algorithm DPS-Max outperforms and generalizes the baseline

- DPS-Max provably maximizes detections per second
Deep R Learning for Continual Area Sweeping

Rishi Shah*, Yuqian Jiang*, Justin Hart, Peter Stone